1
|
Chen LC, Chen HH, Chan MH. Calcium channel inhibitor and extracellular calcium improve aminoglycoside-induced hair cell loss in zebrafish. Arch Toxicol 2024; 98:1827-1842. [PMID: 38563869 DOI: 10.1007/s00204-024-03720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 μM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 μM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 μM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 μM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.
Collapse
Affiliation(s)
- Liao-Chen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
- Animal Behavior Core, National Health Research Institutes, Miaoli, Taiwan.
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Cirqueira F, Figueirêdo LPD, Malafaia G, Rocha TL. Zebrafish neuromast sensory system: Is it an emerging target to assess environmental pollution impacts? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123400. [PMID: 38272167 DOI: 10.1016/j.envpol.2024.123400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Environmental pollution poses risks to ecosystems. Among these risks, one finds neurotoxicity and damage to the lateral line structures of fish, such as the neuromast and its hair cells. Zebrafish (Danio rerio) is recommended as model species to be used in ecotoxicological studies and environmental biomonitoring programs aimed at assessing several biomarkers, such as ototoxicity. However, little is known about the history of and knowledge gaps on zebrafish ototoxicity. Thus, the aim of the current study is to review data available in the scientific literature about using zebrafish as animal model to assess neuromast toxicity. It must be done by analyzing the history and publication category, world production, experimental design, developmental stages, chemical classes, neuromasts and hair cell visualization methods, and zebrafish strains. Based on the results, number, survival and fluorescence intensity of neuromasts, and their hair cells, were the parameters oftentimes used to assess ototoxicity in zebrafish. The wild AB strain was the most used one, and it was followed by Tübingen and transgenic strains with GFP markers. DASPEI was the fluorescent dye most often applied as method to visualize neuromasts, and it was followed by Yo-Pro-1 and GFP transgenic lines. Antibiotics, antitumorals, metals, nanoparticles and plant extracts were the most frequent classes of chemicals used in the analyzed studies. Overall, pollutants can harm zebrafish's mechanosensory system, as well as affect their behavior and survival. Results have shown that zebrafish is a suitable model system to assess ototoxicity induced by environmental pollution.
Collapse
Affiliation(s)
- Felipe Cirqueira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Livia Pitombeira de Figueirêdo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Hung GY, Pan YC, Horng JL, Lin LY. Sublethal effects of methylmercury on lateral line sensory and ion-regulatory functions in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109700. [PMID: 37442313 DOI: 10.1016/j.cbpc.2023.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Methylmercury can interfere with the normal functioning of the nervous system, causing a variety of behavioral and physiological changes in fish. However, the influence of MeHg on the lateral line sensory and ion-regulatory functions of fish is not clear. Zebrafish embryos were utilized as a model to address this question. After exposure to water-borne MeHg (5, 10, 50, or 100 ppb) for 96 h (4-100 h post-fertilization), the survival rate declined by ca. 50 % at 100 ppb. However, MeHg at sublethal concentrations delayed hatching and decreased heart rates and body length. As to effects on the lateral line sensory system, MeHg at ≥10 ppb decreased the number of hair cells and impaired hair bundles and Ca2+-mediated mechanical transduction. As to ion regulation, MeHg at ≥10 ppb decreased the densities of skin stem cells and ionocytes, leading to declines in ion (Na+, K+, and Ca2+) contents and H+/NH4+ excretion levels. A gene expression analysis also revealed declines in messenger RNA levels of several ion-regulatory genes (ncc2b, trpv6v1a, trpv5/6, ncx1b, and rhcg1). This study demonstrated that the lateral line sensory and ion regulatory functions of fish are extremely sensitive to MeHg.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 112, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chin Pan
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
4
|
Han M, Yang H, Yu G, Jiang P, You S, Zhang L, Lin H, Liu J, Shu Y. Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113706. [PMID: 35659702 DOI: 10.1016/j.ecoenv.2022.113706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.
Collapse
Affiliation(s)
- Mengxuan Han
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Huan Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China.
