1
|
Toalá CU, Prokhorov E, Barcenas GL, Landaverde MAH, Limón JMY, Gervacio-Arciniega JJ, de Fuentes OA, Tapia AMG. Electrostrictive and piezoelectrical properties of chitosan-poly(3-hydroxybutyrate) blend films. Int J Biol Macromol 2023; 250:126251. [PMID: 37562485 DOI: 10.1016/j.ijbiomac.2023.126251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Herein, we report the high apparent piezoelectric coefficient for chitosan-poly(3-hydroxybutyrate) (CS-PHB) blend films. The structure of chitosan-poly(3-hydroxybutyrate) (CS-PHB) blend films, exploiting characteristics such as dielectric, polarization, apparent piezoelectric properties, and their dependencies on the composition, were investigated. Based on the results of XRD, SEM, FTIR, PFM, and dielectric spectroscopy measurements, the structure of CS-PHB blend films has been proposed, which consists of spheric-like inclusion formed by precipitating isotactic-PHB interface layer, which consists of syndiotactic-PHB hydrogen bonding with CS, and CS matrix. The synergistic effects of piezoelectricity and electrostriction help explain the high value of the apparent piezoelectric coefficient (d33) obtained in the blend film with 13 wt% of PHB (d33 ≈ 200 pC/N). The investigated CS-PHB blend films are a good candidate for tissue engineering applications.
Collapse
Affiliation(s)
- C Uitz Toalá
- Nanosciences Program, Cinvestav del IPN, Mexico; CINVESTAV del IPN, Unidad Querétaro, Mexico
| | - E Prokhorov
- CINVESTAV del IPN, Unidad Querétaro, Mexico.
| | - G Luna Barcenas
- Nanosciences Program, Cinvestav del IPN, Mexico; CINVESTAV del IPN, Unidad Querétaro, Mexico.
| | | | | | | | | | | |
Collapse
|
2
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Gadzinowski M, Kasprów M, Basinska T, Slomkowski S, Otulakowski Ł, Trzebicka B, Makowski T. Synthesis, Hydrophilicity and Micellization of Coil-Brush Polystyrene- b-(polyglycidol- g-polyglycidol) Copolymer-Comparison with Linear Polystyrene- b-polyglycidol. Polymers (Basel) 2022; 14:253. [PMID: 35054660 PMCID: PMC8778311 DOI: 10.3390/polym14020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, an original method of synthesis of Coil-Brush amphiphilic polystyrene-b-(polyglycidol-g-polyglycidol) (PS-b-(PGL-g-PGL)) block copolymers was developed. The hypothesis that their hydrophilicity and micellization can be controlled by polyglycidol blocks architecture was verified. The research enabled comparison of behavior in water of PS-b-PGL copolymers and block-brush copolymers PS-b-(PGL-g-PGL) with similar composition. The Coil-Brush copolymers were composed of PS-b-PGL linear core with average DPn of polystyrene 29 and 13 of polyglycidol blocks. The DPn of polyglycidol side blocks of coil-b-brush copolymers were 2, 7, and 11, respectively. The copolymers were characterized by 1H and 13C NMR, GPC, and FTIR methods. The hydrophilicity of films from the linear and Coil-Brush copolymers was determined by water contact angle measurements in static conditions. The behavior of Coil-Brush copolymers in water and their critical micellization concentration (CMC) were determined by UV-VIS using 1,6-diphenylhexa-1,3,5-trien (DPH) as marker and by DLS. The CMC values for brush copolymers were much higher than for linear species with similar PGL content. The results of the copolymer film wettability and the copolymer self-assembly studies were related to fraction of hydrophilic polyglycidol. The CMC for both types of polymers increased exponentially with increasing content of polyglycidol.
Collapse
Affiliation(s)
- Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (T.B.); (T.M.)
| | - Maciej Kasprów
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (Ł.O.); (B.T.)
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (T.B.); (T.M.)
| | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (T.B.); (T.M.)
| | - Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (Ł.O.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (Ł.O.); (B.T.)
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (T.B.); (T.M.)
| |
Collapse
|
4
|
Ji Y, Wang SY, Tong CH. Collapse of four-arm stars polyelectrolyte brushes under an electric field in the presence of trivalent salt coions. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2004059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yu Ji
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Shao-yun Wang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Chao-hui Tong
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Gordievskaya YD, Kramarenko EY. Conformational transitions and helical structures of a dipolar chain in external electric fields. SOFT MATTER 2021; 17:1376-1387. [PMID: 33325981 DOI: 10.1039/d0sm01868f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The conformational behavior of a single dipolar chain in a uniform electric field is investigated by molecular dynamics simulations. The dipolar chain is modeled as a backbone bead-on-spring chain of equally charged beads, each connected by a rigid spring with an oppositely charged side bead that can freely rotate around the backbone bead. In the strong coupling regime, when the dipolar chain is in the globular state due to a strong electrostatic correlational attraction, the application of an electric field causes the chain swelling and elongation along the field direction. In the weak coupling regime, a qualitatively new regime is found when the swollen dipolar chain shrinks along the field direction adopting flattened conformations due to the field-induced anisotropy of the chain rigidity and the head-to-tail attraction of the dipoles orienting along the field lines. A novel helical conformation is detected for low-polar media and strong electric fields. An increasing rigidity of the backbone chain leads to some stabilization of the helical conformation and the formation of double and triple helices as well as flat spread springs. Fine tuning of the interplay between dipolar and volume interactions by external electric fields induces re-orientation of rod-like dipolar chains in dilute solutions. The obtained results can provide new ways to control dipolar polymer conformations and design materials with responsive properties.
Collapse
Affiliation(s)
- Yulia D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| |
Collapse
|
6
|
LaFreniere JMJ, Roberge EJ, Ren T, Seitz WR, Balog ERM, Halpern JM. Insights on the Lower Critical Solution Temperature Behavior of pNIPAM in an Applied Electric Field. ECS TRANSACTIONS 2020; 97:709-715. [PMID: 33796207 PMCID: PMC8011545 DOI: 10.1149/09707.0709ecst] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(N-isopropylacrylamide), or pNIPAM, is a free-radical polymer that is commonly studied for uses in surface coatings, tissue engineering, energy storage, biosensing, and more, due to its temperature responsiveness. pNIPAM is known to solubilize at temperatures below its lower critical solution temperature (LCST) and agglomerate above its LCST. This behavior has been shown to be reproducible and reversible. We confirmed this reversibility and the value of the LCST by performing dynamic light scattering (DLS) with a temperature sweep (increase and decrease). However, performing the same experiment under an applied voltage from copper electrodes, we observed a decrease in the LCST of pNIPAM and irreversible aggregation. Here we present preliminary data comparing the LCST behavior of pNIPAM in the presence of applied voltage using copper, aluminum, and carbon electrodes. We present data in support of the hypothesis that a phenomenon is occurring specifically with the use of copper electrodes that is altering pNIPAM LCST behavior.
Collapse
Affiliation(s)
| | - Emma J. Roberge
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Tianyu Ren
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
| | - W. Rudolph Seitz
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
| | - Eva Rose M. Balog
- Department of Chemistry and Physics, University of New England, Biddeford, ME, 04005, USA
| | - Jeffrey M. Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| |
Collapse
|