1
|
Nagarajan A, Scoggin K, Gupta J, Aminian M, Adams LG, Kirby M, Threadgill D, Andrews-Polymenis H. Collaborative Cross mice have diverse phenotypic responses to infection with Methicillin-resistant Staphylococcus aureus USA300. PLoS Genet 2024; 20:e1011229. [PMID: 38696518 PMCID: PMC11108197 DOI: 10.1371/journal.pgen.1011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/21/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jyotsana Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Manuchehr Aminian
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Mathematics and Statistics, California State Polytechnic University, Pomona, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Kirby
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
2
|
van Belkum A, Almeida C, Bardiaux B, Barrass SV, Butcher SJ, Çaykara T, Chowdhury S, Datar R, Eastwood I, Goldman A, Goyal M, Happonen L, Izadi-Pruneyre N, Jacobsen T, Johnson PH, Kempf VAJ, Kiessling A, Bueno JL, Malik A, Malmström J, Meuskens I, Milner PA, Nilges M, Pamme N, Peyman SA, Rodrigues LR, Rodriguez-Mateos P, Sande MG, Silva CJ, Stasiak AC, Stehle T, Thibau A, Vaca DJ, Linke D. Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics (Basel) 2021; 11:diagnostics11071259. [PMID: 34359341 PMCID: PMC8305138 DOI: 10.3390/diagnostics11071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
Collapse
Affiliation(s)
- Alex van Belkum
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
- Correspondence: (A.v.B.); (D.L.)
| | | | - Benjamin Bardiaux
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Sarah V. Barrass
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Sarah J. Butcher
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
| | - Tuğçe Çaykara
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Rucha Datar
- BioMérieux, Microbiology R&D, 38390 La Balme Les Grottes, France;
| | | | - Adrian Goldman
- Department of Biological Sciences, University of Helsinki, 00014 Helsinki, Finland; (S.V.B.); (S.J.B.); (A.G.)
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Manisha Goyal
- BioMérieux, Open Innovation & Partnerships, 38390 La Balme Les Grottes, France;
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Theis Jacobsen
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Pirjo H. Johnson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Andreas Kiessling
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Juan Leva Bueno
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Anchal Malik
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22242 Lund, Sweden; (S.C.); (L.H.); (J.M.)
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Paul A. Milner
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Michael Nilges
- Institut Pasteur, Structural Biology and Chemistry, 75724 Paris, France; (B.B.); (N.I.-P.); (T.J.); (M.N.)
| | - Nicole Pamme
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Sally A. Peyman
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; (P.H.J.); (A.K.); (J.L.B.); (A.M.); (P.A.M.); (S.A.P.)
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Pablo Rodriguez-Mateos
- School of Mathematics and Physical Sciences, University of Hull, Hull HU6 7RX, UK; (N.P.); (P.R.-M.)
| | - Maria G. Sande
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (L.R.R.); (M.G.S.)
| | - Carla Joana Silva
- Centre for Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal; (T.Ç.); (C.J.S.)
| | - Aleksandra Cecylia Stasiak
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany; (A.C.S.); (T.S.)
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (V.A.J.K.); (A.T.); (D.J.V.)
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
- Correspondence: (A.v.B.); (D.L.)
| |
Collapse
|
3
|
Radhakrishnan D, Yamaguchi M, Kawabata S, Ponnuraj K. Streptococcus pneumoniae surface adhesin PfbA and its interaction with erythrocytes and hemoglobin. Int J Biol Macromol 2018; 120:135-143. [PMID: 30125626 DOI: 10.1016/j.ijbiomac.2018.08.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
Streptococcus pneumoniae is one of the major colonizers of human nasopharynx and its surface protein PfbA interacts with host molecules like plasmin(ogen), fibrinogen and fibronectin for colonization. Most of the binding partners of PfbA are glycoproteins. Recently we found that PfbA exhibited high affinity towards carbohydrates. It was reported that S. pneumoniae invades erythrocytes and utilizes them to evade human innate immunity. The results of this study suggested that LPXTG motif containing pneumococcal surface proteins, erythrocyte lipid rafts and erythrocyte actin remodeling are all involved in the invasion mechanism. The erythrocyte cell membrane contains different glycoproteins and glycolipids. Therefore, to find out if PfbA plays any role in erythrocyte binding, we carried out the binding studies of rPfbA49-684 with human red blood cells (RBCs) especially with its surface molecules employing ELISA and Bio Layer Interferometry. The results from these experiments show that rPfbA49-684 has a broad specificity for carbohydrates and remarkable affinity towards RBCs and in particular with extracted surface glycolipids. Further rPfbA49-684 also exhibited moderate affinity towards hemoglobin. Thus the results of the present study provide clear evidence that PfbA can interact with RBCs and this could be one of the important factors in erythrocyte invasion of S. pneumoniae.
