1
|
Xu J, Wang Y, Song N, Luo S, Xu B, Zhang J, Wang F. Doping of the Mn vacancy of Mn 2B 2 with a single different transition metal atom as the dual-function electrocatalyst. Phys Chem Chem Phys 2022; 24:20988-20997. [PMID: 36000359 DOI: 10.1039/d2cp02209e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of efficient electrocatalysts is essential to enhance the performance of rechargeable metal-air cells, renewable fuel cells and overall water splitting. Based on this, how to improve the catalytic activity of oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) becomes self-evident. Currently, single atom catalysts (SACs) are widely used as structural design models for the OER, ORR and HER because of the single active site and maximum metal atom utilization, but significant challenges remain. Herein, the catalytic properties of the OER, ORR and HER with a single metal atom as the active site are discussed through first-principles calculations by introducing a single metal atom in the Mn vacancy of Mn2B2 (TM@Mn2B2, TM = Au, Ag, Co, Cd, Cu, Ir, Pd, Ni, Rh, Ru and Pt). The results show that Ni@Mn2B2 is suitable as a dual-function electrocatalyst for the OER/ORR with overpotentials of 0.38 V and 0.37 V, which are lower than those of the OER overpotential of RuO2/IrO2 (0.42 V/0.56 V) and the ORR overpotential of Pt (0.45 V). Meanwhile, Pt@Mn2B2 is available as an OER/HER dual-function electrocatalyst for overall water splitting with a lower overpotential of OER (0.45 V) and lower |ΔGH| (-0.15eV) under 1/4 hydrogen coverage for the HER. This work proposes a practical strategy for developing single metal atom doped MBene as a dual-function electrocatalyst.
Collapse
Affiliation(s)
- Jing Xu
- College of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China.
| | - Yusheng Wang
- College of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China. .,International Laboratory for Quantum Functional Materials of Henan, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Nahong Song
- International Laboratory for Quantum Functional Materials of Henan, School of Physics, Zhengzhou University, Zhengzhou 450001, China.,College of Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou, Henan, 450000, China
| | - Shijun Luo
- College of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China.
| | - Bin Xu
- College of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China.
| | - Jing Zhang
- College of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou, Henan, 450046, China.
| | - Fei Wang
- International Laboratory for Quantum Functional Materials of Henan, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
High-Efficiency of Bi-Functional-Based Perovskite Nanocomposite for Oxygen Evolution and Oxygen Reduction Reaction: An Overview. MATERIALS 2021; 14:ma14112976. [PMID: 34072851 PMCID: PMC8198805 DOI: 10.3390/ma14112976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/12/2023]
Abstract
High efficient, low-cost and environmentally friendly-natured bi-functional-based perovskite electrode catalysts (BFPEC) are receiving increasing attention for oxygen reduction/oxygen evolution reaction (ORR/OER), playing an important role in the electrochemical energy conversion process using fuel cells and rechargeable batteries. Herein, we highlighted the different kinds of synthesis routes, morphological studies and electrode catalysts with A-site and B-site substitution co-substitution, generating oxygen vacancies studies for boosting ORR and OER activities. However, perovskite is a novel type of oxide family, which shows the state-of-art electrocatalytic performances in energy storage device applications. In this review article, we go through different types of BFPECs that have received massive appreciation and various strategies to promote their electrocatalytic activities (ORR/OER). Based on these various properties and their applications of BFPEC for ORR/OER, the general mechanism, catalytic performance and future outlook of these electrode catalysts have also been discussed.
Collapse
|
4
|
Wang ZL, Xu D, Xu JJ, Zhang XB. Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 2014; 43:7746-86. [DOI: 10.1039/c3cs60248f] [Citation(s) in RCA: 1110] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|