1
|
Wu X, Yue X, Peng P, Tan X, Huang F, Cai L, Li L, He S, Zhang X, Liu P, Sun J. Accelerated 3D whole-heart non-contrast-enhanced mDIXON coronary MR angiography using deep learning-constrained compressed sensing reconstruction. Insights Imaging 2024; 15:224. [PMID: 39298070 DOI: 10.1186/s13244-024-01797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES To investigate the feasibility of a deep learning-constrained compressed sensing (DL-CS) method in non-contrast-enhanced modified DIXON (mDIXON) coronary magnetic resonance angiography (MRA) and compare its diagnostic accuracy using coronary CT angiography (CCTA) as a reference standard. METHODS Ninety-nine participants were prospectively recruited for this study. Thirty healthy subjects (age range: 20-65 years; 50% female) underwent three non-contrast mDIXON-based coronary MRA sequences including DL-CS, CS, and conventional sequences. The three groups were compared based on the scan time, subjective image quality score, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The remaining 69 patients suspected of coronary artery disease (CAD) (age range: 39-83 years; 51% female) underwent the DL-CS coronary MRA and its diagnostic performance was compared with that of CCTA. RESULTS The scan time for the DL-CS and CS sequences was notably shorter than that of the conventional sequence (9.6 ± 3.1 min vs 10.0 ± 3.4 min vs 13.0 ± 4.9 min; p < 0.001). The DL-CS sequence obtained the highest image quality score, mean SNR, and CNR compared to CS and conventional methods (all p < 0.001). Compared to CCTA, the accuracy, sensitivity, and specificity of DL-CS mDIXON coronary MRA per patient were 84.1%, 92.0%, and 79.5%; those per vessel were 90.3%, 82.6%, and 92.5%; and those per segment were 98.0%, 85.1%, and 98.0%, respectively. CONCLUSION The DL-CS mDIXON coronary MRA provided superior image quality and short scan time for visualizing coronary arteries in healthy individuals and demonstrated high diagnostic value compared to CCTA in CAD patients. CRITICAL RELEVANCE STATEMENT DL-CS resulted in improved image quality with an acceptable scan time, and demonstrated excellent diagnostic performance compared to CCTA, which could be an alternative to enhance the workflow of coronary MRA. KEY POINTS Current coronary MRA techniques are limited by scan time and the need for noise reduction. DL-CS reduced the scan time in coronary MR angiography. Deep learning achieved the highest image quality among the three methods. Deep learning-based coronary MR angiography demonstrated high performance compared to CT angiography.
Collapse
Affiliation(s)
- Xi Wu
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xun Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Pengfei Peng
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xianzheng Tan
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Feng Huang
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lei Cai
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuai He
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | | | - Peng Liu
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Zhao SH, Guo WF, Yao ZF, Yang S, Yun H, Chen YY, Han TT, Zhou XY, Fu CX, Zeng MS, Li CG, Pan CZ, Jin H. Fully automated pixel-wise quantitative CMR-myocardial perfusion with CMR-coronary angiography to detect hemodynamically significant coronary artery disease. Eur Radiol 2023; 33:7238-7249. [PMID: 37145148 DOI: 10.1007/s00330-023-09689-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES We applied a fully automated pixel-wise post-processing framework to evaluate fully quantitative cardiovascular magnetic resonance myocardial perfusion imaging (CMR-MPI). In addition, we aimed to evaluate the additive value of coronary magnetic resonance angiography (CMRA) to the diagnostic performance of fully automated pixel-wise quantitative CMR-MPI for detecting hemodynamically significant coronary artery disease (CAD). METHODS A total of 109 patients with suspected CAD were prospectively enrolled and underwent stress and rest CMR-MPI, CMRA, invasive coronary angiography (ICA), and fractional flow reserve (FFR). CMRA was acquired between stress and rest CMR-MPI acquisition, without any additional contrast agent. Finally, CMR-MPI quantification was analyzed by a fully automated pixel-wise post-processing framework. RESULTS Of the 109 patients, 42 patients had hemodynamically significant CAD (FFR ≤ 0.80 or luminal stenosis ≥ 90% on ICA) and 67 patients had hemodynamically non-significant CAD (FFR ˃ 0.80 or luminal stenosis < 30% on ICA) were enrolled. On the per-territory analysis, patients with hemodynamically significant CAD had higher myocardial blood flow (MBF) at rest, lower MBF under stress, and lower myocardial perfusion reserve (MPR) than patients with hemodynamically non-significant CAD (p < 0.001). The area under the receiver operating characteristic curve of MPR (0.93) was significantly larger than those of stress and rest MBF, visual assessment of CMR-MPI, and CMRA (p < 0.05), but similar to that of the integration of CMR-MPI with CMRA (0.90). CONCLUSIONS Fully automated pixel-wise quantitative CMR-MPI can accurately detect hemodynamically significant CAD, but the integration of CMRA obtained between stress and rest CMR-MPI acquisition did not provide significantly additive value. KEY POINTS • Full quantification of stress and rest cardiovascular magnetic resonance myocardial perfusion imaging can be postprocessed fully automatically, generating pixel-wise myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) maps. • Fully quantitative MPR provided higher diagnostic performance for detecting hemodynamically significant coronary artery disease, compared with stress and rest MBF, qualitative assessment, and coronary magnetic resonance angiography (CMRA). • The integration of CMRA and MPR did not significantly improve the diagnostic performance of MPR alone.
