1
|
Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines. Acta Pharmacol Sin 2020; 41:110-118. [PMID: 31515527 PMCID: PMC7468359 DOI: 10.1038/s41401-019-0290-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
In addition to the well-known cardiotonic effects, cardiac glycosides (CGs) produce potent anticancer effects with various molecular mechanisms. We previously show that ouabain induces autophagic cell death in human lung cancer cells by regulating AMPK-mediated mTOR and Src-mediated ERK1/2 signaling pathways. However, whether and how AMPK and Src signaling interacts in ouabain-treated cancer cells remains unclear. Given the pivotal role of AMPK in metabolism, whether ouabain affects cancer cell metabolism remains elusive. In this study we showed that treatment with ouabain (25 nM) caused simultaneous activation of AMPK and Src signaling pathways in human lung cancer A549 cells and human breast cancer MCF7 cells. Cotreatment with AMPK inhibitor compound C or siRNA greatly abrogates ouabain-induced Src activation, whereas cotreatment with Src inhibitor PP2 has little effect on ouabain-induced AMPK activity, suggesting that AMPK served as an upstream regulator of the Src signaling pathway. On the other hand, ouabain treatment greatly depletes ATP production in A549 and MCF7 cells, and supplement of ATP (100 μM) blocked ouabain-induced AMPK activation. We further demonstrated that ouabain greatly inhibited the mitochondrial oxidative phosphorylation (OXPHOS) in the cancer cells, and exerted differential metabolic effects on glycolysis depending on cancer cell type. Taken together, this study reveals that the altered cancer cell metabolism caused by ouabain may contribute to AMPK activation, as well as its cytotoxicity towards cancer cells.
Collapse
|
2
|
Askari A. The other functions of the sodium pump. Cell Calcium 2019; 84:102105. [DOI: 10.1016/j.ceca.2019.102105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 01/14/2023]
|
3
|
Stimulation of Na +/K +-ATPase with an Antibody against Its 4 th Extracellular Region Attenuates Angiotensin II-Induced H9c2 Cardiomyocyte Hypertrophy via an AMPK/SIRT3/PPAR γ Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4616034. [PMID: 31636805 PMCID: PMC6766118 DOI: 10.1155/2019/4616034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
Activation of the renin-angiotensin system (RAS) contributes to the pathogenesis of cardiovascular diseases. Sodium potassium ATPase (NKA) expression and activity are often regulated by angiotensin II (Ang II). This study is aimed at investigating whether DR-Ab, an antibody against 4th extracellular region of NKA, can protect Ang II-induced cardiomyocyte hypertrophy. Our results showed that Ang II treatment significantly reduced NKA activity and membrane expression. Pretreatment with DR-Ab preserved cell size in Ang II-induced cardiomyopathy by stabilizing the plasma membrane expression of NKA and restoring its activity. DR-Ab reduced intracellular ROS generation through inhibition of NADPH oxidase activity and protection of mitochondrial functions in Ang II-treated H9c2 cardiomyocytes. Pharmacological manipulation and Western blotting analysis demonstrated the cardioprotective effects were mediated by the activation of the AMPK/Sirt-3/PPARγ signaling pathway. Taken together, our results suggest that dysfunction of NKA is an important mechanism for Ang II-induced cardiomyopathy and DR-Ab may be a novel and promising therapeutic approach to treat cardiomyocyte hypertrophy.
