1
|
Palaniswamy SS, Subramanyam P. Diagnostic performance of simultaneous PET-MR versus PET-CT in oncology with an overview on clinical utility and referral pattern of PET-MR: a single institutional study. Nucl Med Commun 2024; 45:1022-1032. [PMID: 39324997 DOI: 10.1097/mnm.0000000000001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
BACKGROUND PET-Magnetic Resonance (PET-MR) imaging is an upcoming investigative modality with a few installations in Asia and only three in India. PET-Computed Tomography (PET-CT) is an established diagnostic cornerstone for oncological indications but with limited resolution for small lesions due to low soft-tissue contrast and additional radiation exposure. OBJECTIVE Our primary objective was to evaluate the diagnostic performance of simultaneous PET-MR and PET-CT in lesion detection in oncological practice. Secondly to assess the referral pattern and study the clinical utility of PET-MR in a university hospital practice. MATERIALS AND METHODS A total of 100 consecutive biopsy-proven cancer patients (breast or lung malignancy with suspected metastases) underwent 18 F Fluorodeoxyglucose (FDG) PET-MR and PET-CT for staging as a single injection, double examination protocol. Morphological lesion detection on correlative imaging/histopathology was used as the gold standard. Analysing the referral pattern, a total of 9366 patients underwent simultaneous PET-MR imaging for various indications in the past 5 years since installation. RESULTS 18 F FDG PET-MR detected 100% of primary tumours in breast/lung carcinoma patients while PET-CT was positive in 96%. Overall accuracy of nodal metastases detection for PET-MR and PET-CT was 96 and 88%, while for distant metastases the accuracy was 100 and 93%, respectively. FDG PET-MR proved more sensitive and specific than PET-CT for regional nodal ( P = 0.011 and P < 0.001) and distant metastases detection ( P = 0.017 and P < 0.001, respectively). Analysing the general referral pattern for PET-MR, the majority were oncology referrals when compared to nononcological indications (66.5, 33.5%). About 66.24% were FDG based, followed by 68 Ga Prostate-Specific Membrane Antigen (PSMA) and dodecane tetraacetic acid (DOTA). The general utility of PET-MR was found incremental in better delineation of small lesions especially in head, neck, liver, brain and gynaecological malignancies. CONCLUSION In our past 5 years of PET-MR practice, we found that simultaneous PET-MR is a highly recommended ideal imaging technique for oncological and nononcological indications. It has excellent diagnostic performance with high sensitivity, specificity and accuracy when compared to PET-CT in primary tumour, nodal and distant metastases (TNM) staging in specific subgroup of breast and lung malignancy patients.
Collapse
Affiliation(s)
- Shanmuga Sundaram Palaniswamy
- Department of Nuclear Medicine & Molecular Imaging, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham University, Cochin, Kerala, India
| | | |
Collapse
|
2
|
Hussain D, Abbas N, Khan J. Recent Breakthroughs in PET-CT Multimodality Imaging: Innovations and Clinical Impact. Bioengineering (Basel) 2024; 11:1213. [PMID: 39768032 PMCID: PMC11672880 DOI: 10.3390/bioengineering11121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
This review presents a detailed examination of the most recent advancements in positron emission tomography-computed tomography (PET-CT) multimodal imaging over the past five years. The fusion of PET and CT technologies has revolutionized medical imaging, offering unprecedented insights into both anatomical structure and functional processes. The analysis delves into key technological innovations, including advancements in image reconstruction, data-driven gating, and time-of-flight capabilities, highlighting their impact on enhancing diagnostic accuracy and clinical outcomes. Illustrative case studies underscore the transformative role of PET-CT in lesion detection, disease characterization, and treatment response evaluation. Additionally, the review explores future prospects and challenges in PET-CT, advocating for the integration and evaluation of emerging technologies to improve patient care. This comprehensive synthesis aims to equip healthcare professionals, researchers, and industry stakeholders with the knowledge and tools necessary to navigate the evolving landscape of PET-CT multimodal imaging.