Collapse
Affiliation(s)
- Shi-Hai Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Medical Imaging, Shanghai Medical School, Fudan University, Shanghai, China
| | - Wei-Feng Guo
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Medical Imaging, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhi-Feng Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Shan Yang
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Medical Imaging, Shanghai Medical School, Fudan University, Shanghai, China
| | - Hong Yun
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Medical Imaging, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yin-Yin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Medical Imaging, Shanghai Medical School, Fudan University, Shanghai, China
| | - Tong-Tong Han
- Circle Cardiovascular Imaging, Calgary, Alberta, Canada
| | - Xiao-Yue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Cai-Xia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China.
- Department of Medical Imaging, Shanghai Medical School, Fudan University, Shanghai, China.
| | - Chen-Guang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Cui-Zhen Pan
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hang Jin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China.
- Department of Medical Imaging, Shanghai Medical School, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Tian D, Sun Y, Guo JJ, Zhao SH, Lu HF, Chen YY, Ge MY, Zeng MS, Jin H. 3.0 T unenhanced Dixon water-fat separation whole-heart coronary magnetic resonance angiography: compressed-sensing sensitivity encoding imaging versus conventional 2D sensitivity encoding imaging. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:1775-1784. [PMID: 37428247 DOI: 10.1007/s10554-023-02878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
This study was aimed to investigate 3.0 T unenhanced Dixon water-fat whole-heart CMRA (coronary magnetic resonance angiography) using compressed-sensing sensitivity encoding (CS-SENSE) and conventional sensitivity encoding (SENSE) in vitro and in vivo. The key parameters of CS-SENSE and conventional 1D/2D SENSE were compared in vitro phantom study. In vivo study, fifty patients with suspected coronary artery disease (CAD) completed unenhanced Dixon water-fat whole-heart CMRA at 3.0 T using both CS-SENSE and conventional 2D SENSE methods. We compared mean acquisition time, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and the diagnostic accuracy between two techniques. In vitro study, CS-SENSE achieved better effectiveness between higher SNR/CNR and shorter scan times using the appropriate acceleration factor compared with conventional 2D SENSE. In vivo study, CS-SENSE CMRA had better performance than 2D SENSE in terms of the mean acquisition time, SNR and CNR (7.4 ± 3.2 min vs. 8.3 ± 3.4 min, P = 0.001; SNR: 115.5 ± 35.4 vs. 103.3 ± 32.2; CNR: 101.1 ± 33.2 vs. 90.6 ± 30.1, P < 0.001 for both). The diagnostic accuracy between CS-SENSE and 2D SENSE had no significant difference on a patient-based analysis (sensitivity: 97.3% vs. 91.9%; specificity: 76.9% vs. 61.5%; accuracy: 92.0% vs. 84.0%; P > 0.05 for each). Unenhanced CS-SENSE Dixon water-fat separation whole-heart CMRA at 3.0 T can improve the SNR and CNR, shorten the acquisition time while providing equally satisfactory image quality and diagnostic accuracy compared with 2D SENSE CMRA.