Collapse
|
4
|
Salt Induces Adipogenesis/Lipogenesis and Inflammatory Adipocytokines Secretion in Adipocytes. Int J Mol Sci 2019; 20:ijms20010160. [PMID: 30621146 PMCID: PMC6337705 DOI: 10.3390/ijms20010160] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023] Open
Abstract
It is well known that high salt intake is associated with cardiovascular diseases including hypertension. However, the research on the mechanism of obesity due to high salt intake is rare. To evaluate the roles of salt on obesity prevalence, the gene expression of adipogenesis/lipogenesis and adipocytokines secretion according to adipocyte dysfunction were investigated in salt-loading adipocytes. High salt dose-dependently increased the expression of adipogenic/lipogenic genes, such as PPAR-γ, C/EBPα, SREBP1c, ACC, FAS, and aP2, but decreased the gene of lipolysis like AMPK, ultimately resulting in fat accumulation. With SIK-2 and Na+/K+-ATPase activation, salt increased the metabolites involved in the renin-angiotensin-aldosterone system (RAAS) such as ADD1, CYP11β2, and MCR. Increasing insulin dependent insulin receptor substrate (IRS)-signaling, resulting in the insulin resistance, mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and Akt-mTOR were activated but AMPK(Thr172) was depressed in salt-loading adipocytes. The expression of pro-inflammatory adipocytokines, TNFα, MCP-1, COX-2, IL-17A, IL-6, leptin, and leptin to adiponectin ratio (LAR) were dose-dependently increased by salt treatment. Using the inhibitors of MAPK/ERK, U0126, we found that the crosstalk among the signaling pathways of MAPK/ERK, Akt-mTOR, and the inflammatory adipogenesis can be the possible mechanism of salt-linked obesity. The possibilities of whether the defense mechanisms against high dose of intracellular salts provoke signaling for adipocytes differentiation or interact with surrounding tissues through other pathways will be explored in future research.
Collapse
|
5
|
Digitoxin Suppresses Human Cytomegalovirus Replication via Na +, K +/ATPase α1 Subunit-Dependent AMP-Activated Protein Kinase and Autophagy Activation. J Virol 2018; 92:JVI.01861-17. [PMID: 29321306 DOI: 10.1128/jvi.01861-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Host-directed therapeutics for human cytomegalovirus (HCMV) requires elucidation of cellular mechanisms that inhibit HCMV. We report a novel pathway used by cardiac glycosides to inhibit HCMV replication: induction of AMP-activated protein kinase (AMPK) activity and autophagy flux through the Na+,K+/ATPase α1 subunit. Our data illustrate an intricate balance between the autophagy regulators AMPK, mammalian target of rapamycin (mTOR), and ULK1 during infection and treatment with the cardiac glycoside digitoxin. Both infection and digitoxin induced AMPK phosphorylation, but ULK1 was differentially phosphorylated at unique sites leading to opposing effects on autophagy. Suppression of autophagy during infection occurred via ULK1 phosphorylation at Ser757 by enhanced mTOR activity. Digitoxin continuously phosphorylated AMPK, leading to ULK1 phosphorylation at Ser317, and suppressed mTOR, resulting in increased autophagy flux and HCMV inhibition. In ATG5-deficient human fibroblasts, digitoxin did not inhibit HCMV, supporting autophagy induction as a mechanism for virus inhibition. Drug combination studies with digitoxin and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) further confirmed the role of autophagy activation in HCMV inhibition. Individually, each compound phosphorylated AMPK, but their combination reduced autophagy rather than inducing it and was antagonistic against HCMV, resulting in virus replication. The initial ULK1 activation by digitoxin was counteracted by AICAR, which prevented the downstream interaction of Beclin1 and phosphatidylinositol 3-kinase class III (PI3K-CIII), further supporting digitoxin-mediated HCMV inhibition through autophagy. Finally, the α1 subunit was required for autophagy induction, since in α1-deficient cells neither AMPK nor autophagy was activated and HCMV was not inhibited by digitoxin. In summary, induction of a novel pathway (α1-AMPK-ULK1) induces autophagy as a host-directed strategy for HCMV inhibition.IMPORTANCE Infection with human cytomegalovirus (HCMV) creates therapeutic challenges in congenitally infected children and transplant recipients. Side effects and selection of resistant mutants with the limited drugs available prompted evaluation of host-directed therapeutics. We report a novel mechanism of HCMV inhibition by the cardiac glycoside digitoxin. At low concentrations that inhibit HCMV, digitoxin induced signaling through the α1 subunit of the Na+,K+/ATPase pump and the cellular kinase AMPK, resulting in binding and phosphorylation of ULK1 (Ser317) and autophagy activation. HCMV suppressed autophagy through ULK1 phosphorylation (Ser757) by activating the mTOR kinase. The pump-autophagy pathway was required for HCMV inhibition, since in α1- or ATG5-deficient cells the virus was not inhibited. Furthermore, the AMPK activator AICAR antagonized digitoxin activity against HCMV, a phenomenon resulting from opposing effects downstream in the autophagy pathway, at the Beclin1 stage. In summary, autophagy may provide a strategy for harnessing HCMV replication.
