1
|
Krueger LA, Koester LR, Jones DF, Spangler DA. Carbon dioxide equivalent emissions from corn silage fermentation. Front Microbiol 2023; 13:1092315. [PMID: 36699579 PMCID: PMC9869070 DOI: 10.3389/fmicb.2022.1092315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The European Climate Law recently codified the goal for European climate neutrality by 2050, highlighting the need for sustainable farming practices within a robust and transparent carbon dioxide equivalent (CO2e) accounting system. In the present study, a series of equations were proposed for the estimation of CO2e emissions from corn silage fermentation. Systematic review of previous meta-analyses of corn silage fermentation identified the mean and standard deviation statistics for key model inputs of acetic acid, ethanol, lactic acid, ammonia, and volatile-corrected dry matter loss. Estimates of CO2e emissions were determined for a mock dataset comprising 1,000 iterations of randomly-generated values for each metric in accordance with mean and variance statistics of the source data. Estimates for CO2e emissions of corn silage based on meta-analysis review of laboratory experiments were 1.9 ± 5.6% (GWP20) and 0.2 ± 5.5% (GWP100) of silage dry matter. Furthermore, model results demonstrated a precedent for CO2 recycling by silage microorganisms, which was supported by genome annotation of strains belonging to common silage species. Linear model equations for GWP20 and GWP100 with inputs and outputs in mg kg-1 silage dry matter were developed, where inputs are acetic acid (A), ethanol (E), lactic acid (L), and volatile corrected dry matter loss (DV). Linear equations are (for GWP20; Eq. 11): GWP 20 = - 3626.1 - 0.04343 A + 0.8011 E - 0.03173 L + 1.46573 D V and for GWP100; Eq. 12: GWP 100 = - 8526.10 - 0.22403 A - 0.11963 E - 0.03173 L + 1.46573 D V . .
Collapse
Affiliation(s)
- Lucas A Krueger
- Department of Research, Development, and Biotechnology, Agri-King, Inc., Fulton, IL, United States
| | - Lucas R Koester
- Department of Research, Development, and Biotechnology, Agri-King, Inc., Fulton, IL, United States
| | - David F Jones
- Department of Research, Development, and Biotechnology, Agri-King, Inc., Fulton, IL, United States
| | - David A Spangler
- Department of Research, Development, and Biotechnology, Agri-King, Inc., Fulton, IL, United States
| |
Collapse
|
2
|
Lee SK, Occhipinti R, Moss FJ, Parker MD, Grichtchenko II, Boron WF. Distinguishing among HCO 3- , CO 3= , and H + as Substrates of Proteins That Appear To Be "Bicarbonate" Transporters. J Am Soc Nephrol 2023; 34:40-54. [PMID: 36288904 PMCID: PMC10103014 DOI: 10.1681/asn.2022030289] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/23/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Differentiating among HCO 3- , CO 3= , and H + movements across membranes has long seemed impossible. We now seek to discriminate unambiguously among three alternate mechanisms: the inward flux of 2 HCO 3- (mechanism 1), the inward flux of 1 CO 3= (mechanism 2), and the CO 2 /HCO 3- -stimulated outward flux of 2 H + (mechanism 3). METHODS As a test case, we use electrophysiology and heterologous expression in Xenopus oocytes to examine SLC4 family members that appear to transport "bicarbonate" ("HCO 3- "). RESULTS First, we note that cell-surface carbonic anhydrase should catalyze the forward reaction CO 2 +OH - →HCO 3- if HCO 3- is the substrate; if it is not, the reverse reaction should occur. Monitoring changes in cell-surface pH ( Δ pH S ) with or without cell-surface carbonic anhydrase, we find that the presumed Cl-"HCO 3 " exchanger AE1 (SLC4A1) does indeed transport HCO 3- (mechanism 1) as long supposed, whereas the electrogenic Na/"HCO 3 " cotransporter NBCe1 (SLC4A4) and the electroneutral Na + -driven Cl-"HCO 3 " exchanger NDCBE (SLC4A8) do not. Second, we use mathematical simulations to show that each of the three mechanisms generates unique quantities of H + at the cell surface (measured as Δ pH S ) per charge transported (measured as change in membrane current, ΔIm ). Calibrating ΔpH S /Δ Im in oocytes expressing the H + channel H V 1, we find that our NBCe1 data align closely with predictions of CO 3= transport (mechanism 2), while ruling out HCO 3- (mechanism 1) and CO 2 /HCO 3- -stimulated H + transport (mechanism 3). CONCLUSIONS Our surface chemistry approach makes it possible for the first time to distinguish among HCO 3- , CO 3= , and H + fluxes, thereby providing insight into molecular actions of clinically relevant acid-base transporters and carbonic-anhydrase inhibitors.