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China
| | - Yi Shu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
5
|
Kantha P, Liu ST, Horng JL, Lin LY. Acute exposure to polystyrene nanoplastics impairs skin cells and ion regulation in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106203. [PMID: 35617773 DOI: 10.1016/j.aquatox.2022.106203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The presence of nanoplastics in aquatic environments is a global problem. Accumulating evidence shows that nanoplastics can accumulate in fish and influence internal organs. However, it is still unknown if nanoplastics can impair skin cells (keratinocytes and ionocytes), which play critical roles in maintaining body fluid homeostasis. In the present study, zebrafish embryos were exposed to polystyrene nanoplastics (PS-NPs; 25 nm in size, at 0, 10, 25, and 50 mg/L) for 96 h to test the effects of PS-NPs on skin functions. After exposure to 50 mg/L, the survival rate, ion (Na+, K+, and Ca2+) contents, and acid/ammonia excretion by skin cells of embryos significantly declined. The apical structure of skin keratinocytes was damaged at 10, 25, and 50 mg/L. The number and mitochondrial activity of ionocytes were reduced at 25 and 50 mg/L. Reactive oxygen species (ROS) levels indicated by CellROX staining showed that both ionocytes and keratinocytes were under oxidative stress. PS-NPs reduced the mRNA expression of antioxidant genes (sod1, sod2, cat, and gpx1a), and promoted apoptosis-related genes (casp3a). Taken together, this study suggests that PS-NPs might suppress antioxidative reactions and induce oxidative stress, leading to mitochondrial damage and cell death of ionocytes, eventually impairing skin functions including ion uptake, pH regulation, and ammonia excretion.
Collapse
Affiliation(s)
- Phunsin Kantha
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
6
|
Hung GY, Chen PY, Horng JL, Lin LY. Vincristine exposure impairs skin keratinocytes, ionocytes, and lateral-line hair cells in developing zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105703. [PMID: 33249295 DOI: 10.1016/j.aquatox.2020.105703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Environmental contamination by anticancer pharmaceuticals has been widely reported. These drugs are not readily biodegradable, and their parent compounds and/or metabolites have been detected in surface waters and groundwater throughout the world. Adverse effects of anticancer drugs occur frequently in cancer patients, and a large body of clinical knowledge has accumulated. However, the effects of these drugs on aquatic organisms have not been thoroughly studied. This study aimed to investigate the effects of acute exposure to a common anticancer drug, vincristine (VCR), on zebrafish embryonic development and skin function. After 96 h of VCR exposure (0, 1, 10, 15, and 25 mg/L), significant teratogenic effects were observed, including growth retardation, pericardial edema, spine, tail, and yolk sac malformations (VCR ≥ 15 mg/L), a decreased heart rate, and ocular malformations (VCR ≥ 10 mg/L). The value of the half lethal concentration for zebrafish embryos was 20.6 mg/L. At ≥10 mg/L VCR, systemic ion contents and acid secretion in the skin over the yolk-sac decreased, and these findings were associated with decreases in skin ionocytes (H+-ATPase-rich cells and Na+-K+-ATPase-rich cells). Also, the microridge-structure of skin keratinocytes was significantly damaged. The number of lateral line hair cells was reduced when VCR was ≥10 mg/L, and functional impairment was detected when VCR was as low as 1 mg/L. Results of this in vivo study in zebrafish embryos indicate that acute exposure to VCR can lead to developmental defects, impairment of skin functions, and even fish death.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei 11217, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, 155 Linong St., Sec. 2, Taipei 11221, Taiwan; Department of Life Science, School of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec. 4, Taipei 11677, Taiwan.
| | - Po-Yen Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec. 4, Taipei 11677, Taiwan.
| |
Collapse
|
7
|
Yen HJ, Lin JR, Yeh YH, Horng JL, Lin LY. Exposure to colistin impairs skin keratinocytes and lateral-line hair cells in zebrafish embryos. CHEMOSPHERE 2021; 263:128364. [PMID: 33297279 DOI: 10.1016/j.chemosphere.2020.128364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Environmental contamination by antibiotics has become a global issue. Colistin, a cationic antimicrobial polypeptide, has been widely used in human/veterinary medicine, and growth promotion in aquaculture. However, no study has been conducted to test the toxic effects of colistin on aquatic animals. In this study, we examined the effects of colistin on zebrafish embryos. Zebrafish embryos were incubated in different concentrations (0, 0.01, 0.1, 1, 2, 3, and 10 μM) of colistin for 96 h. Colistin increased the mortality rate in a dose-dependent manner (LC50 was 3.0 μM or 3.5 mg L-1), but it did not change the hatching rate, heart rate, body length, eye size, or yolk size of embryos. However, colistin impaired keratinocytes and lateral-line hair cells in the skin of embryos. Colistin (at concentrations ≥0.1 μM) decreased the number of FM1-43-labeled hair cells and reduced the mechanotransduction-mediated Ca2+ influx at hair bundles, suggesting that sublethal concentrations of colistin can impair lateral line function. To investigate the lethal injury, morphological changes were sequentially observed in post-hatched embryos subjected to lethal concentrations of colistin. We found that skin keratinocytes were severely damaged and detached after exposure, leading to hypotonic swelling of the yolk sac, loss of ion contents, cell lysis, and eventual death. This study revealed that acute colistin exposure can impair skin cells and pose a threat to fish survival.