Collapse
|
6
|
Cardiac glycosides display selective efficacy for STK11 mutant lung cancer. Sci Rep 2016; 6:29721. [PMID: 27431571 PMCID: PMC4949473 DOI: 10.1038/srep29721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/22/2016] [Indexed: 12/23/2022] Open
Abstract
Although STK11 (LKB1) mutation is a major mediator of lung cancer progression, targeted therapy has not been implemented due to STK11 mutations being loss-of-function. Here, we report that targeting the Na+/K+-ATPase (ATP1A1) is synthetic lethal with STK11 mutations in lung cancer. The cardiac glycosides (CGs) digoxin, digitoxin and ouabain, which directly inhibit ATP1A1 function, exhibited selective anticancer effects on STK11 mutant lung cancer cell lines. Restoring STK11 function reduced the efficacy of CGs. Clinically relevant doses of digoxin decreased the growth of STK11 mutant xenografts compared to wild type STK11 xenografts. Increased cellular stress was associated with the STK11-specific efficacy of CGs. Inhibiting ROS production attenuated the efficacy of CGs, and STK11-AMPK signaling was important in overcoming the stress induced by CGs. Taken together, these results show that STK11 mutation is a novel biomarker for responsiveness to CGs. Inhibition of ATP1A1 using CGs warrants exploration as a targeted therapy for STK11 mutant lung cancer.
Collapse
|
7
|
Ouabain activates NFκB through an NMDA signaling pathway in cultured cerebellar cells. Neuropharmacology 2013; 73:327-36. [DOI: 10.1016/j.neuropharm.2013.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 11/21/2022]
|
8
|
Soltoff SP, Lannon WA. Activation of ERK1/2 by store-operated calcium entry in rat parotid acinar cells. PLoS One 2013; 8:e72881. [PMID: 24009711 PMCID: PMC3756958 DOI: 10.1371/journal.pone.0072881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/15/2013] [Indexed: 12/23/2022] Open
Abstract
The regulation of intracellular Ca2+ concentration ([Ca2+]i) plays a critical role in a variety of cellular processes, including transcription, protein activation, vesicle trafficking, and ion movement across epithelial cells. In many cells, the activation of phospholipase C-coupled receptors hydrolyzes membrane phosphoinositides and produces the depletion of endoplasmic reticulum Ca2+ stores, followed by the sustained elevation of [Ca2+]i from Ca2+ entry across the plasma membrane via store-operated Ca2+ entry (SOCE). Ca2+ entry is also increased in a store-independent manner by arachidonate-regulated Ca2+ (ARC) channels. Using rat parotid salivary gland cells, we examined multiple pathways of Ca2+ entry/elevation to determine if they activated cell signaling proteins and whether this occurred in a pathway-dependent manner. We observed that SOCE activates extracellular signal-related kinases 1 and 2 (ERK1/2) to ∼3-times basal levels via a receptor-independent mechanism when SOCE was initiated by depleting Ca2+ stores using the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (TG). TG-initiated ERK1/2 phosphorylation increased as rapidly as that initiated by the muscarinic receptor agonist carbachol, which promoted an increase to ∼5-times basal levels. Notably, ERK1/2 phosphorylation was not increased by the global elevation of [Ca2+]i by Ca2+ ionophore or by Ca2+ entry via ARC channels in native cells, although ERK1/2 phosphorylation was increased by Ca2+ ionophore in Par-C10 and HSY salivary cell lines. Agents and conditions that blocked SOCE in native cells, including 2-aminoethyldiphenyl borate (2-APB), SKF96363, and removal of extracellular Ca2+, also reduced TG- and carbachol-stimulated ERK1/2 phosphorylation. TG-promoted ERK1/2 phosphorylation was blocked when SRC and Protein Kinases C (PKC) were inhibited, and it was blocked in cells pretreated with β-adrenergic agonist isoproterenol. These observations demonstrate that ERK1/2 is activated by a selective mechanism of Ca2+ entry (SOCE) in these cells, and suggest that ERK1/2 may contribute to events downstream of SOCE.
