1
|
Wang XP, Ma CM, Zhao XH. Activity of the peptic-tryptic caseinate digest with caseinate oligochitosan-glycation in rat intestinal epithelial (IEC-6) cells via the Wnt/β-catenin signaling pathway. Chem Biol Interact 2020; 328:109201. [DOI: 10.1016/j.cbi.2020.109201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/07/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
|
2
|
α4 Coordinates Small Intestinal Epithelium Homeostasis by Regulating Stability of HuR. Mol Cell Biol 2018; 38:MCB.00631-17. [PMID: 29555726 DOI: 10.1128/mcb.00631-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis depends on a dynamic balance among proliferation, migration, apoptosis, and differentiation of intestinal epithelial cells (IECs). The protein phosphatase 2A (PP2A)-associated protein α4 controls the activity and specificity of serine/threonine phosphatases and is thus implicated in many cellular processes. Here, using a genetic approach, we investigated the mechanisms whereby α4 controls the homeostasis of the intestinal epithelium. In mice with ablated α4, the small intestinal mucosa exhibited crypt hyperplasia, villus shrinkage, defective differentiation of Paneth cells, and reduced IEC migration along the crypt-villus axis. The α4-deficient intestinal epithelium also displayed decreased expression of different intercellular junction proteins and abnormal epithelial permeability. In addition, α4 deficiency decreased the levels of the RNA-binding protein HuR in the mucosal tissue. In cultured IECs, ectopic overexpression of HuR in α4-deficient cells rescued the production of these intercellular junction proteins and restored the epithelial barrier function to a nearly normal level. Mechanistically, α4 silencing destabilized HuR through a process involving HuR phosphorylation by IκB kinase α, leading to ubiquitin-mediated proteolysis of HuR. These findings indicate that the critical impact of α4 upon the barrier function and homeostasis of the intestinal epithelium depends largely on its ability to regulate the stability of HuR.
Collapse
|
3
|
Yan J, Zhu J, Gong Z, Wen J, Xiao Y, Zhang T, Cai W. Supplementary choline attenuates olive oil lipid emulsion-induced enterocyte apoptosis through suppression of CELF1/AIF pathway. J Cell Mol Med 2017; 22:1562-1573. [PMID: 29105957 PMCID: PMC5824412 DOI: 10.1111/jcmm.13430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
Enterocyte apoptosis induced by lipid emulsions is a key cause of intestinal atrophy under total parenteral nutrition (TPN) support, and our previous work demonstrated that olive oil lipid emulsion (OOLE) could induce enterocyte apoptosis via CUGBP, Elav‐like family member 1 (CELF1)/ apoptosis‐inducing factor (AIF) pathway. As TPN‐associated complications are partially related to choline deficiency, we aimed to address whether choline supplementation could attenuate OOLE‐induced enterocyte apoptosis. Herein we present evidence that supplementary choline exhibits protective effect against OOLE‐induced enterocyte apoptosis both in vivo and in vitro. In a rat model of TPN, substantial reduction in apoptotic rate along with decreased expression of CELF1 was observed when supplementary choline was added to OOLE. In cultured Caco‐2 cells, supplementary choline attenuated OOLE‐induced apoptosis and mitochondria dysfunction by suppressing CELF1/AIF pathway. Compared to OOLE alone, the expression of CELF1 and AIF was significantly decreased by supplementary choline, whereas the expression of Bcl‐2 was evidently increased. No obvious alterations were observed in Bax expression and caspase‐3 activation. Mechanistically, supplementary choline repressed the expression of CELF1 by increasing the recruitment of CELF1 mRNA to processing bodies, thus resulting in suppression of its protein translation. Taken together, our data suggest that supplementary choline exhibits effective protection against OOLE‐induced enterocyte apoptosis, and thus, it has the potential to be used for the prevention and treatment of TPN‐induced intestinal atrophy.
Collapse
Affiliation(s)
- Jun‐Kai Yan
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Jie Zhu
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Zi‐Zhen Gong
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Jie Wen
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Yong‐Tao Xiao
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Tian Zhang
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Wei Cai
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| |
Collapse
|
4
|
Cooperative Repression of Insulin-Like Growth Factor Type 2 Receptor Translation by MicroRNA 195 and RNA-Binding Protein CUGBP1. Mol Cell Biol 2017; 37:MCB.00225-17. [PMID: 28716948 DOI: 10.1128/mcb.00225-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor type 2 (IGF2) receptor (IGF2R) recognizes mannose 6-phosphate-containing molecules and IGF2 and plays an important role in many pathophysiological processes, including gut mucosal adaptation. However, the mechanisms that control cellular IGF2R abundance are poorly known. MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) critically regulate gene expression programs in mammalian cells by modulating the stability and translation of target mRNAs. Here we report that miRNA 195 (miR-195) and RBP CUG-binding protein 1 (CUGBP1) jointly regulate IGF2R expression at the posttranscriptional level in intestinal epithelial cells. Both miR-195 and CUGBP1 interacted with the 3' untranslated region (3'-UTR) of Igf2r mRNA, and the association of CUGBP1 with Igf2r mRNA enhanced miR-195 binding to Igf2r mRNA. Ectopically expressed CUGBP1 and miR-195 repressed IGF2R translation cooperatively without altering the stability of Igf2r mRNA. Importantly, the miR-195- and CUGBP1-repressed levels of cellular IGF2R led to a disruption in the structure of the trans-Golgi network. These findings indicate that IGF2R expression is controlled posttranscriptionally by two factors that associate with Igf2r mRNA and suggest that miR-195 and CUGBP1 dampen IGF signaling by inhibiting IGF2R translation.