Collapse
Affiliation(s)
- Di Tian
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China
| | - Yi Sun
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China
| | - Jia-Jun Guo
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China
| | - Shi-Hai Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China
| | - Hong-Fei Lu
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China
| | - Yin-Yin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China
| | - Mei-Ying Ge
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China.
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China
| | - Hang Jin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, China.
| |
Collapse
|
4
|
Zhang Y, Zhang X, Jiang Y, Yang P, Hu X, Peng B, Yue X, Li Y, Ma P, Yuan Y, Yu Y, Liu B, Li X. 3D whole-heart noncontrast coronary MR angiography based on compressed SENSE technology: a comparative study of conventional SENSE sequence and coronary computed tomography angiography. Insights Imaging 2023; 14:35. [PMID: 36790611 PMCID: PMC9931966 DOI: 10.1186/s13244-023-01378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE The relatively long scan time has hampered the clinical use of whole-heart noncontrast coronary magnetic resonance angiography (NCMRA). The compressed sensitivity encoding (SENSE) technique, also known as the CS technique, has been found to improve scan times. This study aimed to identify the optimal CS acceleration factor for NCMRA. METHODS Thirty-six participants underwent four NCMRA sequences: three sequences using the CS technique with acceleration factors of 4, 5, and 6, and one sequence using the conventional SENSE technique with the acceleration factor of 2. Coronary computed tomography angiography (CCTA) was considered as a reference sequence. The acquisition times of the four NCMRA sequences were assessed. The correlation and agreement between the visible vessel lengths obtained via CCTA and NCMRA were also assessed. The image quality scores and contrast ratio (CR) of eight coronary artery segments from the four NCMRA sequences were quantitatively evaluated. RESULTS The mean acquisition time of the conventional SENSE was 343 s, while that of CS4, CS5, and CS6 was 269, 215, and 190 s, respectively. The visible vessel length from the CS4 sequence showed good correlation and agreement with CCTA. The image quality score and CR from the CS4 sequence were not statistically significantly different from those in the other groups (p > 0.05). Moreover, the image score and CR showed a decreasing trend with the increase in the CS factor. CONCLUSIONS The CS technique could significantly shorten the acquisition time of NCMRA. The CS sequence with an acceleration factor of 4 was generally acceptable for NCMRA in clinical settings to balance the image quality and acquisition time.
Collapse
Affiliation(s)
- Yang Zhang
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, 230032 Anhui Province China ,Department of Radiology, Fuyang People’s Hospital, Fuyang, 236015 Anhui Province China
| | - Xinna Zhang
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, 230032 Anhui Province China
| | - Yuqi Jiang
- grid.186775.a0000 0000 9490 772XDepartment of Radiology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000 Anhui China
| | - Panpan Yang
- grid.186775.a0000 0000 9490 772XDepartment of Radiology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000 Anhui China
| | - Xiankuo Hu
- Department of Radiology, Fuyang People’s Hospital, Fuyang, 236015 Anhui Province China
| | - Bin Peng
- Department of Radiology, Fuyang People’s Hospital, Fuyang, 236015 Anhui Province China
| | | | - Yuanyuan Li
- Department of Radiology, Fuyang People’s Hospital, Fuyang, 236015 Anhui Province China
| | - Peiqi Ma
- Department of Radiology, Fuyang People’s Hospital, Fuyang, 236015 Anhui Province China
| | - Yushan Yuan
- Department of Radiology, Fuyang People’s Hospital, Fuyang, 236015 Anhui Province China
| | - Yongqiang Yu
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, 230032 Anhui Province China
| | - Bin Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China.