Collapse
Affiliation(s)
- Stephen P Soltoff
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Signal Transduction, Harvard Medical School, Boston, Massachussetts, USA.
| | | |
Collapse
|
9
|
DuRaine GD, Athanasiou KA. ERK activation is required for hydrostatic pressure-induced tensile changes in engineered articular cartilage. J Tissue Eng Regen Med 2012; 9:368-74. [PMID: 23255524 DOI: 10.1002/term.1678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 07/23/2012] [Accepted: 11/10/2012] [Indexed: 02/06/2023]
Abstract
The objective of this study was to identify ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot, following application of hydrostatic pressure (1 h of static 10 MPa) applied at days 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14. With pharmacological inhibition of the ERK pathway by the MEK1/ERK inhibitor U0126 during hydrostatic pressure application on days 10-14, the increase in Young's modulus induced by hydrostatic pressure was blocked. Furthermore, this reduction in Young's modulus with U0126 treatment during hydrostatic pressure application corresponded to a decrease in total collagen expression. However, U0126 did not inhibit the increase in aggregate modulus or GAG induced by hydrostatic pressure. These findings demonstrate a link between hydrostatic pressure application, ERK signalling and changes in the biomechanical properties of a tissue-engineered construct.
Collapse
Affiliation(s)
- G D DuRaine
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | | |
Collapse
|
10
|
Weigand KM, Swarts HGP, Fedosova NU, Russel FGM, Koenderink JB. Na,K-ATPase activity modulates Src activation: a role for ATP/ADP ratio. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1269-73. [PMID: 22290188 DOI: 10.1016/j.bbamem.2012.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/20/2011] [Accepted: 01/17/2012] [Indexed: 12/13/2022]
Abstract
Digitalis-like compounds (DLCs), specific inhibitors of Na,K-ATPase, are implicated in cellular signaling. Exposure of cell cultures to ouabain, a well-known DLC, leads to up- or down regulation of various processes and involves activation of Src kinase. Since Na,K-ATPase is the only known target for DLC binding an in vitro experimental setup using highly purified Na,K-ATPase from pig kidney and commercially available recombinant Src was used to investigate the mechanism of coupling between the Na,K-ATPase and Src. Digoxin was used as a representative DLC for inhibition of Na,K-ATPase. The activation of Src kinase was measured as the degree of its autophosphorylation. It was observed that in addition to digoxin, Src activation was dependent on concentrations of other specific ligands of Na,K-ATPase: Na(+), K(+), vanadate, ATP and ADP. The magnitude of the steady-state ATPase activity therefore seemed to affect Src activation. Further experiments with an ATP regenerating system showed that the ATP/ADP ratio determined the extent of Src activation. Thus, our model system which represents the proposed very proximal part of the Na,K-ATPase-Src signaling cascade, shows that Src kinase activity is regulated by both ATP and ADP concentrations and provides no evidence for a direct interaction between Na,K-ATPase and Src.