Collapse
Affiliation(s)
- Deepthi Radhakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
4
|
Polyudova TV, Eroshenko DV, Korobov VP. Plasma, serum, albumin, and divalent metal ions inhibit the adhesion and the biofilm formation of Cutibacterium (Propionibacterium) acnes. AIMS Microbiol 2018; 4:165-172. [PMID: 31294208 PMCID: PMC6605019 DOI: 10.3934/microbiol.2018.1.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
Adhesion and biofilm formation of human skin bacteria C. acnes on plasma, serum and albumin-coated polystyrene or in the presence of these blood components were studied. The proteins which were pre-adsorbed to polystyrene surface or added to the medium simultaneously with bacterial cells reduced C. acnes adhesion and biofilm formation by 2-5 times to compare to the control. The role of calcium, magnesium and zinc on C. acnes attachment was also assessed. Calcium (1 and 10 mM) had the inhibitory effect on C. acnes adhesion, whereas zinc (1 and 10 mM) diminished the biofilm formation of C. acnes. We also observed that C. acnes cells did not bind to erythrocytes. Thus, we suggest that bacteria C. acnes preferably colonize the plasma-poor environment due to the inhibitory effect of blood components, in particular, albumin, calcium, and zinc.
Collapse
Affiliation(s)
- Tatyana V Polyudova
- Laboratory of microorganisms' biochemical development, Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, Perm, Russia.,Faculty of Soil Science, Agrochemistry, Ecology and Merchandising, Perm State Agro-Technological University, Perm, Russia
| | - Daria V Eroshenko
- Laboratory of microorganisms' biochemical development, Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, Perm, Russia.,Chemical Engineering Faculty, Perm National Research Polytechnic University, Perm, Russia
| | - Vladimir P Korobov
- Laboratory of microorganisms' biochemical development, Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, Perm, Russia.,Chemical Engineering Faculty, Perm National Research Polytechnic University, Perm, Russia
| |
Collapse
|
5
|
Ohlsson P, Evander M, Petersson K, Mellhammar L, Lehmusvuori A, Karhunen U, Soikkeli M, Seppä T, Tuunainen E, Spangar A, von Lode P, Rantakokko-Jalava K, Otto G, Scheding S, Soukka T, Wittfooth S, Laurell T. Integrated Acoustic Separation, Enrichment, and Microchip Polymerase Chain Reaction Detection of Bacteria from Blood for Rapid Sepsis Diagnostics. Anal Chem 2016; 88:9403-9411. [DOI: 10.1021/acs.analchem.6b00323] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pelle Ohlsson
- Department
of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Mikael Evander
- Department
of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Klara Petersson
- Department
of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Lisa Mellhammar
- Stem Cell Center, Lund University, BMC B10, Klinikgatan 24, SE-222 42 Lund, Sweden
| | - Ari Lehmusvuori
- Department
of Biochemistry/Biotechnology, University of Turku, Tykistökatu
6 A, FI-20520 Turku, Finland
| | - Ulla Karhunen
- Department
of Biochemistry/Biotechnology, University of Turku, Tykistökatu
6 A, FI-20520 Turku, Finland
| | - Minna Soikkeli
- Department
of Biochemistry/Biotechnology, University of Turku, Tykistökatu
6 A, FI-20520 Turku, Finland
| | - Titta Seppä
- Department
of Biochemistry/Biotechnology, University of Turku, Tykistökatu
6 A, FI-20520 Turku, Finland
| | - Emilia Tuunainen
- Department
of Biochemistry/Biotechnology, University of Turku, Tykistökatu
6 A, FI-20520 Turku, Finland
| | - Anni Spangar
- Department
of Biochemistry/Biotechnology, University of Turku, Tykistökatu
6 A, FI-20520 Turku, Finland
| | - Piia von Lode
- Abacus Diagnostica Oy, Tykistökatu 4 D, FI-20520 Turku, Finland
| | | | | | - Stefan Scheding
- Stem Cell Center, Lund University, BMC B10, Klinikgatan 24, SE-222 42 Lund, Sweden
| | - Tero Soukka
- Department
of Biochemistry/Biotechnology, University of Turku, Tykistökatu
6 A, FI-20520 Turku, Finland
| | - Saara Wittfooth
- Department
of Biochemistry/Biotechnology, University of Turku, Tykistökatu
6 A, FI-20520 Turku, Finland
| | - Thomas Laurell
- Department
of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden
- Department
of Biomedical Engineering, Dongguk University, Seoul, Korea
| |
Collapse
|
6
|