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China. .,Department of Radiology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
| |
Collapse
|
5
|
Assessment of Non-contrast-enhanced Dixon Water-fat Separation Compressed Sensing Whole-heart Coronary MR Angiography at 3.0 T: A Single-center Experience. Acad Radiol 2022; 29 Suppl 4:S82-S90. [PMID: 34127363 DOI: 10.1016/j.acra.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE AND OBJECTIVES The clinical utility of Dixon water-fat separation coronary MR angiography (CMRA) with compressed sensing (CS) reconstruction has not been determined in a patient population. This study was designed to evaluate the performance of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA sequence in vitro and in vivo. MATERIALS AND METHODS In vitro phantom MRI, we compared key parameters of the SENSE and CS images. And in this prospective in vivo study, from November 2019 to October 2020, 94 participants were recruited for 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA. The accuracy of CMRA for detecting a ≥ 50% reduction in diameter was determined using X-ray coronary angiography (CA) as the reference method. RESULTS Compared with SENSE, CS with an appropriate acceleration factor offers both higher SNR/CNR (p < 0.05) and a shortened acquisition. Fifty-eight patients successfully completed the CMRA and CA. The sensitivity, specificity, positive predictive values, negative predictive values, and accuracy of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA according to a patient-based analysis were 96.4%, 66.7%, 73.0%, 95.2% and 81.0%, respectively. The area under the receiver-operator characteristic (ROC) curve (AUC) of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA for detecting significant coronary artery stenosis is 0.908, 0.895, and 0.904 in patient-, vessel-, and segment-based analyses respectively. CONCLUSION 3.0 T non-contrast-enhanced Dixon water-fat separation whole-heart CMRA using appropriate CS is a promising noninvasive and radiation-free technique to detect clinically significant coronary stenosis on patients with suspected CAD.
Collapse
|
6
|
Unenhanced Whole-Heart Coronary MRA: Prospective Intraindividual Comparison of 1.5-T SSFP and 3-T Dixon Water-Fat Separation GRE Methods Using Coronary Angiography as Reference. AJR Am J Roentgenol 2022; 219:199-211. [PMID: 35293232 DOI: 10.2214/ajr.21.27292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Coronary MRA is commonly performed at 1.5 T using SSFP acquisitions. Coronary MRA at 3 T is limited using SSFP due to impaired fat suppression and has been investigated typically using contrast-enhanced techniques. A Dixon fat-water separation gradient-recalled echo (GRE) method may enable high-quality unenhanced 3-T coronary MRA. Objective: To compare 1.5-T SSFP and 3-T Dixon water-fat separation GRE methods for unenhanced whole-heart coronary MRA in patients with suspected coronary artery disease (CAD). Methods: This prospective study included 44 patients (27 men, 17 women; mean age 59±8 years) with intermediate-to-high risk of CAD who underwent both 1.5-T SSFP and 3-T Dixon GRE coronary MRA examinations before coronary angiography (CAG). Two radiologists independently assessed coronary arteries in terms of subjective image quality (1-5 scale; 5=highest image quality), number of visible segments, apparent contrast-to-noise ratio (CNR; vs myocardium)), and presence of significant stenoses. Methods were compared using readers' mean values for apparent CNR and consensus interpretations for other measures. CAG served as reference standard for presence of stenoses. Results: Interobserver agreement expressed as kappa was 0.85 for image quality, 0.85 for segment visibility, and 0.83 for stenosis, and expressed as intraclass correlation coefficient was 0.92 for apparent CNR. Mean overall image quality score was 4.0±1.1 for 3-T Dixon GRE versus 3.0±1.2 for 1.5-T SSFP. Percentage of visible segments for 3-T Dixon GRE versus 1.5-T SSFP was 96.7% versus 88.9% for all segments, 96.9% versus 90.1% for distal segments, and 93.1% versus 77.2% for branch segments. Mean overall apparent CNR was 93.2±29.2 for 3-T Dixon GRE versus 80.8±27.9 for 1.5-T SSFP. 3-T Dixon GRE, compared with 1.5-T SSFP, showed higher sensitivity and specificity in per-vessel analysis (87.9% vs 77.3%; 83.3% vs 60.6%), per-segment analysis (84.6% vs 74.8%, 90.9% vs 79.6%), and per-segment analysis of distal and branch segments (89.7% vs 75.9%, 89.7% vs 73.7%). Conclusion: For unenhanced coronary MRA, 3-T unenhanced Dixon GRE had better image quality and diagnostic performance than 1.5-T SSFP, particularly for distal and branch segments. Clinical Impact: The 3-T Dixon GRE technique may be preferred to the current clinical standard of 1.5-T SSFP for unenhanced coronary MRA.
Collapse
|
7
|
François CJ. Does the Use of Nitroglycerin at MR Angiography Help Diagnose Coronary Artery Disease? Radiol Cardiothorac Imaging 2020; 2:e200017. [PMID: 33779651 PMCID: PMC7977966 DOI: 10.1148/ryct.2020200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Christopher J. François
- From the Department of Radiology, Cardiovascular and Thoracic Imaging Sections, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792
| |
Collapse
|