Collapse
Affiliation(s)
- Karl M Weigand
- Department of Pharmacology and Toxicology 149, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-ToF-MS). Anal Bioanal Chem 2011; 402:1183-98. [PMID: 22159369 DOI: 10.1007/s00216-011-5556-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/30/2011] [Accepted: 11/02/2011] [Indexed: 10/14/2022]
Abstract
Here we present an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for extracellular measurements of known and unexpected metabolites in parallel. The method was developed by testing 86 metabolites, including amino acids, organic acids, sugars, purines, pyrimidines, vitamins, and nucleosides, that can be resolved by combining chromatographic and m/z dimensions. Subsequently, a targeted quantitative method was developed for 80 metabolites. The presented method combines a UPLC approach using hydrophilic interaction liquid chromatography (HILIC) and MS detection achieved by a hybrid quadrupole-time of flight (Q-ToF) mass spectrometer. The optimal setup was achieved by evaluating reproducibility and repeatability of the analytical platforms using pooled quality control samples to minimize the drift in instrumental performance over time. Then, the method was validated by analyzing extracellular metabolites from acute lymphoblastic leukemia cell lines (MOLT-4 and CCRF-CEM) treated with direct (A-769662) and indirect (AICAR) AMP activated kinase (AMPK) activators, monitoring uptake and secretion of the targeted compound over time. This analysis pointed towards a perturbed purine and pyrimidine catabolism upon AICAR treatment. Our data suggest that the method presented can be used for qualitative and quantitative analysis of extracellular metabolites and it is suitable for routine applications such as in vitro drug screening.
Collapse
|
12
|
Andrikopoulos P, Baba A, Matsuda T, Djamgoz MBA, Yaqoob MM, Eccles SA. Ca2+ influx through reverse mode Na+/Ca2+ exchange is critical for vascular endothelial growth factor-mediated extracellular signal-regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J Biol Chem 2011; 286:37919-37931. [PMID: 21873429 PMCID: PMC3207468 DOI: 10.1074/jbc.m111.251777] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/25/2011] [Indexed: 11/06/2022] Open
Abstract
VEGF is a key angiogenic cytokine and a major target in anti-angiogenic therapeutic strategies. In endothelial cells (ECs), VEGF binds VEGF receptors and activates ERK1/2 through the phospholipase γ (PLCγ)-PKCα-B-Raf pathway. Our previous work suggested that influx of extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation, and we hypothesized that this could occur through reverse mode (Ca(2+) in and Na(+) out) Na(+)-Ca(2+) exchange (NCX). However, the role of NCX activity in VEGF signaling and angiogenic functions of ECs had not previously been described. Here, using human umbilical vein ECs (HUVECs), we report that extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation and that release of Ca(2+) from intracellular stores alone, in the absence of extracellular Ca(2+), is not sufficient to activate ERK1/2. Furthermore, inhibitors of reverse mode NCX suppressed the VEGF-induced activation of ERK1/2 in a time- and dose-dependent manner and attenuated VEGF-induced Ca(2+) transients. Knockdown of NCX1 (the main NCX isoform in HUVECs) by siRNA confirmed the pharmacological data. A panel of NCX inhibitors also significantly reduced VEGF-induced B-Raf activity and inhibited PKCα translocation to the plasma membrane and total PKC activity in situ. Finally, NCX inhibitors reduced VEGF-induced HUVEC proliferation, migration, and tubular differentiation in surrogate angiogenesis functional assays in vitro. We propose that Ca(2+) influx through reverse mode NCX is required for the activation and the targeting of PKCα to the plasma membrane, an essential step for VEGF-induced ERK1/2 phosphorylation and downstream EC functions in angiogenesis.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, McElwain Laboratories, Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom; Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Imperial College London, London SW7 2AZ, United Kingdom; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary's University of London, London EC1M 6BQ, United Kingdom.