Collapse
Affiliation(s)
- Seong-Ki Lee
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Fraser J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mark D. Parker
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Physiology and Biophysics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | | | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
3
|
Strowitzki MJ, Nelson R, Garcia MP, Tuffs C, Bleul MB, Fitzsimons S, Navas J, Uzieliene I, Ritter AS, Phelan D, Kierans SJ, Blanco A, Bernotiene E, Belton O, Schneider M, Cummins EP, Taylor CT. Carbon Dioxide Sensing by Immune Cells Occurs through Carbonic Anhydrase 2-Dependent Changes in Intracellular pH. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2363-2375. [PMID: 35477686 DOI: 10.4049/jimmunol.2100665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
CO2, the primary gaseous product of respiration, is a major physiologic gas, the biology of which is poorly understood. Elevated CO2 is a feature of the microenvironment in multiple inflammatory diseases that suppresses immune cell activity. However, little is known about the CO2-sensing mechanisms and downstream pathways involved. We found that elevated CO2 correlates with reduced monocyte and macrophage migration in patients undergoing gastrointestinal surgery and that elevated CO2 reduces migration in vitro. Mechanistically, CO2 reduces autocrine inflammatory gene expression, thereby inhibiting macrophage activation in a manner dependent on decreased intracellular pH. Pharmacologic or genetic inhibition of carbonic anhydrases (CAs) uncouples a CO2-elicited intracellular pH response and attenuates CO2 sensitivity in immune cells. Conversely, CRISPR-driven upregulation of the isoenzyme CA2 confers CO2 sensitivity in nonimmune cells. Of interest, we found that patients with chronic lung diseases associated with elevated systemic CO2 (hypercapnia) display a greater risk of developing anastomotic leakage following gastrointestinal surgery, indicating impaired wound healing. Furthermore, low intraoperative pH levels in these patients correlate with reduced intestinal macrophage infiltration. In conclusion, CO2 is an immunomodulatory gas sensed by immune cells through a CA2-coupled change in intracellular pH.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Ross Nelson
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Mario P Garcia
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Christopher Tuffs
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Marc B Bleul
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Stephen Fitzsimons
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland; and
| | - Javier Navas
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - David Phelan
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Sarah J Kierans
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Alfonso Blanco
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Orina Belton
- Diabetes Complications Research Centre, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland; and
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Eoin P Cummins
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland;
| |
Collapse
|
4
|
Kazokaitė-Adomaitienė J, Becker HM, Smirnovienė J, Dubois LJ, Matulis D. Experimental Approaches to Identify Selective Picomolar Inhibitors for Carbonic Anhydrase IX. Curr Med Chem 2021; 28:3361-3384. [PMID: 33138744 DOI: 10.2174/0929867327666201102112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carbonic anhydrases (CAs) regulate pH homeostasis via the reversible hydration of CO2, thereby emerging as essential enzymes for many vital functions. Among 12 catalytically active CA isoforms in humans, CA IX has become a relevant therapeutic target because of its role in cancer progression. Only two CA IX inhibitors have entered clinical trials, mostly due to low affinity and selectivity properties. OBJECTIVE The current review presents the design, development, and identification of the selective nano- to picomolar CA IX inhibitors VD11-4-2, VR16-09, and VD12-09. METHODS AND RESULTS Compounds were selected from our database, composed of over 400 benzensulfonamides, synthesized at our laboratory, and tested for their binding to 12 human CAs. Here we discuss the CA CO2 hydratase activity/inhibition assay and several biophysical techniques, such as fluorescent thermal shift assay and isothermal titration calorimetry, highlighting their contribution to the analysis of compound affinity and structure- activity relationships. To obtain sufficient amounts of recombinant CAs for inhibitor screening, several gene cloning and protein purification strategies are presented, including site-directed CA mutants, heterologous CAs from Xenopus oocytes, and native endogenous CAs. The cancer cell-based methods, such as clonogenicity, extracellular acidification, and mass spectrometric gas-analysis are reviewed, confirming nanomolar activities of lead inhibitors in intact cancer cells. CONCLUSIONS Novel CA IX inhibitors are promising derivatives for in vivo explorations. Furthermore, the simultaneous targeting of several proteins involved in proton flux upon tumor acidosis and the disruption of transport metabolons might improve cancer management.