Collapse
Affiliation(s)
- Dildar Hussain
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea;
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jawad Khan
- Department of AI and Software, School of Computing, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Li X, Johnson JM, Strigel RM, Bancroft LCH, Hurley SA, Estakhraji SIZ, Kumar M, Fowler AM, McMillan AB. Attenuation correction and truncation completion for breast PET/MR imaging using deep learning. Phys Med Biol 2024; 69:045031. [PMID: 38252969 DOI: 10.1088/1361-6560/ad2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Objective. Simultaneous PET/MR scanners combine the high sensitivity of MR imaging with the functional imaging of PET. However, attenuation correction of breast PET/MR imaging is technically challenging. The purpose of this study is to establish a robust attenuation correction algorithm for breast PET/MR images that relies on deep learning (DL) to recreate the missing portions of the patient's anatomy (truncation completion), as well as to provide bone information for attenuation correction from only the PET data.Approach. Data acquired from 23 female subjects with invasive breast cancer scanned with18F-fluorodeoxyglucose PET/CT and PET/MR localized to the breast region were used for this study. Three DL models, U-Net with mean absolute error loss (DLMAE) model, U-Net with mean squared error loss (DLMSE) model, and U-Net with perceptual loss (DLPerceptual) model, were trained to predict synthetic CT images (sCT) for PET attenuation correction (AC) given non-attenuation corrected (NAC) PETPET/MRimages as inputs. The DL and Dixon-based sCT reconstructed PET images were compared against those reconstructed from CT images by calculating the percent error of the standardized uptake value (SUV) and conducting Wilcoxon signed rank statistical tests.Main results. sCT images from the DLMAEmodel, the DLMSEmodel, and the DLPerceptualmodel were similar in mean absolute error (MAE), peak-signal-to-noise ratio, and normalized cross-correlation. No significant difference in SUV was found between the PET images reconstructed using the DLMSEand DLPerceptualsCTs compared to the reference CT for AC in all tissue regions. All DL methods performed better than the Dixon-based method according to SUV analysis.Significance. A 3D U-Net with MSE or perceptual loss model can be implemented into a reconstruction workflow, and the derived sCT images allow successful truncation completion and attenuation correction for breast PET/MR images.
Collapse
Affiliation(s)
- Xue Li
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, United States of America
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Jacob M Johnson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States of America
| | - Leah C Henze Bancroft
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - S Iman Zare Estakhraji
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- ICTR Graduate Program in Clinical Investigation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States of America
| | - Alan B McMillan
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI, United States of America
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States of America
| |
Collapse
|
4
|
Ruan D, Sun L. Diagnostic Performance of PET/MRI in Breast Cancer: A Systematic Review and Bayesian Bivariate Meta-analysis. Clin Breast Cancer 2023; 23:108-124. [PMID: 36549970 DOI: 10.1016/j.clbc.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION By performing a systematic review and meta-analysis, the diagnostic value of 18F-FDG PET/MRI in breast lesions, lymph nodes, and distant metastases was assessed, and the merits and demerits of PET/MRI in the application of breast cancer were comprehensively reviewed. METHODS Breast cancer-related studies using 18F-FDG PET/MRI as a diagnostic tool published before September 12, 2022 were included. The pooled sensitivity, specificity, log diagnostic odds ratio (LDOR), and area under the curve (AUC) were calculated using Bayesian bivariate meta-analysis in a lesion-based and patient-based manner. RESULTS We ultimately included 24 studies (including 1723 patients). Whether on a lesion-based or patient-based analysis, PET/MRI showed superior overall pooled sensitivity (0.95 [95% CI: 0.92-0.98] & 0.93 [95% CI: 0.88-0.98]), specificity (0.94 [95% CI: 0.90-0.97] & 0.94 [95% CI: 0.92-0.97]), LDOR (5.79 [95% CI: 4.95-6.86] & 5.64 [95% CI: 4.58-7.03]) and AUC (0.98 [95% CI: 0.94-0.99] & 0.98[95% CI: 0.92-0.99]) for diagnostic applications in breast cancer. In the specific subgroup analysis, PET/MRI had high pooled sensitivity and specificity for the diagnosis of breast lesions and distant metastatic lesions and was especially excellent for bone lesions. PET/MRI performed poorly for diagnosing axillary lymph nodes but was better than for lymph nodes at other sites (pooled sensitivity, specificity, LDOR, AUC: 0.86 vs. 0.58, 0.90 vs. 0.82, 4.09 vs. 1.98, 0.89 vs. 0.84). CONCLUSION 18F-FDG PET/MRI performed excellently in diagnosing breast lesions and distant metastases. It can be applied to the initial diagnosis of suspicious breast lesions, accurate staging of breast cancer patients, and accurate restaging of patients with suspected recurrence.