| | - Akemichi Baba
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871
| | - Mustafa B A Djamgoz
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Imperial College London, London SW7 2AZ, United Kingdom
| | - Muhammad M Yaqoob
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary's University of London, London EC1M 6BQ, United Kingdom
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, McElwain Laboratories, Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom.
| |
Collapse
|
13
|
Kawamoto EM, Lima LS, Munhoz CD, Yshii LM, Kinoshita PF, Amara FG, Pestana RRF, Orellana AMM, Cipolla-Neto J, Britto LRG, Avellar MCW, Rossoni LV, Scavone C. Influence of N-methyl-D-aspartate receptors on ouabain activation of nuclear factor-κB in the rat hippocampus. J Neurosci Res 2011; 90:213-28. [PMID: 22006678 DOI: 10.1002/jnr.22745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 06/25/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023]
Abstract
It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-κB (NF-κB) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-κB binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-κB activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-κB, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-α (Tnf-α), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF-κB activation and increased NOS and α(2/3) -Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-κB activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-κB activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain.
Collapse
Affiliation(s)
- E M Kawamoto
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Soltoff SP, Asara JM, Hedden L. Regulation and identification of Na,K-ATPase alpha1 subunit phosphorylation in rat parotid acinar cells. J Biol Chem 2010; 285:36330-8. [PMID: 20841356 DOI: 10.1074/jbc.m110.136465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The stimulation of fluid and electrolyte secretion in salivary cells results in ionic changes that promote rapid increases in the activity of the Na,K-ATPase. In many cell systems, there are conflicting findings concerning the regulation of the phosphorylation of the Na,K-ATPase α subunit, which is the catalytic moiety. Initially, we investigated the phosphorylation sites on the α1 subunit in native rat parotid acinar cells using tandem mass spectrometry and identified two new phosphorylation sites (Ser(222), Ser(407)), three sites (Ser(217), Tyr(260), Ser(47)) previously found from large scale proteomic screens, and two sites (Ser(23), Ser(16)) known to be phosphorylated by PKC. Subsequently, we used phospho-specific antibodies to examine the regulation of phosphorylation on Ser(23) and Ser(16) and measured changes in ERK phosphorylation in parallel. The G-protein-coupled muscarinic receptor mimetic carbachol, the phorbol ester phorbol 12-myristate 13-acetate, the Ca(2+) ionophore ionomycin, and the serine/threonine phosphatase inhibitor calyculin A increased Ser(23) α1 phosphorylation. Inhibition of classical PKC proteins blocked carbachol-stimulated Ser(23) α1 subunit phosphorylation but not ERK phosphorylation, which was blocked by an inhibitor of novel PKC proteins. The carbachol-initiated phosphorylation of Ser(23) α1 subunit was not modified by ERK or PKA activity. The Na,K-ATPase inhibitor ouabain reduced and enhanced the carbachol-promoted phosphorylation of Ser(23) and Ser(16), respectively, the latter because ouabain itself increased Ser(16) phosphorylation; thus, both sites display conformational-dependent phosphorylation changes. Ouabain-initiated phosphorylation of Ser(16) α1 was not blocked by PKC inhibitors, unlike carbachol- or phorbol 12-myristate 13-acetate-initiated phosphorylations, suggesting that this site was also a substrate for a kinase other than PKC.
Collapse
Affiliation(s)
- Stephen P Soltoff
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
15
|
Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1219-29. [PMID: 20211726 DOI: 10.1016/j.bbadis.2010.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 12/26/2022]
Abstract
Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na(+) reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remains an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na(+) pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca(2+) channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca(2+) signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension.