Collapse
Affiliation(s)
- Justina Kazokaitė-Adomaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joana Smirnovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Netherlands
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Michenkova M, Taki S, Blosser MC, Hwang HJ, Kowatz T, Moss FJ, Occhipinti R, Qin X, Sen S, Shinn E, Wang D, Zeise BS, Zhao P, Malmstadt N, Vahedi-Faridi A, Tajkhorshid E, Boron WF. Carbon dioxide transport across membranes. Interface Focus 2021; 11:20200090. [PMID: 33633837 PMCID: PMC7898146 DOI: 10.1098/rsfs.2020.0090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Carbon dioxide (CO2) movement across cellular membranes is passive and governed by Fick's law of diffusion. Until recently, we believed that gases cross biological membranes exclusively by dissolving in and then diffusing through membrane lipid. However, the observation that some membranes are CO2 impermeable led to the discovery of a gas molecule moving through a channel; namely, CO2 diffusion through aquaporin-1 (AQP1). Later work demonstrated CO2 diffusion through rhesus (Rh) proteins and NH3 diffusion through both AQPs and Rh proteins. The tetrameric AQPs exhibit differential selectivity for CO2 versus NH3 versus H2O, reflecting physico-chemical differences among the small molecules as well as among the hydrophilic monomeric pores and hydrophobic central pores of various AQPs. Preliminary work suggests that NH3 moves through the monomeric pores of AQP1, whereas CO2 moves through both monomeric and central pores. Initial work on AQP5 indicates that it is possible to create a metal-binding site on the central pore's extracellular face, thereby blocking CO2 movement. The trimeric Rh proteins have monomers with hydrophilic pores surrounding a hydrophobic central pore. Preliminary work on the bacterial Rh homologue AmtB suggests that gas can diffuse through the central pore and three sets of interfacial clefts between monomers. Finally, initial work indicates that CO2 diffuses through the electrogenic Na/HCO3 cotransporter NBCe1. At least in some cells, CO2-permeable proteins could provide important pathways for transmembrane CO2 movements. Such pathways could be amenable to cellular regulation and could become valuable drug targets.
Collapse
Affiliation(s)
- Marie Michenkova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew C. Blosser
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Hyea J. Hwang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Kowatz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fraser. J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Soumyo Sen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric Shinn
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S. Zeise
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pan Zhao
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Ardeschir Vahedi-Faridi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
6
|
Moss FJ, Boron WF. Carbonic anhydrases enhance activity of endogenous Na-H exchangers and not the electrogenic Na/HCO 3 cotransporter NBCe1-A, expressed in Xenopus oocytes. J Physiol 2020; 598:5821-5856. [PMID: 32969493 PMCID: PMC7747792 DOI: 10.1113/jp280143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS According to the HCO 3 - metabolon hypothesis, direct association of cytosolic carbonic anhydrases (CAs) with the electrogenic Na/HCO3 cotransporter NBCe1-A speeds transport by regenerating/consuming HCO 3 - . The present work addresses published discrepancies as to whether cytosolic CAs stimulate NBCe1-A, heterologously expressed in Xenopus oocytes. We confirm the essential elements of the previous experimental observations, taken as support for the HCO 3 - metabolon hypothesis. However, using our own experimental protocols or