1
|
Pons A. The self-oscillation paradox in the flight motor of Drosophila melanogaster. J R Soc Interface 2023; 20:20230421. [PMID: 37963559 PMCID: PMC10645510 DOI: 10.1098/rsif.2023.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Tiny flying insects, such as Drosophila melanogaster, fly by flapping their wings at frequencies faster than their brains are able to process. To do so, they rely on self-oscillation: dynamic instability, leading to emergent oscillation, arising from muscle stretch-activation. Many questions concerning this vital natural instability remain open. Does flight motor self-oscillation necessarily lead to resonance-a state optimal in efficiency and/or performance? If so, what state? And is self-oscillation even guaranteed in a motor driven by stretch-activated muscle, or are there limiting conditions? In this work, we use data-driven models of wingbeat and muscle behaviour to answer these questions. Developing and leveraging novel analysis techniques, including symbolic computation, we establish a fundamental condition for motor self-oscillation common to a wide range of motor models. Remarkably, D. melanogaster flight apparently defies this condition: a paradox of motor operation. We explore potential resolutions to this paradox, and, within its confines, establish that the D. melanogaster flight motor is probably not resonant with respect to exoskeletal elasticity: instead, the muscular elasticity plays a dominant role. Contrary to common supposition, the stiffness of stretch-activated muscle is an obstacle to, rather than an enabler of, the operation of the D. melanogaster flight motor.
Collapse
Affiliation(s)
- Arion Pons
- Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
2
|
Gau J, Lynch J, Aiello B, Wold E, Gravish N, Sponberg S. Bridging two insect flight modes in evolution, physiology and robophysics. Nature 2023; 622:767-774. [PMID: 37794191 PMCID: PMC10599994 DOI: 10.1038/s41586-023-06606-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Since taking flight, insects have undergone repeated evolutionary transitions between two seemingly distinct flight modes1-3. Some insects neurally activate their muscles synchronously with each wingstroke. However, many insects have achieved wingbeat frequencies beyond the speed limit of typical neuromuscular systems by evolving flight muscles that are asynchronous with neural activation and activate in response to mechanical stretch2-8. These modes reflect the two fundamental ways of generating rhythmic movement: time-periodic forcing versus emergent oscillations from self-excitation8-10. How repeated evolutionary transitions have occurred and what governs the switching between these distinct modes remain unknown. Here we find that, despite widespread asynchronous actuation in insects across the phylogeny3,6, asynchrony probably evolved only once at the order level, with many reversions to the ancestral, synchronous mode. A synchronous moth species, evolved from an asynchronous ancestor, still preserves the stretch-activated muscle physiology. Numerical and robophysical analyses of a unified biophysical framework reveal that rather than a dichotomy, these two modes are two regimes of the same dynamics. Insects can transition between flight modes across a bridge in physiological parameter space. Finally, we integrate these two actuation modes into an insect-scale robot11-13 that enables transitions between modes and unlocks a new self-excited wingstroke strategy for engineered flight. Together, this framework accounts for repeated transitions in insect flight evolution and shows how flight modes can flip with changes in physiological parameters.
Collapse
Affiliation(s)
- Jeff Gau
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - James Lynch
- Mechanical and Aerospace Engineering Department, University of California San Diego, San Diego, CA, USA
| | - Brett Aiello
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biology, Seton Hill University, Greensburg, PA, USA
| | - Ethan Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Quantitative Biosciences Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering Department, University of California San Diego, San Diego, CA, USA.
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Loya AK, Van Houten SK, Glasheen BM, Swank DM. Shortening deactivation: quantifying a critical component of cyclical muscle contraction. Am J Physiol Cell Physiol 2022; 322:C653-C665. [PMID: 34965153 PMCID: PMC8977141 DOI: 10.1152/ajpcell.00281.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
A muscle undergoing cyclical contractions requires fast and efficient muscle activation and relaxation to generate high power with relatively low energetic cost. To enhance activation and increase force levels during shortening, some muscle types have evolved stretch activation (SA), a delayed increased in force following rapid muscle lengthening. SA's complementary phenomenon is shortening deactivation (SD), a delayed decrease in force following muscle shortening. SD increases muscle relaxation, which decreases resistance to subsequent muscle lengthening. Although it might be just as important to cyclical power output, SD has received less investigation than SA. To enable mechanistic investigations into SD and quantitatively compare it to SA, we developed a protocol to elicit SA and SD from Drosophila and Lethocerus indirect flight muscles (IFM) and Drosophila jump muscle. When normalized to isometric tension, Drosophila IFM exhibited a 118% SD tension decrease, Lethocerus IFM dropped by 97%, and Drosophila jump muscle decreased by 37%. The same order was found for normalized SA tension: Drosophila IFM increased by 233%, Lethocerus IFM by 76%, and Drosophila jump muscle by only 11%. SD occurred slightly earlier than SA, relative to the respective length change, for both IFMs; but SD was exceedingly earlier than SA for jump muscle. Our results suggest SA and SD evolved to enable highly efficient IFM cyclical power generation and may be caused by the same mechanism. However, jump muscle SA and SD mechanisms are likely different, and may have evolved for a role other than to increase the power output of cyclical contractions.