Collapse
Affiliation(s)
- Hsiu-Ju Yen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, National Yang-Ming University, School of Medicine, Faculty of Medicine, Taipei, Taiwan
| | - Jia-Rou Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
8
|
Lin LY, Zheng JA, Huang SC, Hung GY, Horng JL. Ammonia exposure impairs lateral-line hair cells and mechanotransduction in zebrafish embryos. CHEMOSPHERE 2020; 257:127170. [PMID: 32497837 DOI: 10.1016/j.chemosphere.2020.127170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (including NH3 and NH4+) is a major pollutant of freshwater environments. However, the toxic effects of ammonia on the early stages of fish are not fully understood, and little is known about the effects on the sensory system. In this study, we hypothesized that ammonia exposure can cause adverse effects on embryonic development and impair the lateral line system of fish. Zebrafish embryos were exposed to high-ammonia water (10, 15, 20, 25, and 30 mM NH4Cl; pH 7.0) for 96 h (0-96 h post-fertilization). The body length, heart rate, and otic vesicle size had significantly decreased with ≥15 mM NH4Cl, while the number and function of lateral-line hair cells had decreased with ≥10 mM NH4Cl. The mechanoelectrical transduction (MET) channel-mediated Ca2+ influx was measured with a scanning ion-selective microelectrode technique to reveal the function of hair cells. We found that NH4+ (≥5 mM NH4Cl) entered hair cells and suppressed the Ca2+ influx of hair cells. Neomycin and La3+ (MET channel blockers) suppressed NH4+ influx, suggesting that NH4+ enters hair cells via MET channels in hair bundles. In conclusion, this study showed that ammonia exposure (≥10 mM NH4Cl) can cause adverse effects in zebrafish embryos, and lateral-line hair cells are sensitive to ammonia exposure.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Jie-An Zheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Shun-Chih Huang
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Giun-Yi Hung
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
9
|
Lin LY, Hung GY, Yeh YH, Chen SW, Horng JL. Acidified water impairs the lateral line system of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105351. [PMID: 31711007 DOI: 10.1016/j.aquatox.2019.105351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Acidification of freshwater ecosystems is recognized as a global environmental problem. However, the influence of acidic water on the early stages of freshwater fish is still unclear. This study focused on the sublethal effects of acidic water on the lateral line system of zebrafish embryos. Zebrafish embryos were exposed to water at different pH values (pH 4, 5, 7, 9, and 10) for 96 (0-96 h post-fertilization (hpf)) and 48 h (48∼96 hpf). The survival rate, body length, and heart rate significantly decreased in pH 4-exposed embryos during the 96-h incubation. The number of lateral-line neuromasts and the size of otic vesicles/otoliths also decreased in pH 4-exposed embryos subjected to 96- and 48-h incubations. The number of neuromasts decreased in pH 5-exposed embryos during the 96-h incubation. Alkaline water (pH 9 and 10) did not influence embryonic development but suppressed the hatching process. The mechanotransducer channel-mediated Ca2+ influx was measured to reveal the function of lateral line hair cells. The Ca2+ influx of hair cells decreased in pH 5-exposed embryos subjected to the 48-h incubation, and both the number and Ca2+ influx of hair cells had decreased in pH 5-exposed embryos after 96 h of incubation. In addition, the number and function of hair cells were suppressed in H+-ATPase- or GCM2-knockdown embryos, which partially lost the ability to secrete acid into the ambient water. In conclusion, this study suggests that lateral line hair cells are sensitive to an acidic environment, and freshwater acidification could be a threat to the early stages of fishes.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Wen Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
10
|
Yen HJ, Horng JL, Yu CH, Fang CY, Yeh YH, Lin LY. Toxic effects of silver and copper nanoparticles on lateral-line hair cells of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105273. [PMID: 31445453 DOI: 10.1016/j.aquatox.2019.105273] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The potential toxicity of nanoparticles (NPs) to the early stages of fish is still unclear. In this study, we investigated the toxic effects of silver (AgNPs) and copper nanoparticles (CuNPs) on lateral-line hair cells of zebrafish embryos. Zebrafish embryos were incubated in different concentrations of AgNPs and CuNPs at 0˜96 h post-fertilization (hpf). Both AgNPs and CuNPs were found to cause toxic effects in zebrafish embryos in a dose-dependent manner. Values of the 96-h 50% lethal concentration (LC50) of AgNPs and CuNPs were 6.1 ppm (56.5 μM) and 2.61 ppm (41.1 μM), respectively. The number of FM1-43-labeled hair cells and the microstructure of hair bundles were significantly impaired by AgNPs [≥1 ppm (9.3 μM)] and CuNPs [≥0.01 ppm (0.16 μM)]. Ca2+ influxes at hair bundles of hair cells were measured with a scanning ion-selective microelectrode technique to evaluate the function of hair cells. AgNPs [≥0.1 ppm (0.9 μM)] and CuNPs [≥0.01 ppm (0.16 μM)] were both found to significantly reduce Ca2+ influxes. Similar toxic effects were also found in hatched embryos subjected to 4 h of exposure (96˜100 hpf) to AgNPs and CuNPs. This study revealed that lateral-line hair cells of zebrafish are susceptible to AgNPs and CuNPs, and these contaminants in aquatic environments could pose a threat to fish survival.