those of others, we find that NBCe1-A function is unaffected by cytosolic CAs. Previous conclusions that cytosolic CAs do stimulate NBCe1-A can be explained by an unanticipated stimulatory effect of the CAs on an endogenous Na-H exchanger. Theoretical analyses show that, although CAs could stimulate non- HCO 3 - transporters (e.g. Na-H exchangers) by accelerating CO2 / HCO 3 - -mediated buffering of acid-base equivalents, they could not appreciably affect transport rates of NBCe1 or other transporters carrying HCO 3 - , CO 3 = , or NaCO 3 - ion pairs. ABSTRACT The HCO 3 - metabolon hypothesis predicts that cytosolic carbonic anhydrase (CA) binds to NBCe1-A, promotes HCO 3 - replenishment/consumption, and enhances transport. Using a short step-duration current-voltage (I-V) protocol with Xenopus oocytes expressing eGFP-tagged NBCe1-A, our group reported that neither injecting human CA II (hCA II) nor fusing hCA II to the NBCe1-A carboxy terminus affects background-subtracted NBCe1 slope conductance (GNBC ), which is a direct measure of NBCe1-A activity. Others - using bovine CA (bCA), untagged NBCe1-A, and protocols keeping holding potential (Vh ) far from NBCe1-A's reversal potential (Erev ) for prolonged periods - found that bCA increases total membrane current (ΔIm ), which apparently supports the metabolon hypothesis. We systematically investigated differences in the two protocols. In oocytes expressing untagged NBCe1-A, injected with bCA and clamped to -40 mV, CO2 / HCO 3 - exposures markedly decrease Erev , producing large transient outward currents persisting for >10 min and rapid increases in [Na+ ]i . Although the CA inhibitor ethoxzolamide (EZA) reduces both ΔIm and d[Na+ ]i /dt, it does not reduce GNBC . In oocytes not expressing NBCe1-A, CO2 / HCO 3 - triggers rapid increases in [Na+ ]i that both hCA II and bCA enhance in concentration-dependent manners. These d[Na+ ]i /dt increases are inhibited by EZA and blocked by EIPA, a Na-H exchanger (NHE) inhibitor. In oocytes expressing untagged NBCe1-A and injected with bCA, EIPA abolishes the EZA-dependent decreases in ΔIm and d[Na+ ]i /dt. Thus, CAs/EZA produce their ΔIm and d[Na+ ]i /dt effects not through NBCe1-A, but endogenous NHEs. Theoretical considerations argue against a CA stimulation of HCO 3 - transport, supporting the conclusion that an NBCe1-A- HCO 3 - metabolon does not exist in oocytes.
Collapse
Affiliation(s)
- Fraser J. Moss
- Department of Physiology and Biophysics, Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine and Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Gao L, Lin X, Zheng A, Shuang E, Wang J, Chen X. Real-time monitoring of intracellular pH in live cells with fluorescent ionic liquid. Anal Chim Acta 2020; 1111:132-138. [PMID: 32312389 DOI: 10.1016/j.aca.2020.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Real-time monitoring of intracellular pH is of great significance due to its essential role in physiological and pathological processes. In present work, the ionic liquid (IL) N-methyl-6-hydroxyquinolinium bis(trifluoromethylsulfonyl) imide ([6MQc][NTf2]) is proposed as a fluorescence probe for the quantitative imaging of intracellular pH in response to external stimuli. The fluorescence of the IL [6MQc][NTf2] exhibits a sensitive response to pH variations, as the deprotonation of [6MQc][NTf2] generates the highly fluorescent zwitterionic product [6MQz]. pH fluctuations in the range of 6.0-7.5 can be accurately sensed by monitoring the fluorescence change at 555 nm. Moreover, this IL probe exhibits favorable biocompatibility, excellent anti-photobleaching properties, and high tolerance to ionic strength. Using the IL probe, real-time sensing of hypoxia- and drug-induced intracellular pH changes in MCF-7 cells is achieved.