Collapse
|
5
|
c-Jun N-terminal kinase 2 promotes enterocyte survival and goblet cell differentiation in the inflamed intestine. Mucosal Immunol 2017; 10:1211-1223. [PMID: 28098247 DOI: 10.1038/mi.2016.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
Abstract
c-Jun N-terminal kinases (JNKs) contribute to immune signaling but their functional role during intestinal mucosal inflammation has remained ill defined. Using genetic mouse models, we characterized the role of JNK1 and JNK2 during homeostasis and acute colitis. Epithelial apoptosis, regeneration, differentiation, and barrier function were analyzed in intestinal epithelium-specific (ΔIEC) or complete JNK1 and bone marrow chimeric or complete JNK2 deficient mice as well as double-knockout animals (JNK1ΔIECJNK2-/-) during homeostasis and acute dextran sulfate sodium (DSS)-induced colitis. Results were confirmed using human HT-29 cells and wild-type or JNK2-deficient mouse intestinal organoid cultures. We show that nonhematopoietic JNK2 but not JNK1 expression confers protection from DSS-induced intestinal inflammation reducing epithelial barrier dysfunction and enterocyte apoptosis. JNK2 additionally enhanced Atonal homolog 1 expression, goblet cell and enteroendocrine cell differentiation, and mucus production under inflammatory conditions. Our results identify a protective role of epithelial JNK2 signaling to maintain mucosal barrier function, epithelial cell integrity, and mucus layer production in the event of inflammatory tissue damage.
Collapse
|
6
|
Wang X, Zhao X. Prior lactose glycation of caseinate via the Maillard reaction affects in vitro activities of the pepsin-trypsin digest toward intestinal epithelial cells. J Dairy Sci 2017; 100:5125-5138. [DOI: 10.3168/jds.2016-12491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 01/08/2023]
|
7
|
Yan JK, Zhu J, Gong ZZ, Wen J, Xiao YT, Cai W, Zhang T. Olive Oil-Supplemented Lipid Emulsion Induces CELF1 Expression and Promotes Apoptosis in Caco-2 Cells. Cell Physiol Biochem 2017; 41:711-721. [DOI: 10.1159/000458430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background and Aims: Parenterally-administered lipid emulsion (LE) is a key cause of enterocyte apoptosis under total parenteral nutrition, yet the pathogenesis has not been fully understood. CUGBP, Elav-like family member 1 (CELF1) has been recently identified as a crucial modulator of apoptosis, and thus this study sought to investigate its role in the LE-induced apoptosis in vitro. Methods: Caco-2 cells were used as an in vitro model. The cells were treated with varying LEs derived from soybean oil, olive oil or fish oil, and changes in the apoptosis and CELF1 expression were assessed. Rescue study was performed using transient knockdown of CELF1 with specific siRNA prior to LE treatment. Regulation of CELF1 by LE treatment was studied using quantitative real-time PCR and Western blotting. Results: All the LEs up-regulated CELF1expression and induced apoptosis, but only olive oil-supplemented lipid emulsion (OOLE)-induced apoptosis was attenuated by depletion of CELF1. Up-regulation of apoptosis-inducing factor (AIF) was involved in OOLE-induced CELF1 dependent apoptosis. The protein expression of CELF1 was up-regulated by OOLE in a dose- and time-dependent manner, but the mRNA expression of CELF1 was unchanged. Analysis by polysomal profiling and nascent protein synthesis revealed that the regulation of CELF1 by OOLE treatment was mediated by directly accelerating its protein translation. Conclusion: OOLE-induces apoptosis in Caco-2 cells partially through up-regulation of CELF1.
Collapse
|
8
|
Liu L, Ouyang M, Rao JN, Zou T, Xiao L, Chung HK, Wu J, Donahue JM, Gorospe M, Wang JY. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal. Mol Biol Cell 2015; 26:1797-810. [PMID: 25808495 PMCID: PMC4436827 DOI: 10.1091/mbc.e14-11-1500] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/16/2015] [Indexed: 12/17/2022] Open
Abstract
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3'-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3'-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Miao Ouyang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jing Wu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - James M Donahue
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|