1
|
Isensee J, van Cann M, Despang P, Araldi D, Moeller K, Petersen J, Schmidtko A, Matthes J, Levine JD, Hucho T. Depolarization induces nociceptor sensitization by CaV1.2-mediated PKA-II activation. J Cell Biol 2021; 220:212600. [PMID: 34431981 PMCID: PMC8404467 DOI: 10.1083/jcb.202002083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through CaV1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of CaV1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Patrick Despang
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Dioneia Araldi
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Katharina Moeller
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jonas Petersen
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute for Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan Matthes
- Department of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jon D Levine
- Division of Neuroscience, Departments of Medicine and Oral & Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
He J, Wei HJ, Li M, Li MH, Zou W, Zhang P. k252a Inhibits H2S-Alleviated Homocysteine-Induced Cognitive Dysfunction in Rats. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Su J, Gao Q, Yu L, Sun X, Feng R, Shao D, Yuan Y, Zhu Z, Sun X, Kameyama M, Hao L. The LQT-associated calmodulin mutant E141G induces disturbed Ca 2+-dependent binding and a flickering gating mode of the Ca V1.2 channel. Am J Physiol Cell Physiol 2020; 318:C991-C1004. [PMID: 32186935 DOI: 10.1152/ajpcell.00019.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calmodulin (CaM) mutations are associated with congenital long QT (LQT) syndrome (LQTS), which may be related to the dysregulation of the cardiac-predominant Ca2+ channel isoform CaV1.2. Among various mutants, CaM-E141G was identified as a critical missense variant. However, the interaction of this CaM mutant with the CaV1.2 channel has not been determined. In this study, by utilizing a semiquantitative pull-down assay, we explored the interaction of CaM-E141G with CaM-binding peptide fragments of the CaV1.2 channel. Using the patch-clamp technique, we also investigated the electrophysiological effects of the mutant on CaV1.2 channel activity. We found that the maximum binding (Bmax) of CaM-E141G to the proximal COOH-terminal region, PreIQ-IQ, PreIQ, IQ, and NT (an NH2-terminal peptide) was decreased (by 17.71-59.26%) compared with that of wild-type CaM (CaM-WT). In particular, the Ca2+-dependent increase in Bmax became slower with the combination of CaM-E141G + PreIQ and IQ but faster in the case of NT. Functionally, CaM-WT and CaM-E141G at 500 nM Ca2+ decreased CaV1.2 channel activity to 24.88% and 55.99%, respectively, compared with 100 nM Ca2+, showing that the inhibitory effect was attenuated in CaM-E141G. The mean open time of the CaV1.2 channel was increased, and the number of blank traces with no channel opening was significantly decreased. Overall, CaM-E141G exhibits disrupted binding with the CaV1.2 channel and induces a flickering gating mode, which may result in the dysfunction of the CaV1.2 channel and, thus, the development of LQTS. The present study is the first to investigate the detailed binding properties and single-channel gating mode induced by the interaction of CaM-E141G with the CaV1.2 channel.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China.,Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lifeng Yu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuanxuan Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Yuan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhengnan Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
4
|
The Neuroprotective Effect of L-Stepholidine on Methamphetamine-Induced Memory Deficits in Mice. Neurotox Res 2019; 36:376-386. [PMID: 31201732 DOI: 10.1007/s12640-019-00069-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Repeated methamphetamine (METH) exposure can cause severe neurotoxicity to the central nervous system, and lead to memory deficits. L-Stepholidine (L-SPD) is a structurally identified alkaloid extract of the Chinese herb Stephania intermedia, which elicits dopamine (DA) D1-type receptors partial agonistic activity and D2-type receptors antagonistic activity. In this study, we investigated the effect of L-SPD on METH-induced memory deficits in mice and its underlying mechanisms. We found that repeated exposure to METH (10 mg/kg, i.p., once per day for 7 consecutive days) impaired memory functions in the novel object recognition experiment. Pretreatment of L-SPD (10 mg/kg, i.p.) significantly improved METH-induced memory deficits in mice. Meanwhile, the protein expression of dopaminergic D2 receptors in hippocampus area was significantly increased by repeated METH exposure, while the protein expression of dopamine transporter (DAT) was significantly reduced. Additionally, the protein expression of phospho-protein kinase A (p-PKA) was significantly increased by repeated METH exposure. The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation 1 (HCN1) channel, which was a key regulator of memory functions and could be regulated by p-PKA, was also significantly increased by repeated METH exposure. These changes caused by METH could be prevented by L-SPD pretreatment. Therefore, our data firstly showed that pretreatment of L-SPD exhibited the protective effect against METH-induced memory deficits, possibly through reducing METH-induced upregulation of dopaminergic pathway and HCN1 channels.