Collapse
Affiliation(s)
- Lifang Gao
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xin Lin
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Anqi Zheng
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - E Shuang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xuwei Chen
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
8
|
Occhipinti R, Boron WF. Role of Carbonic Anhydrases and Inhibitors in Acid-Base Physiology: Insights from Mathematical Modeling. Int J Mol Sci 2019; 20:E3841. [PMID: 31390837 PMCID: PMC6695913 DOI: 10.3390/ijms20153841] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/25/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze a reaction fundamental for life: the bidirectional conversion of carbon dioxide (CO2) and water (H2O) into bicarbonate (HCO3-) and protons (H+). These enzymes impact numerous physiological processes that occur within and across the many compartments in the body. Within compartments, CAs promote rapid H+ buffering and thus the stability of pH-sensitive processes. Between compartments, CAs promote movements of H+, CO2, HCO3-, and related species. This traffic is central to respiration, digestion, and whole-body/cellular pH regulation. Here, we focus on the role of mathematical modeling in understanding how CA enhances buffering as well as gradients that drive fluxes of CO2 and other solutes (facilitated diffusion). We also examine urinary acid secretion and the carriage of CO2 by the respiratory system. We propose that the broad physiological impact of CAs stem from three fundamental actions: promoting H+ buffering, enhancing H+ exchange between buffer systems, and facilitating diffusion. Mathematical modeling can be a powerful tool for: (1) clarifying the complex interdependencies among reaction, diffusion, and protein-mediated components of physiological processes; (2) formulating hypotheses and making predictions to be tested in wet-lab experiments; and (3) inferring data that are impossible to measure.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Jiang T, Wang X, Wang G, Wang Y, Wang K, Xuan X, Chen C, Jiang K, Zhang H. Light-activated "cycle-reversible intramolecular charge transfer" fluorescent probe: monitoring of pHi trace change induced by UV light in programmed cell death. Chem Commun (Camb) 2019; 55:5279-5282. [PMID: 30993268 DOI: 10.1039/c9cc01451a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Under the synergistic effects of protonation and deprotonation, a light-activated fluorescent probe (UV-SP) exhibited "cycle-reversible intramolecular charge transfer (ICT)" for different pH after activation by UV light, resulting in emission of multiple ratio fluorescent signals (FI563/FI595 and FI664/FI595). Based on these kinds of response signals, UV-SP can specifically monitor the cycle-reversible trace change of intracellular pH caused by UV radiation. More importantly, according to the stable and invariant multiple ratio fluorescent signals, UV-SP can sort cells entering programmed death.
Collapse
Affiliation(s)
- Tao Jiang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Key Laboratory of Green Chemical Media and Reactions, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Parks SK, Cormerais Y, Durivault J, Pouyssegur J. Genetic disruption of the pHi-regulating proteins Na+/H+ exchanger 1 (SLC9A1) and carbonic anhydrase 9 severely reduces growth of colon cancer cells. Oncotarget 2018; 8:10225-10237. [PMID: 28055960 PMCID: PMC5354654 DOI: 10.18632/oncotarget.14379] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Hypoxia and extracellular acidosis are pathophysiological hallmarks of aggressive solid tumors. Regulation of intracellular pH (pHi) is essential for the maintenance of tumor cell metabolism and proliferation in this microenvironment and key proteins involved in pHi regulation are of interest for therapeutic development. Carbonic anhydrase 9 (CA9) is one of the most robustly regulated proteins by the hypoxia inducible factor (HIF) and contributes to pHi regulation. Here, we have investigated for the first time, the role of CA9 via complete genomic knockout (ko) and compared its impact on tumor cell physiology with the essential pHi regulator Na+/H+ exchanger 1 (NHE1). Initially, we established NHE1-ko LS174 cells with inducible CA9 knockdown. While increased sensitivity to acidosis for cell survival in 2-dimensions was not observed, clonogenic proliferation and 3-dimensional spheroid growth in particular were greatly reduced. To avoid potential confounding variables with use of tetracycline-inducible CA9 knockdown, we established CA9-ko and NHE1/CA9-dko cells. NHE1-ko abolished recovery from NH4Cl pre-pulse cellular acid loading while both NHE1 and CA9 knockout reduced resting pHi. NHE1-ko significantly reduced tumor cell proliferation both in normoxia and hypoxia while CA9-ko dramatically reduced growth in hypoxic conditions. Tumor xenografts revealed substantial reductions in tumor growth for both NHE1-ko and CA9-ko. A notable induction of CA12 occurred in NHE1/CA9-dko tumors indicating a potential means to compensate for loss of pH regulating proteins to maintain growth. Overall, these genomic knockout results strengthen the pursuit of targeting tumor cell pH regulation as an effective anti-cancer strategy.
Collapse
Affiliation(s)
- Scott K Parks
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco
| | - Yann Cormerais
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco
| | - Jerome Durivault
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco
| | - Jacques Pouyssegur
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco.,Institute for Research on Cancer & Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
11
|
Targeting pH regulating proteins for cancer therapy-Progress and limitations. Semin Cancer Biol 2017; 43:66-73. [PMID: 28137473 DOI: 10.1016/j.semcancer.2017.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pHi) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pHi regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pHi in the continued presence of external acidification (pHe). Considerable experimentation has revealed targets that successfully disrupt tumour pHi regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na+/H+ exchangers (NHEs), carbonic anhydrases (CAs), Na+/HCO3- co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pHi when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives.
