1
|
Janssen M, Drnec J, Martens I, Quinson J, Pittkowski R, Park D, Weber P, Arenz M, Oezaslan M. Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Down probed by in situ WAXS and SAXS. CHEMSUSCHEM 2024; 17:e202400303. [PMID: 38507245 DOI: 10.1002/cssc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Advanced in situ analyses are indispensable for comprehending the catalyst aging mechanisms of Pt-based PEM fuel cell cathode materials, particularly during accelerated stress tests (ASTs). In this study, a combination of in situ small-angle and wide-angle X-ray scattering (SAXS & WAXS) techniques were employed to establish correlations between structural parameters (crystal phase, quantity, and size) of a highly active skeleton-PtCo (sk-PtCo) catalyst and their degradation cycles within the potential range of the start-up/shut-down (SUSD) conditions. Despite the complex case of the sk-PtCo catalyst comprising two distinct fcc alloy phases, our complementary techniques enabled in situ monitoring of structural changes in each crystal phase in detail. Remarkably, the in situ WAXS measurements uncover two primary catalyst aging processes, namely the cobalt depletion (regime I) followed by the crystallite growth via Ostwald ripening and/or particle coalescence (regime II). Additionally, in situ SAXS data reveal a continuous size growth over the AST. The Pt-enriched shell thickening based on the Co depletion within the first 100 SUSD cycles and particle growth induced by additional potential cycles were also collaborated by ex situ STEM-EELS. Overall, our work shows a comprehensive aging model for the sk-PtCo catalyst probed by complementary in situ WAXS and SAXS techniques.
Collapse
Affiliation(s)
- Marek Janssen
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Jakub Drnec
- European Synchrotron Radiation Facility (ESRF), 38000, Grenoble, France
| | - Isaac Martens
- European Synchrotron Radiation Facility (ESRF), 38000, Grenoble, France
| | - Jonathan Quinson
- Biological and Chemical Engineering Department, Aarhus University, 40 Åbogade, 8200, Aarhus, Denmark
| | - Rebecca Pittkowski
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Daesung Park
- Physikalisch-Technische Bundesanstalt (PTB), 38116, Braunschweig, Germany
- Laboratory of Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Philipp Weber
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Matthias Arenz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Mehtap Oezaslan
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
2
|
Weber P, Weber DJ, Dosche C, Oezaslan M. Highly Durable Pt-Based Core–Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Weber
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Daniel J. Weber
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Carsten Dosche
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Mehtap Oezaslan
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technical University of Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
3
|
Hu Y, Zhang J, Shen T, Lu Y, Chen K, Tu Z, Lu S, Wang D. A Low-Temperature Carbon Encapsulation Strategy for Stable and Poisoning-Tolerant Electrocatalysts. SMALL METHODS 2021; 5:e2100937. [PMID: 34927969 DOI: 10.1002/smtd.202100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/29/2021] [Indexed: 06/14/2023]
Abstract
Carbon encapsulation is an effective strategy for enhancing the durability of Pt-based electrocatalysts for the oxygen reduction reaction (ORR). However, high-temperature treatment is not only energy-intensive but also unavoidably leads to possible aggregation. Herein, a low-temperature polymeric carbon encapsulation strategy (≈150 °C) is reported to encase Pt nanoparticles in thin and amorphous carbonaceous layers. Benefiting from the physical confinement effect and enhanced antioxidant property induced by the surface carbon species, significantly improved stabilities can be achieved for polymeric carbon species encapsulated Pt nanoparticles (Pt@C/C). Particularly, a better antipoisoning capability toward CO, SOx , and POx is observed in the case of Pt@C/C. To minimize the thickness of the catalyst layer and reduce the mass transfer resistance, the high mass loading Pt@C/C (40 wt%) is prepared and applied to high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). At 160 °C, a peak power density of 662 mW cm-2 is achieved with 40% Pt@C/C cathode in H2 -O2 HT-PEMFCs, which is superior to that with 40% Pt/C cathode. The facile strategy provides guidance for the synthesis of highly durable carbon encapsulated noble metal electrocatalysts toward ORR.
Collapse
Affiliation(s)
- Yezhou Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jujia Zhang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yun Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ke Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhengkai Tu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Abdelhafiz A, Zhao B, Xiao Z, Zeng J, Deng X, Lang L, Ding Y, Song H, Liu M. Facile Room-Temperature Synthesis of a Highly Active and Robust Single-Crystal Pt Multipod Catalyst for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49510-49518. [PMID: 32897685 DOI: 10.1021/acsami.0c06652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Economical production of highly active and robust Pt catalysts on a large scale is vital to the broad commercialization of polymer electrolyte membrane fuel cells. Here, we report a low-cost, one-pot process for large-scale synthesis of single-crystal Pt multipods with abundant high-index facets, in an aqueous solution without any template or surfactant. A composite consisting of the Pt multipods (40 wt %) and carbon displays a specific activity of 0.242 mA/cm2 and a mass activity of 0.109 A/mg at 0.9 V (versus a reversible hydrogen electrode) for oxygen reduction reaction, corresponding to ∼124% and ∼100% enhancement compared with those of the state-of-the-art commercial Pt/C catalyst (0.108 mA/cm2 and 0.054 A/mg). The single-crystal Pt multipods also show excellent stability when tested for 4500 cycles in a potential range of 0.6-1.1 V and another 2000 cycles in 0-1.2 V. More importantly, the superior performance of the Pt multipods/C catalyst is also demonstrated in a membrane electrode assembly (MEA), achieving a power density of 774 mW/cm2 (1.29 A/cm2) at 0.6 V and a peak power density of ∼1 W/cm2, representing 34% and 20% enhancement compared with those of a MEA based on the state-of-the-art commercial Pt/C catalyst (576 and 834 mW/cm2).
Collapse
Affiliation(s)
- Ali Abdelhafiz
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245, United States
| | - Bote Zhao
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245, United States
| | - Zhuojie Xiao
- Guangdong Key Lab for Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jianhuang Zeng
- Guangdong Key Lab for Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiang Deng
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245, United States
| | - Leiming Lang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245, United States
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245, United States
| | - Huiyu Song
- Guangdong Key Lab for Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
5
|
Bak J, Kim H, Lee S, Kim M, Kim EJ, Roh J, Shin J, Choi CH, Cho E. Boosting the Role of Ir in Mitigating Corrosion of Carbon Support by Alloying with Pt. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02845] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Junu Bak
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - SangJae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - MinJoong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eom-Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - JeongHan Roh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - JaeWook Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chang Hyuck Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - EunAe Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Investigation on the coordination mechanism of Pt-containing species and qualification of the alkaline content during Pt/C preparation via a solvothermal polyol method. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63456-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|