1
|
Feng D, Guo YY, Wang W, Yan LF, Sun T, Liu QQ, Cui GB, Nan HY. α-Subunit Tyrosine Phosphorylation Is Required for Activation of the Large Conductance Ca 2+-Activated Potassium Channel in the Rabbit Sphincter of Oddi. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1725-1744. [PMID: 36150507 DOI: 10.1016/j.ajpath.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Large conductance Ca2+-activated potassium (BKCa) channels are regulated by intracellular free Ca2+ concentrations ([Ca2+]i) and channel protein phosphorylation. In hypercholesterolemia (HC), motility impairment of the sphincter of Oddi (SO) is associated with abnormal [Ca2+]i accumulation in smooth muscle cells of the rabbit SO (RSOSMCs), which is closely related to BKCa channel activity. However, the underlying mechanisms regulating channel activity remain unclear. In this study, an HC rabbit model was generated and used to investigate BKCa channel activity of RSOSMCs via SO muscle tone measurement in vitro and manometry in vivo, electrophysiological recording, intracellular calcium measurement, and Western blot analyses. BKCa channel activity was decreased, which correlated with [Ca2+]i overload and reduced tyrosine phosphorylation of the BKCa α-subunit in the HC group. The abnormal [Ca2+]i accumulation and decreased BKCa channel activity were partially restored by Na3VO4 pretreatment but worsened by genistein in RSOSMCs in the HC group. This study suggests that α-subunit tyrosine phosphorylation is required for [Ca2+]i to activate BKCa channels, and there is a negative feedback between the BKCa channel and the L-type voltage-dependent Ca2+ channel that regulates [Ca2+]i. This study provides direct evidence that tyrosine phosphorylation of BKCa α-subunits is required for [Ca2+]i to activate BKCa channels in RSOSMCs, which may be the underlying physiological and pathologic mechanism regulating the activity of BKCa channels in SO cells.
Collapse
Affiliation(s)
- Dan Feng
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan-Yan Guo
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ting Sun
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing-Qing Liu
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hai-Yan Nan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
A molecular complex of Ca v1.2/CaMKK2/CaMK1a in caveolae is responsible for vascular remodeling via excitation-transcription coupling. Proc Natl Acad Sci U S A 2022; 119:e2117435119. [PMID: 35412911 PMCID: PMC9169798 DOI: 10.1073/pnas.2117435119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Excitation–transcription (E-T) coupling can initiate and modulate essential physiological or pathological responses in cells, such as neurons and cardiac myocytes. Although vascular myocytes also exhibit E-T coupling in response to membrane depolarization, the underlying molecular mechanisms are unknown. Our study reveals that E-T coupling in vascular myocytes converts intracellular Ca2+ signals into selective gene transcription related to chemotaxis, leukocyte adhesion, and inflammation. Our discovery identifies a mechanism for vascular remodeling as an adaptation to increased circumferential stretch. Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation–transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.
Collapse
|
3
|
Salazar-Enciso R, Guerrero-Hernández A, Gómez AM, Benitah JP, Rueda A. Aldosterone-Induced Sarco/Endoplasmic Reticulum Ca2+ Pump Upregulation Counterbalances Cav1.2-Mediated Ca2+ Influx in Mesenteric Arteries. Front Physiol 2022; 13:834220. [PMID: 35360237 PMCID: PMC8963271 DOI: 10.3389/fphys.2022.834220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.
Collapse
Affiliation(s)
- Rogelio Salazar-Enciso
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Agustín Guerrero-Hernández
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- *Correspondence: Angélica Rueda,
| |
Collapse
|
4
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
5
|
Abstract
Vascular smooth muscle cells (VSMCs) of small peripheral arteries contribute to blood pressure control by adapting their contractile state. These adaptations depend on the VSMC cytosolic Ca2+ concentration, regulated by complex local elementary Ca2+ signaling pathways. Ca2+ sparks represent local, transient, rapid calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial SMCs, Ca2+ sparks activate nearby calcium-dependent potassium channels, cause membrane hyperpolarization and thus decrease the global intracellular [Ca2+] to oppose vasoconstriction. Arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux through RyRs. Cav3.2 T-type channels contribute to a minor extend to Ca2+ spark generation in certain types of arteries. Their localization within cell membrane caveolae is essential. We summarize present data on local elementary calcium signaling (Ca2+ sparks) in arterial SMCs with focus on RyR isoforms, large-conductance calcium-dependent potassium (BKCa) channels, and cell membrane-bound calcium channels (Cav1.2 and Cav3.2), particularly in caveolar microdomains.