Collapse
Affiliation(s)
- Amy K Loya
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Electrical, Computer, and Biomedical Engineering, Union College, Schenectady, New York
| | - Sarah K Van Houten
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Bernadette M Glasheen
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Douglas M Swank
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
4
|
Li F, Wei R, Huang M, Chen J, Li P, Ma Y, Chen X. Luteolin can ameliorate renal interstitial fibrosis-induced renal anaemia through the SIRT1/FOXO3 pathway. Food Funct 2022; 13:11896-11914. [DOI: 10.1039/d2fo02477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luteolin is a natural flavonoid exhibiting multiple pharmacological activities.
Collapse
Affiliation(s)
- Fei Li
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Ribao Wei
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Mengjie Huang
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Jianwen Chen
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Ping Li
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Yue Ma
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| | - Xiangmei Chen
- Nankai University School of Medicine, Nankai University, Tianjin 300073, China
- State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of Nephrology, The General Hospital of the People's Liberation Army, Beijing 100853, China
| |
Collapse
|
5
|
Shi Y, Bethea JP, Hetzel-Ebben HL, Landim-Vieira M, Mayper RJ, Williams RL, Kessler LE, Ruiz AM, Gargiulo K, Rose JSM, Platt G, Pinto JR, Washburn BK, Chase PB. Mandibular muscle troponin of the Florida carpenter ant Camponotus floridanus: extending our insights into invertebrate Ca 2+ regulation. J Muscle Res Cell Motil 2021; 42:399-417. [PMID: 34255253 DOI: 10.1007/s10974-021-09606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Ants use their mandibles for a variety of functions and behaviors. We investigated mandibular muscle structure and function from major workers of the Florida carpenter ant Camponotus floridanus: force-pCa relation and velocity of unloaded shortening of single, permeabilized fibres, primary sequences of troponin subunits (TnC, TnI and TnT) from a mandibular muscle cDNA library, and muscle fibre ultrastructure. From the mechanical measurements, we found Ca2+-sensitivity of isometric force was markedly shifted rightward compared with vertebrate striated muscle. From the troponin sequence results, we identified features that could explain the rightward shift of Ca2+-activation: the N-helix of TnC is effectively absent and three of the four EF-hands of TnC (sites I, II and III) do not adhere to canonical sequence rules for divalent cation binding; two alternatively spliced isoforms of TnI were identified with the alternatively spliced exon occurring in the region of the IT-arm α-helical coiled-coil, and the N-terminal extension of TnI may be involved in modulation of regulation, as in mammalian cardiac muscle; and TnT has a Glu-rich C-terminus. In addition, a structural homology model was built of C. floridanus troponin on the thin filament. From analysis of electron micrographs, we found thick filaments are almost as long as the 6.8 μm sarcomeres, have diameter of ~ 16 nm, and typical center-to-center spacing of ~ 46 nm. These results have implications for the mechanisms by which mandibular muscle fibres perform such a variety of functions, and how the structure of the troponin complex aids in these tasks.
Collapse
Affiliation(s)
- Yun Shi
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Julia P Bethea
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hannah L Hetzel-Ebben
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Ross J Mayper
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Regan L Williams
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Lauren E Kessler
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Amanda M Ruiz
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Kathryn Gargiulo
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Jennifer S M Rose
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Grayson Platt
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA. .,Department of Biological Science, Florida State University, Biology Unit One, Box 3064370, Tallahassee, FL, 32306-4370, USA.