Collapse
Affiliation(s)
- Hsiu-Ju Yen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, National Yang-Ming University, School of Medicine, Faculty of Medicine, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hua Yu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Ya Fang
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
11
|
Hung GY, Wu CL, Chou YL, Chien CT, Horng JL, Lin LY. Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:168-177. [PMID: 30784778 DOI: 10.1016/j.aquatox.2019.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to assess the sublethal effects of a platinum-based compound, cisplatin, using a zebrafish model. Zebrafish embryos were incubated in different concentrations of cisplatin at 0-96 h post-fertilization. Using a non-invasive, scanning ion-selective electrode technique (SIET), we measured the functions of hair cells (Ca2+ influx) and ionocytes ([H+] gradients). The survival rate, hatching rate, phenotype, body length, whole-body ion (Na+, Cl-, and Ca2+) and Pt contents were also determined. The effects of cisplatin on zebrafish embryos were demonstrated as first impairing hair cell function (at 1 μM of cisplatin), the hair cell number, and body ion content of Cl- (at 10 μM of cisplatin), then decreasing ionocyte acid secretion and overall body ion contents of Na+ and Ca2+ (at 50 μM of cisplatin). The body length and ionocyte density decreased at 100 μM of cisplatin, and survival decreased at 500 μM of cisplatin. As the cisplatin concentration increased, the accumulation of Pt in fish embryos also increased. These results revealed that hair cells are significantly more susceptible to cisplatin toxicity than ionocytes. By determining the lowest observed effective concentration of cisplatin that caused in vivo functional alterations of zebrafish hair cells and skin ionocytes, this model demonstrated 500-fold greater sensitivity than by detecting changes in survival, for early assessment of the effects of platinum-based chemotherapeutic drugs on fish.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ciao-Ling Wu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Ling Chou
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
12
|
Lin LY, Yeh YH, Hung GY, Lin CH, Hwang PP, Horng JL. Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol 2018; 9:649. [PMID: 29899708 PMCID: PMC5988855 DOI: 10.3389/fphys.2018.00649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 01/16/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells. Sci Rep 2017; 7:16215. [PMID: 29176723 PMCID: PMC5701230 DOI: 10.1038/s41598-017-16381-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/13/2017] [Indexed: 01/29/2023] Open
Abstract
Molecular mechanisms of Na+, Cl−, and Ca2+ regulation in ionocytes of fish have been well investigated. However, the regulatory mechanism of K+ in fishes has been largely unknown. In this study, we investigated the mechanism of K+ regulation in medaka larvae acclimated to fresh water. Using a scanning ion-selective electrode technique (SIET) to measure the K+ fluxes at skin cells, significant K+ effluxes were found at ionocytes; in contrast, significant K+ influxes were found at the boundaries between keratinocytes. High K+ water (HK) acclimation induced the K+ effluxes at ionocytes and suppressed the K+ influxes at keratinocytes. The K+ effluxes of ionocytes were suppressed by VU591, bumetanide and ouabain. The K+ influxes of keratinocytes were suppressed by TAP. In situ hybridization analysis showed that mRNA of ROMKa was expressed by ionocytes in the skin and gills of medaka larvae. Quantitative PCR showed that mRNA levels of ROMKa and NKCC1a in gills of adult medaka were upregulated after HK acclimation. This study suggests that medaka obtain K+ through a paracellular pathway between keratinocytes and extrude K+ through ionocytes; apical ROMKa and basolateral NKCC1a are involved in the K+ secretion by ionocytes.