Collapse
Affiliation(s)
- Gang Fan
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Mario Kassmann
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
6
|
Song R, Hu XQ, Romero M, Holguin MA, Kagabo W, Xiao D, Wilson SM, Zhang L. Ryanodine receptor subtypes regulate Ca2+ sparks/spontaneous transient outward currents and myogenic tone of uterine arteries in pregnancy. Cardiovasc Res 2020; 117:792-804. [PMID: 32251501 DOI: 10.1093/cvr/cvaa089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Our recent study demonstrated that increased Ca2+ sparks and spontaneous transient outward currents (STOCs) played an important role in uterine vascular tone and haemodynamic adaptation to pregnancy. The present study examined the role of ryanodine receptor (RyR) subtypes in regulating Ca2+ sparks/STOCs and myogenic tone in uterine arterial adaptation to pregnancy. METHODS AND RESULTS Uterine arteries isolated from non-pregnant and near-term pregnant sheep were used in the present study. Pregnancy increased the association of α and β1 subunits of large-conductance Ca2+-activated K+ (BKCa) channels and enhanced the co-localization of RyR1 and RyR2 with the β1 subunit in the uterine artery. In contrast, RyR3 was not co-localized with BKCa β1 subunit. Knockdown of RyR1 or RyR2 in uterine arteries of pregnant sheep downregulated the β1 but not α subunit of the BKCa channel and decreased the association of α and β1 subunits. Unlike RyR1 and RyR2, knockdown of RyR3 had no significant effect on either expression or association of BKCa subunits. In addition, knockdown of RyR1 or RyR2 significantly decreased Ca2+ spark frequency, suppressed STOCs frequency and amplitude, and increased pressure-dependent myogenic tone in uterine arteries of pregnant animals. RyR3 knockdown did not affect Ca2+ sparks/STOCs and myogenic tone in the uterine artery. CONCLUSION Together, the present study demonstrates a novel mechanistic paradigm of RyR subtypes in the regulation of Ca2+ sparks/STOCs and uterine vascular tone, providing new insights into the mechanisms underlying uterine vascular adaptation to pregnancy.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xiang-Qun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Monica Romero
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Mark A Holguin
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Whitney Kagabo
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
7
|
Saeki T, Suzuki Y, Yamamura H, Takeshima H, Imaizumi Y. A junctophilin-caveolin interaction enables efficient coupling between ryanodine receptors and BK Ca channels in the Ca 2+ microdomain of vascular smooth muscle. J Biol Chem 2019; 294:13093-13105. [PMID: 31308177 PMCID: PMC6721949 DOI: 10.1074/jbc.ra119.008342] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
Functional coupling between large-conductance Ca2+-activated K+ (BKCa) channels in the plasma membrane (PM) and ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) is an essential mechanism for regulating mechanical force in most smooth muscle (SM) tissues. Spontaneous Ca2+ release through RyRs (Ca2+ sparks) and subsequent BKCa channel activation occur within the PM-SR junctional sites. We report here that a molecular interaction of caveolin-1 (Cav1), a caveola-forming protein, with junctophilin-2 (JP2), a bridging protein between PM and SR, positions BKCa channels near RyRs in SM cells (SMCs) and thereby contributes to the formation of a molecular complex essential for Ca2+ microdomain function. Approximately half of all Ca2+ sparks occurred within a close distance (<400 nm) from fluorescently labeled JP2 or Cav1 particles, when they were moderately expressed in primary SMCs from mouse mesenteric artery. The removal of caveolae by genetic Cav1 ablation or methyl-β-cyclodextrin treatments significantly reduced coupling efficiency between Ca2+ sparks and BKCa channel activity in SMCs, an effect also observed after JP2 knockdown in SMCs. A 20-amino acid-long region in JP2 appeared to be essential for the observed JP2-Cav1 interaction, and we also observed an interaction between JP2 and the BKCa channel. It can be concluded that the JP2-Cav1 interaction provides a structural and functional basis for the Ca2+ microdomain at PM-SR junctions and mediates cross-talk between RyRs and BKCa channels, converts local Ca2+ sparks into membrane hyperpolarization, and contributes to stabilizing resting tone in SMCs.