Collapse
|
12
|
Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export. Mol Aspects Med 2016; 47-48:3-14. [DOI: 10.1016/j.mam.2015.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Hong JH, Muhammad E, Zheng C, Hershkovitz E, Alkrinawi S, Loewenthal N, Parvari R, Muallem S. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation. J Physiol 2015; 593:5299-312. [PMID: 26486891 DOI: 10.1113/jp271378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. ABSTRACT Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Physiology, College of Medicine, Gachon University, 191 Hambakmeoro, Yeonsu-gu, Incheon, 406-799, South Korea
| | - Emad Muhammad
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Changyu Zheng
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eli Hershkovitz
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Soliman Alkrinawi
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ruti Parvari
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Shmuel Muallem
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Occhipinti R, Boron WF. Mathematical modeling of acid-base physiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:43-58. [PMID: 25617697 PMCID: PMC4666298 DOI: 10.1016/j.pbiomolbio.2015.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 01/22/2023]
Abstract
pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3(-), [Formula: see text] ) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cells-which to our knowledge is the first one capable of handling a multitude of buffer reactions-that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3(-) influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Musa-Aziz R, Occhipinti R, Boron WF. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes. Am J Physiol Cell Physiol 2014; 307:C814-40. [PMID: 24965590 DOI: 10.1152/ajpcell.00050.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human carbonic anhydrase IV (CA IV) is GPI-anchored to the outer membrane surface, catalyzing CO2/HCO3 (-) hydration-dehydration. We examined effects of heterologously expressed CA IV on intracellular-pH (pHi) and surface-pH (pHS) transients caused by exposing oocytes to CO2/HCO3 (-)/pH 7.50. CO2 influx causes a sustained pHi fall and a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA IV increases magnitudes of maximal rate of pHi change (dpHi/dt)max, and maximal pHS change (ΔpHS) and decreases time constants for pHi changes (τpHi ) and pHS relaxations (τpHS ). Decreases in time constants indicate that CA IV enhances CO2 fluxes. Extracellular acetazolamide blocks all CA IV effects, but not those of injected CA II. Injected acetazolamide partially reduces CA IV effects. Thus, extracellular CA is required for, and the equivalent of cytosol-accessible CA augments, the effects of CA IV. Increasing the concentration of the extracellular non-CO2/HCO3 (-) buffer (i.e., HEPES), in the presence of extracellular CA or at high [CO2], accelerates CO2 influx. Simultaneous measurements with two pHS electrodes, one on the oocyte meridian perpendicular to the axis of flow and one downstream from the direction of extracellular-solution flow, reveal that the downstream electrode has a larger (i.e., slower) τpHS , indicating [CO2] asymmetry over the oocyte surface. A reaction-diffusion mathematical model (third paper in series) accounts for the above general features, and supports the conclusion that extracellular CA, which replenishes entering CO2 or consumes exiting CO2 at the extracellular surface, enhances the gradient driving CO2 influx across the cell membrane.
Collapse
Affiliation(s)
- Raif Musa-Aziz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; and Department of Physiology and Biophysics, University of Sao Paulo, Institute of Biomedical Sciences, Sao Paulo, Brazil
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
16
|
Delpire E. How carbonic anhydrases and pH buffers facilitate the movement of carbon dioxide through biological membranes. Focus on "Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes"; "Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes"; and "Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes". Am J Physiol Cell Physiol 2014; 307:C788-90. [PMID: 24965588 DOI: 10.1152/ajpcell.00198.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
17
|
Occhipinti R, Musa-Aziz R, Boron WF. Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes. Am J Physiol Cell Physiol 2014; 307:C841-58. [PMID: 24965589 DOI: 10.1152/ajpcell.00049.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposing an oocyte to CO2/HCO3 (-) causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3 (-) solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3 (-) (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3 (-) or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio;
| | - Raif Musa-Aziz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; Department of Physiology and Biophysics, University of Sao Paulo, Institute of Biomedical Sciences, Sao Paulo, Brazil
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; and
| |
Collapse
|