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Salem K, Reese RM, Alarid ET, Fowler AM. Progesterone Receptor-Mediated Regulation of Cellular Glucose and 18F-Fluorodeoxyglucose Uptake in Breast Cancer. J Endocr Soc 2022; 7:bvac186. [PMID: 36601022 PMCID: PMC9795483 DOI: 10.1210/jendso/bvac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
Context Positron emission tomography imaging with 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) is used clinically for initial staging, restaging, and assessing therapy response in breast cancer. Tumor FDG uptake in steroid hormone receptor-positive breast cancer and physiologic FDG uptake in normal breast tissue can be affected by hormonal factors such as menstrual cycle phase, menopausal status, and hormone replacement therapy. Objective The purpose of this study was to determine the role of the progesterone receptor (PR) in regulating glucose and FDG uptake in breast cancer cells. Methods and Results PR-positive T47D breast cancer cells treated with PR agonists had increased FDG uptake compared with ethanol control. There was no significant change in FDG uptake in response to PR agonists in PR-negative MDA-MB-231 cells, MDA-MB-468 cells, or T47D PR knockout cells. Treatment of T47D cells with PR antagonists inhibited the effect of R5020 on FDG uptake. Using T47D cell lines that only express either the PR-A or the PR-B isoform, PR agonists increased FDG uptake in both cell types. Experiments using actinomycin D and cycloheximide demonstrated the requirement for both transcription and translation in PR regulation of FDG uptake. GLUT1 and PFKFB3 mRNA expression and the enzymatic activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were increased after progestin treatment of T47D cells. Conclusion Thus, progesterone and progestins increase FDG uptake in T47D breast cancer cells through the classical action of PR as a ligand-activated transcription factor. Ligand-activated PR ultimately increases expression and activity of proteins involved in glucose uptake, glycolysis, and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Rebecca M Reese
- McArdle Laboratory for Cancer Research, Department of Oncology and Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology and Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
6
|
Allen TJ, Bancroft LCH, Kumar M, Bradshaw TJ, Strigel RM, McMillan AB, Fowler AM. Gadolinium-Based Contrast Agent Attenuation Does Not Impact PET Quantification in Simultaneous Dynamic Contrast Enhanced Breast PET/MR. Med Phys 2022; 49:5206-5215. [PMID: 35621727 DOI: 10.1002/mp.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Simultaneous PET/MR imaging involves injection of a radiopharmaceutical and often also includes administration of a gadolinium-based contrast agent (GBCA). Phantom model studies indicate that attenuation of annihilation photons by GBCAs does not bias quantification metrics of PET radiopharmaceutical uptake. However, a direct comparison of attenuation corrected PET values before and after administration of GBCA has not been performed in patients imaged with simultaneous dynamic PET/MR. The purpose of this study was to investigate the attenuating effect of GBCAs on standardized uptake value (SUV) quantification of 18 F-fluorodeoxyglucose (FDG) uptake in invasive breast cancer and normal tissues using simultaneous PET/MR. METHODS The study included 13 women with newly diagnosed invasive breast cancer imaged using simultaneous dedicated prone breast PET/MR with FDG. PET data collection and two-point Dixon based MR attenuation correction sequences began simultaneously before the administration of GBCA to avoid a potential impact of GBCA on the attenuation correction map. A standard clinical dose of GBCA was intravenously administered for the dynamic contrast enhanced MR sequences obtained during the simultaneous PET data acquisition. PET data were dynamically reconstructed into 60 frames of 30 seconds each. Three timing windows were chosen consisting of a single frame (30 seconds), two frames (60 seconds), or four frames (120 seconds) immediately before and after contrast administration. SUVmax and SUVmean of the biopsy-proven breast