Collapse
Affiliation(s)
- Takanori Saeki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
8
|
Jo M, Trujillo AN, Yang Y, Breslin JW. Evidence of functional ryanodine receptors in rat mesenteric collecting lymphatic vessels. Am J Physiol Heart Circ Physiol 2019; 317:H561-H574. [PMID: 31274355 DOI: 10.1152/ajpheart.00564.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the current study, the potential contributions of ryanodine receptors (RyRs) to intrinsic pumping and responsiveness to substance P (SP) were investigated in isolated rat mesenteric collecting lymphatic vessels. Responses to SP were characterized in lymphatic vessels in the absence or presence of pretreatment with nifedipine to block L-type Ca2+ channels, caffeine to block normal release and uptake of Ca2+ from the sarcoplasmic reticulum, ryanodine to block all RyR isoforms, or dantrolene to more selectively block RyR1 and RyR3. RyR expression and localization in lymphatics was also assessed by quantitative PCR and immunofluorescence confocal microscopy. The results show that SP normally elicits a significant increase in contraction frequency and a decrease in end-diastolic diameter. In the presence of nifedipine, phasic contractions stop, yet subsequent SP treatment still elicits a strong tonic contraction. Caffeine treatment gradually relaxes lymphatics, causing a loss of phasic contractions, and prevents subsequent SP-induced tonic contraction. Ryanodine also gradually diminishes phasic contractions but without causing vessel relaxation and significantly inhibits the SP-induced tonic contraction. Dantrolene treatment did not significantly impair lymphatic contractions nor the response to SP. The mRNA for all RyR isoforms is detectable in isolated lymphatics. RyR2 and RyR3 proteins are found predominantly in the collecting lymphatic smooth muscle layer. Collectively, the data suggest that SP-induced tonic contraction requires both extracellular Ca2+ plus Ca2+ release from internal stores and that RyRs play a role in the normal contractions and responsiveness to SP of rat mesenteric collecting lymphatics.NEW & NOTEWORTHY The mechanisms that govern contractions of lymphatic vessels remain unclear. Tonic contraction of lymphatic vessels caused by substance P was blocked by caffeine, which prevents normal uptake and release of Ca2+ from internal stores, but not nifedipine, which blocks L-type channel-mediated Ca2+ entry. Ryanodine, which also disrupts normal sarcoplasmic reticulum Ca2+ release and reuptake, significantly inhibited substance P-induced tonic contraction. Ryanodine receptors 2 and 3 were detected within the smooth muscle layer of collecting lymphatic vessels.
Collapse
Affiliation(s)
- Michiko Jo
- Department of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Andrea N Trujillo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
9
|
Reyes-García J, Flores-Soto E, Carbajal-García A, Sommer B, Montaño LM. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int J Mol Med 2018; 42:2998-3008. [PMID: 30280184 PMCID: PMC6202086 DOI: 10.3892/ijmm.2018.3910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
In airway smooth muscle, the intracellular basal Ca2+ concentration [b(Ca2+)i] must be tightly regulated by several mechanisms in order to maintain a proper airway patency. The b[Ca2+]i is efficiently regulated by sarcoplasmic reticulum Ca2+-ATPase 2b, plasma membrane Ca2+-ATPase 1 or 4 and by the Na+/Ca2+ exchanger. Membranal Ca2+ channels, including the L-type voltage dependent Ca2+ channel (L-VDCC), T-type voltage dependent Ca2+ channel (T-VDCC) and transient receptor potential canonical 3 (TRPC3), appear to be constitutively active under basal conditions via the action of different signaling pathways, and are responsible for Ca2+ influx to maintain b[Ca2+]i. The two types of voltage-dependent Ca2+ channels (L- and T-type) are modulated by phosphorylation processes mediated by mitogen-activated protein kinase kinase (MEK) and extracellular-signal-regulated kinase 1 and 2 (ERK1/2). The MEK/ERK signaling pathway can be activated by G-protein-coupled receptors through the αq subunit when the endogenous ligand (i.e., acetylcholine, histamine, leukotrienes, etc.) is present under basal conditions. It may also be stimulated when receptor tyrosine kinases are occupied by the appropriate ligand (cytokines, growth factors, etc.). ERK1/2 phosphorylates L-VDCC on Ser496 of the β2 subunit and Ser1928 of the α1 subunit, decreasing or increasing the channel activity, respectively, and enabling it to switch between an open and closed state. T-VDCC is also probably phosphorylated by ERK1/2, although further research is required to identify the phosphorylation sites. TRPC3 is directly activated by diacylglycerol produced by phospholipase C (PLCβ or γ). Constitutive inositol 1,4,5-trisphosphate production induces the release of Ca2+ from the sarcoplasmic reticulum through inositol triphosphate receptor 1. This ion induces Ca2+-induced Ca2+ release through the ryanodine receptor 2 (designated as Ca2+ ‘sparks’). Therefore, several Ca2+ handling mechanisms are finely tuned to regulate basal intracellular Ca2+ concentrations. It is conceivable that alterations in any of these processes may render airway smooth muscle susceptible to develop hyperresponsiveness that is observed in ailments such as asthma.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|