Collapse
|
14
|
Rodrigo-Moreno A, Bazihizina N, Azzarello E, Masi E, Tran D, Bouteau F, Baluska F, Mancuso S. Root phonotropism: Early signalling events following sound perception in Arabidopsis roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:9-15. [PMID: 28969806 DOI: 10.1016/j.plantsci.2017.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 05/10/2023]
Abstract
Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source. We found that sound waves triggered very quickly (within minutes) an increase in cytosolic Ca2+, possibly mediated by an influx through plasma membrane and a release from internal stock. Sound waves likewise elicited rapid reactive oxygen species (ROS) production and K+ efflux. Taken together these results suggest that changes in ion fluxes (Ca2+ and K+) and an increase in superoxide production are involved in sound perception in plants, as previously established in animals.
Collapse
Affiliation(s)
- Ana Rodrigo-Moreno
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy.
| | - Nadia Bazihizina
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Elisa Azzarello
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Elisa Masi
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | | | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences - Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
15
|
Aquaporin 1 Is Involved in Acid Secretion by Ionocytes of Zebrafish Embryos through Facilitating CO2 Transport. PLoS One 2015; 10:e0136440. [PMID: 26287615 PMCID: PMC4546062 DOI: 10.1371/journal.pone.0136440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022] Open
Abstract
Mammalian aquaporin 1 (AQP1) is well known to function as a membrane channel for H2O and CO2 transport. Zebrafish AQP1a.1 (the homologue of mammalian AQP1) was recently identified in ionocytes of embryos; however its role in ionocytes is still unclear. In this study, we hypothesized that zebrafish AQP1a.1 is involved in the acid secretion by ionocytes through facilitating H2O and CO2 diffusion. A real-time PCR showed that mRNA levels of AQP1a.1 in embryos were induced by exposure to 1% CO2 hypercapnia for 3 days. In situ hybridization and immunohistochemistry showed that the AQP1a.1 transcript was highly expressed by acid-secreting ionocytes, i.e., H+-ATPase-rich (HR) cells. A scanning ion-selective electrode technique (SIET) was applied to analyze CO2-induced H+ secretion by individual ionocytes in embryos. H+ secretion by HR cells remarkably increased after a transient loading of CO2 (1% for 10 min). AQP1a.1 knockdown with morpholino oligonucleotides decreased the H+ secretion of HR cells by about half and limited the CO2 stimulated increase. In addition, exposure to an AQP inhibitor (PCMB) for 10 min also suppressed CO2-induced H+ secretion. Results from this study support our hypothesis and provide in vivo evidence of the physiological role of AQP1 in CO2 transport.
Collapse
|
16
|
Lin YH, Hung GY, Wu LC, Chen SW, Lin LY, Horng JL. Anion exchanger 1b in stereocilia is required for the functioning of mechanotransducer channels in lateral-line hair cells of zebrafish. PLoS One 2015; 10:e0117041. [PMID: 25679789 PMCID: PMC4332475 DOI: 10.1371/journal.pone.0117041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
The anion exchanger (AE) plays critical roles in physiological processes including CO2 transport and volume regulation in erythrocytes and acid-base regulation in renal tubules. Although expression of the AE in inner-ear hair cells was reported, its specific localization and function are still unclear. Using in situ hybridization, we found that the AE1b transcript is expressed in lateral-line hair cells of zebrafish larvae. An immunohistochemical analysis with a zebrafish-specific antibody localized AE1b to stereocilia of hair cells, and the expression was eliminated by morpholino knockdown of AE1b. A non-invasive, scanning ion-selective electrode technique was applied to analyze mechanotransducer (MET) channel-mediated Ca2+ influx at stereocilia of hair cells of intact fish. Ca2+ influx was effectively suppressed by AE1b morpholino knockdown and inhibitor (DIDS) treatment. Elevating external Ca2+ (0.2 to 2 mM) neutralized the inhibition of DIDS. Taken together, this study provides solid evidence to show that AE1b in stereocilia is required for the proper functioning of MET channels.
Collapse
Affiliation(s)
- Yuan-Hsiang Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Liang-Chun Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Sheng-Wen Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- * E-mail:
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|