Collapse
|
16
|
Soltoff SP, Hedden L. Isoproterenol and cAMP block ERK phosphorylation and enhance [Ca2+]i increases and oxygen consumption by muscarinic receptor stimulation in rat parotid and submandibular acinar cells. J Biol Chem 2010; 285:13337-48. [PMID: 20207737 DOI: 10.1074/jbc.m110.112094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salivary glands are innervated by sympathetic and parasympathetic neurons, which release neurotransmitters that promote fluid secretion and exocytosis when they bind to muscarinic and beta-adrenergic receptors, respectively. Signaling pathways downstream of these receptors are mainly distinct, but there is cross-talk that affects receptor-dependent events. Here we report that the beta-adrenergic ligand isoproterenol blocks increases in extracellular signal-related kinase (ERK) phosphorylation, a protein kinase C-dependent event promoted by the muscarinic receptor ligand carbachol in freshly dispersed rat parotid acinar cells. The inhibitory action of isoproterenol was reproduced by cAMP stimuli (forskolin) and mimetics (dibutyryl-cAMP, 8-(4-chlorophenylthio)-cAMP), including one highly selective for protein kinase A (N(6)-benzoyl-cAMP). In contrast, Epac (exchange proteins directly activated by cAMP)-selective activators did not mimic the blockade of ERK by isoproterenol, suggesting that inhibition involved protein kinase A. Isoproterenol also blocked ERK downstream of phorbol 12-myristate 13-acetate and the P2X(7) and epidermal growth factor receptors. Isoproterenol and forskolin blocked MEK phosphorylation, reduced RAF phosphorylation on a stimulatory site (Ser-338), and increased RAF phosphorylation on an inhibitory site (Ser-259). Inhibitory effects on ERK were also observed in freshly dispersed rat submandibular acinar cells but not in three immortalized/cancer salivary cell lines (Par-C10, HSY, HSG), indicating significant differences between native cells and cell lines. Notably, in native parotid cells isoproterenol enhanced the carbachol-promoted increases in [Ca(2+)](i) and oxygen consumption, events that initiate and accompany, respectively, the stimulation of fluid secretion by muscarinic ligands. Thus, isoproterenol produces opposite effects on prominent events downstream of the muscarinic receptor second messengers diacylglycerol (decrease in ERK phosphorylation) and inositol trisphosphate (increase in [Ca(2+)](i) and fluid secretion).
Collapse
Affiliation(s)
- Stephen P Soltoff
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
17
|
Merlin J, Evans BA, Csikasz RI, Bengtsson T, Summers RJ, Hutchinson DS. The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK-AMPK-dependent mechanism. Cell Signal 2010; 22:1104-13. [PMID: 20206685 DOI: 10.1016/j.cellsig.2010.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/23/2010] [Accepted: 03/01/2010] [Indexed: 11/15/2022]
Abstract
The role of muscarinic acetylcholine receptors (mAChRs) in regulating glucose uptake in L6 skeletal muscle cells was investigated. [(3)H]-2-Deoxyglucose uptake was increased in differentiated L6 cells by insulin, acetylcholine, oxotremorine-M and carbachol. mAChR-mediated glucose uptake was inhibited by the AMPK inhibitor Compound C. Whole cell radioligand binding using [(3)H]-N-methyl scopolamine chloride identified mAChRs in differentiated but not undifferentiated L6 cells and M(3) mAChR mRNA was detected only in differentiated cells. M(3) mAChRs are Gq-coupled, and cholinergic stimulation by the mAChR agonists acetylcholine, oxotremorine-M and carbachol increased Ca(2+) in differentiated but not undifferentiated L6 cells. This was due to muscarinic but not nicotinic activation as responses were antagonised by the muscarinic antagonist atropine but not the nicotinic antagonist tubocurarine. Western blotting showed that both carbachol and the AMPK activator AICAR increased phosphorylation of the AMPKalpha subunit at Thr172, with responses to carbachol blocked by Compound C and the CaMKK inhibitor STO609 but not by the PI3K inhibitor wortmannin. AICAR-stimulated AMPK phosphorylation was not sensitive to STO-609, confirming that this compound inhibits CaMKK but not the classical AMPK kinase LKB1. The TAK1 inhibitor (5Z)-7-oxozeaenol and the G(i) inhibitor pertussis toxin both failed to block AMPK phosphorylation in response to carbachol. Using CHO-K1 cells stably expressing each of the mAChR subtypes (M(1)-M(4)), it was determined that only the M(1) and M(3) mAChRs phosphorylate AMPK, confirming a G(q)-dependent mechanism. This study demonstrates that activation of M(3) mAChRs in L6 skeletal muscle cells stimulates glucose uptake via a CaMKK-AMPK-dependent mechanism, independent of the insulin-stimulated pathway.