Kalashnikov M, Lee JC, Campbell J, Sharon A, Sauer-Budge AF. A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus. LAB ON A CHIP 2012; 12:4523-32. [PMID: 22968495 PMCID: PMC3489182 DOI: 10.1039/c2lc40531h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The emergence and spread of bacterial resistance to ever increasing classes of antibiotics intensifies the need for fast phenotype-based clinical tests for determining antibiotic susceptibility. Standard susceptibility testing relies on the passive observation of bacterial growth inhibition in the presence of antibiotics. In this paper, we present a novel microfluidic platform for antibiotic susceptibility testing based on stress-activation of biosynthetic pathways that are the primary targets of antibiotics. We chose Staphylococcus aureus (S. aureus) as a model system due to its clinical importance, and we selected bacterial cell wall biosynthesis as the primary target of both stress and antibiotic. Enzymatic and mechanical stresses were used to damage the bacterial cell wall, and a β-lactam antibiotic interfered with the repair process, resulting in rapid cell death of strains that harbor no resistance mechanism. In contrast, resistant bacteria remained viable under the assay conditions. Bacteria, covalently-bound to the bottom of the microfluidic channel, were subjected to mechanical shear stress created by flowing culture media through the microfluidic channel and to enzymatic stress with sub-inhibitory concentrations of the bactericidal agent lysostaphin. Bacterial cell death was monitored via fluorescence using the Sytox Green dead cell stain, and rates of killing were measured for the bacterial samples in the presence and absence of oxacillin. Using model susceptible (Sanger 476) and resistant (MW2) S. aureus strains, a metric was established to separate susceptible and resistant staphylococci based on normalized fluorescence values after 60 min of exposure to stress and antibiotic. Because this ground-breaking approach is not based on standard methodology, it circumvents the need for minimum inhibitory concentration (MIC) measurements and long wait times. We demonstrate the successful development of a rapid microfluidic-based and stress-activated antibiotic susceptibility test by correctly designating the phenotypes of 16 additional clinically relevant S. aureus strains in a blinded study. In addition to future clinical utility, this method has great potential for studying the effects of various stresses on bacteria and their antibiotic susceptibility.
Collapse
Affiliation(s)
- Maxim Kalashnikov
- Center for Manufacturing Innovation, Fraunhofer USA, Brookline, Massachusetts 02446, USA
| | | | | | | | | |
Collapse
|
7
|
The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS One 2009; 4:e7656. [PMID: 19888457 PMCID: PMC2766623 DOI: 10.1371/journal.pone.0007656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/07/2009] [Indexed: 12/03/2022] Open
Abstract
Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels.
Collapse
|
8
|
Catanozi S, Rocha JC, Passarelli M, Mesquita CH, Suguiama VY, Guzzo ML, dos Santos Filho A, Quintão ECR, Nakandakare ER. Diminished macrophage cholesterol removal rate by the altered HDL metabolism in the Nagase analbuminemic rat. Lipids 2006; 41:663-8. [PMID: 17069350 DOI: 10.1007/s11745-006-5017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dyslipoproteinemia of the Nagase analbuminemic rat (NAR) is characterized by elevated concentrations of VLDL and LDL attributed to increased rates of liver lipoprotein synthesis. Increased lysophosphatidylcholine (LPC) in NAR HDL has been attributed to high plasma LCAT activity. We show here that, as compared with Sprague-Dawley rats (SDR), NAR plasma triacylglycerol (TAG), total cholesterol (TC), HDL TAG, protein, total phospholipids (PL), LPC, and PS are increased. These alterations rendered the NAR HDL particle more susceptible to the activity of the enzyme hepatic lipoprotein lipase (HL), which otherwise was unaltered in our study. Fractional catabolic rates in blood of the autologous 125I-apoHDL (median and lower quartile values), were, respectively, 0.231 and 1.645 (n = 10) in NAR as compared with 0.140 and 0.109 (n = 10) in SDR (P = 0.012), corresponding to synthesis rates of HDL protein of 89.8 +/- 33.7 mg/d in NAR and 17.4 +/- 6.5 mg/d in SDR (P = 0.0122). Furthermore, Swiss mouse macrophage free-cholesterol (FC) efflux rates, measured as the percent [14C]-cholesterol efflux/6 h, were 8.2 +/- 2.3 (n = 9) in NAR HDL and 11.2 +/- 3.2 (n = 10) in SDR HDL (P = 0.03). Therefore, in NAR the modification of the HDL composition slows down the cell FC efflux rate, and together with the increased rate of plasma HDL metabolism influences the reverse cholesterol transport system.
Collapse
Affiliation(s)
- Sergio Catanozi
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
An important facet in the interaction between Staphylococcus aureus and its host is the ability of the bacterium to adhere to human extracellular matrix components and serum proteins. In order to colonise the host and disseminate, it uses a wide range of strategies, the molecular and genetic basis of which are multifactorial, with extensive functional overlap between adhesins. Here, we describe the current knowledge of the molecular features of the adhesive components of S. aureus, mechanisms of adhesion and the impact that these have on host-pathogen interaction.
Collapse
Affiliation(s)
- Simon R Clarke
- Department of Molecular Biology & Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|