| |
Collapse
|
6
|
Jarvis KJ, Bell KM, Loya AK, Swank DM, Walcott S. Force-velocity and tension transient measurements from Drosophila jump muscle reveal the necessity of both weakly-bound cross-bridges and series elasticity in models of muscle contraction. Arch Biochem Biophys 2021; 701:108809. [PMID: 33610561 PMCID: PMC7986577 DOI: 10.1016/j.abb.2021.108809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
Muscle contraction is a fundamental biological process where molecular interactions between the myosin molecular motor and actin filaments result in contraction of a whole muscle, a process spanning size scales differing in eight orders of magnitude. Since unique behavior is observed at every scale in between these two extremes, to fully understand muscle function it is vital to develop multi-scale models. Based on simulations of classic measurements of muscle heat generation as a function of work, and shortening rate as a function of applied force, we hypothesize that a model based on molecular measurements must be modified to include a weakly-bound interaction between myosin and actin in order to fit measurements at the muscle fiber or whole muscle scales. This hypothesis is further supported by the model's need for a weakly-bound state in order to qualitatively reproduce the force response that occurs when a muscle fiber is rapidly stretched a small distance. We tested this hypothesis by measuring steady-state force as a function of shortening velocity, and the force transient caused by a rapid length step in Drosophila jump muscle fibers. Then, by performing global parameter optimization, we quantitatively compared the predictions of two mathematical models, one lacking a weakly-bound state and one with a weakly-bound state, to these measurements. Both models could reproduce our force-velocity measurements, but only the model with a weakly-bound state could reproduce our force transient measurements. However, neither model could concurrently fit both measurements. We find that only a model that includes weakly-bound cross-bridges with force-dependent detachment and an elastic element in series with the cross-bridges is able to fit both of our measurements. This result suggests that the force response after stretch is not a reflection of distinct steps in the cross-bridge cycle, but rather arises from the interaction of cross-bridges with a series elastic element. Additionally, the model suggests that the curvature of the force-velocity relationship arises from a combination of the force-dependence of weakly- and strongly-bound cross-bridges. Overall, this work presents a minimal cross-bridge model that has predictive power at the fiber level.
Collapse
Affiliation(s)
- Katelyn J Jarvis
- Department of Mathematics, University of California, Davis, CA, USA
| | - Kaylyn M Bell
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Amy K Loya
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Douglas M Swank
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sam Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
7
|
Yu W, Zhou Y, Guo J, Wyckhuys KAG, Shen X, Li X, Ge S, Liu D, Wu K. Interspecific and Seasonal Variation in Wingbeat Frequency Among Migratory Lepidoptera in Northern China. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2134-2140. [PMID: 32607536 DOI: 10.1093/jee/toaa134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Many lepidopteran species rely upon active flight to migrate over long distances, thus pursuing ephemeral resources, colonizing new habitats, or escaping adverse meteorological conditions. Though their biology and ecology are often well studied, there is only scant information on their wingbeat frequency (WBF), a key aerodynamic determinant of insect flight. In this study, we assessed interspecific and seasonal variability in WBF for 85 different migratory species of Lepidoptera (11 families) under the laboratory conditions of 25 ± 1°C and 75 ± 5% RH. WBF of migrant individuals ranged between 6.7 and 84.5 Hz and substantial interspecific differences were recorded, with members of the Bombycidae exhibiting the highest mean WBFs (i.e., 55.1 ± 1.0 Hz) and Saturniidae the lowest (8.5 ± 0.2 Hz). At a species level, seasonal variation was observed in WBF for Mythimna separata (Walker) (Lepidoptera: Noctuidae), Scotogramma trifolii Rottemberg (Lepidoptera: Noctuidae), and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Our findings add to the scientific knowledge on flight biology of migratory insects, facilitate (automatic) monitoring and population forecasting, and can have broader implications for insect pest management or biodiversity conservation.
Collapse
Affiliation(s)
- Wenhua Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianglong Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiujing Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaokang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shishuai Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Straight CR, Bell KM, Slosberg JN, Miller MS, Swank DM. A myosin-based mechanism for stretch activation and its possible role revealed by varying phosphate concentration in fast and slow mouse skeletal muscle fibers. Am J Physiol Cell Physiol 2019; 317:C1143-C1152. [PMID: 31532715 DOI: 10.1152/ajpcell.00206.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretch activation (SA) is a delayed increase in force following a rapid muscle length increase. SA is best known for its role in asynchronous insect flight muscle, where it has replaced calcium's typical role of modulating muscle force levels during a contraction cycle. SA also occurs in mammalian skeletal muscle but has previously been thought to be too low in magnitude, relative to calcium-activated (CA) force, to be a significant contributor to force generation during locomotion. To test this supposition, we compared SA and CA force at different Pi concentrations (0-16 mM) in skinned mouse soleus (slow-twitch) and extensor digitorum longus (EDL; fast-twitch) muscle fibers. CA isometric force decreased similarly in both muscles with increasing Pi, as expected. SA force decreased with Pi in EDL (40%), leaving the SA to CA force ratio relatively constant across Pi concentrations (17-25%). In contrast, SA force increased in soleus (42%), causing a quadrupling of the SA to CA force ratio, from 11% at 0 mM Pi to 43% at 16 mM Pi, showing that SA is a significant force modulator in slow-twitch mammalian fibers. This modulation would be most prominent during prolonged muscle use, which increases Pi concentration and impairs calcium cycling. Based upon our previous Drosophila myosin isoform studies and this work, we propose that in slow-twitch fibers a rapid stretch in the presence of Pi reverses myosin's power stroke, enabling quick rebinding to actin and enhanced force production, while in fast-twitch fibers, stretch and Pi cause myosin to detach from actin.
Collapse
Affiliation(s)
- Chad R Straight
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Kaylyn M Bell
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Jared N Slosberg
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Mark S Miller
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Douglas M Swank
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|