malignancy, fibroglandular tissue of the contralateral normal breast, descending aorta, and liver were calculated prior to and following GBCA administration. Percent change in the SUV metrics were calculated to test for a statistically significant, non-zero percent change using Wilcoxon signed-rank tests. RESULTS No statistical change in SUVmax or SUVmean was found for the breast malignancies or normal anatomical regions during the timing windows before and after GBCA administration. CONCLUSIONS GBCAs do not significantly impact the results of PET quantification by means of additional attenuation. However, GBCAs may still affect quantification by affecting MR acquisitions used for MR-based attenuation correction which this study did not address. Corrections to account for attenuation due to clinical concentrations of GBCAs are not necessary in simultaneous PET/MR examinations when MR-based attenuation correction sequences are performed prior to GBCA administration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Timothy J Allen
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Leah C Henze Bancroft
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Tyler J Bradshaw
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Roberta M Strigel
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, WI, 53792, USA
| | - Alan B McMillan
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Amy M Fowler
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, WI, 53792, USA
| |
Collapse
|
7
|
Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 2022; 19:365-384. [PMID: 35322236 DOI: 10.1038/s41571-022-00615-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clinical oncology can benefit substantially from imaging technologies that reveal physiological characteristics with multiscale observations. Complementing conventional imaging modalities, photoacoustic imaging (PAI) offers rapid imaging (for example, cross-sectional imaging in real time or whole-breast scanning in 10-15 s), scalably high levels of spatial resolution, safe operation and adaptable configurations. Most importantly, this novel imaging modality provides informative optical contrast that reveals details on anatomical, functional, molecular and histological features. In this Review, we describe the current state of development of PAI and the emerging roles of this technology in cancer screening, diagnosis and therapy. We comment on the performance of cutting-edge photoacoustic platforms, and discuss their clinical applications and utility in various clinical studies. Notably, the clinical translation of PAI is accelerating in the areas of macroscopic and mesoscopic imaging for patients with breast or skin cancers, as well as in microscopic imaging for histopathology. We also highlight the potential of future developments in technological capabilities and their clinical implications, which we anticipate will lead to PAI becoming a desirable and widely used imaging modality in oncological research and practice.
Collapse
Affiliation(s)
- Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Bruckmann NM, Morawitz J, Fendler WP, Ruckhäberle E, Bittner AK, Giesel FL, Herrmann K, Antoch G, Umutlu L, Kirchner J. A Role of PET/MR in Breast Cancer? Semin Nucl Med 2022; 52:611-618. [DOI: 10.1053/j.semnuclmed.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 01/18/2023]
|
9
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
10
|
Abstract
Imaging plays an integral role in the clinical care of patients with breast cancer. This review article focuses on the use of PET imaging for breast cancer, highlighting the clinical indications and limitations of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET/CT, the potential use of PET/MRI, and 16α-[18F]fluoroestradiol (FES), a newly approved radiopharmaceutical for estrogen receptor imaging.
Collapse
Affiliation(s)
- Amy M Fowler
- Breast Imaging and Intervention Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA.
| | - Steve Y Cho
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA; Nuclear Medicine and Molecular Imaging Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| |
Collapse
|
11
|
Mankoff DA, Surti S. PET/MRI for Primary Breast Cancer: A Match Made Better by PET Quantification? Radiol Imaging Cancer 2021; 3:e200150. [PMID: 33577625 PMCID: PMC7850234 DOI: 10.1148/rycan.2021200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022]
Affiliation(s)
- David A. Mankoff
- From the Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner Building, 3400 Spruce St, Philadelphia, PA 19104-4283
| | - Suleman Surti
- From the Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner Building, 3400 Spruce St, Philadelphia, PA 19104-4283
| |
Collapse
|