Collapse
Affiliation(s)
- Jon Merlin
- Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, 3800, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Karpova LV, Bulygina ER, Boldyrev AA. Different neuronal Na+/K+-ATPase isoforms are involved in diverse signaling pathways. Cell Biochem Funct 2010; 28:135-41. [DOI: 10.1002/cbf.1632] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Benziane B, Björnholm M, Lantier L, Viollet B, Zierath JR, Chibalin AV. AMP-activated protein kinase activator A-769662 is an inhibitor of the Na(+)-K(+)-ATPase. Am J Physiol Cell Physiol 2009; 297:C1554-66. [PMID: 19828836 DOI: 10.1152/ajpcell.00010.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle contraction and metabolic stress are potent activators of AMP-activated protein kinase (AMPK). AMPK restores energy balance by activating processes that produce energy while inhibiting those that consume energy. The role of AMPK in the regulation of active ion transport is unclear. Our aim was to determine the effect of the AMPK activator A-769662 on Na(+)-K(+)-ATPase function in skeletal muscle cells. Short-term incubation of differentiated rat L6 myotubes with 100 microM A-769662 increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in parallel with decreased Na(+)-K(+)-ATPase alpha(1)-subunit abundance at the plasma membrane and ouabain-sensitive (86)Rb(+) uptake. Notably, the effect of A-769662 on Na(+)-K(+)-ATPase was similar in muscle cells that do not express AMPK alpha(1)- and alpha(2)-catalytic subunits. A-769662 directly inhibits the alpha(1)-isoform of the Na(+)-K(+)-ATPase, purified from rat and human kidney cells in vitro with IC(50) 57 microM and 220 microM, respectively. Inhibition of the Na(+)-K(+)-ATPase by 100 microM ouabain decreases sodium pump activity and cell surface abundance, similar to the effect of A-769662, without affecting AMPK and ACC phosphorylation. In conclusion, the AMPK activator A-769662 inhibits Na(+)-K(+)-ATPase activity and decreases the sodium pump cell surface abundance in L6 skeletal muscle cells. The effect of A-769662 on sodium pump is due to direct inhibition of the Na(+)-K(+)-ATPase activity, rather than AMPK activation. This AMPK-independent effect on Na(+)-K(+)-ATPase calls into question the use of A-769662 as a specific AMPK activator for metabolic studies.
Collapse
Affiliation(s)
- Boubacar Benziane
- Dept. of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Cornelius F, Mahmmoud YA. Interaction between Cardiotonic Steroids and Na,K-ATPase. Effects of pH and Ouabain-Induced Changes in Enzyme Conformation. Biochemistry 2009; 48:10056-65. [DOI: 10.1021/bi901212r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Flemming Cornelius
- Department of Physiology and Biophysics, University of Aarhus, Ole Worms Allé 1185, 8000 Aarhus C, Denmark
| | - Yasser A. Mahmmoud
- Department of Physiology and Biophysics, University of Aarhus, Ole Worms Allé 1185, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Sweadner KJ. A third mode of ouabain signaling. Focus on "Regulation of ERK1/2 by ouabain and Na-K-ATPase-dependent energy utilization and AMPK activation in parotid acinar cells". Am J Physiol Cell Physiol 2008; 295:C588-9. [PMID: 18684986 DOI: 10.1152/ajpcell.00388.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|