Collapse
|
5
|
Lei M, Xu J, Gao Q, Minobe E, Kameyama M, Hao L. PKA phosphorylation of Cav1.2 channel modulates the interaction of calmodulin with the C terminal tail of the channel. J Pharmacol Sci 2018; 137:187-194. [PMID: 30042022 DOI: 10.1016/j.jphs.2018.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022] Open
Abstract
Activity of cardiac Cav1.2 channels is enhanced by cyclic AMP-PKA signaling. In this study, we studied the effects of PKA phosphorylation on the binding of calmodulin to the fragment peptide of the proximal C-terminal tail of α1C subunit (CT1, a.a. 1509-1789 of guinea-pig). In the pull-down assay, in vitro PKA phosphorylation significantly decreased calmodulin binding to CT1 (61%) at high [Ca2+]. The phosphoresistant (CT1SA) and phosphomimetic (CT1SD) CT1 mutants, in which three PKA sites (Ser1574, 1626, 1699) were mutated to Ala and Asp, respectively, bound with calmodulin with 99% and 65% amount, respectively, compared to that of wild-type CT1. In contrast, at low [Ca2+], calmodulin-binding to CT1SD was higher (33-35%) than that to CT1SA. The distal C-terminal region of α1C (CT3, a.a. 1942-2169) is known to interact with CT1 and inhibit channel activity. CT3 bound to CT1SD was also significantly less than that to CT1SA. In inside-out patch, PKA catalytic subunit (PKAc) facilitated Ca2+ channel activity at both high and low Ca2+ condition. Altogether, these results support the hypothesis that PKA phosphorylation may enhance channel activity and attenuate the Ca2+-dependent inactivation, at least partially, by modulating calmodulin-CT1 interaction both directly and indirectly via CT3-CT1 interaction.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Jianjun Xu
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Neumaier F, Alpdogan S, Hescheler J, Schneider T. Protein phosphorylation maintains the normal function of cloned human Ca v2.3 channels. J Gen Physiol 2018; 150:491-510. [PMID: 29453293 PMCID: PMC5839719 DOI: 10.1085/jgp.201711880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/22/2017] [Accepted: 01/24/2018] [Indexed: 11/30/2022] Open
Abstract
Cav2.3 Ca2+ channels are subject to cytosolic regulation, which has been difficult to characterize in native cells. Neumaier et al. demonstrate the role of phosphorylation in the function of these channels and suggest a close relationship between voltage dependence and the phosphorylation state. R-type currents mediated by native and recombinant Cav2.3 voltage-gated Ca2+ channels (VGCCs) exhibit facilitation (run-up) and subsequent decline (run-down) in whole-cell patch-clamp recordings. A better understanding of the two processes could provide insight into constitutive modulation of the channels in intact cells, but low expression levels and the need for pharmacological isolation have prevented investigations in native systems. Here, to circumvent these limitations, we use conventional and perforated-patch-clamp recordings in a recombinant expression system, which allows us to study the effects of cell dialysis in a reproducible manner. We show that the decline of currents carried by human Cav2.3+β3 channel subunits during run-down is related to adenosine triphosphate (ATP) depletion, which reduces the number of functional channels and leads to a progressive shift of voltage-dependent gating to more negative potentials. Both effects can be counteracted by hydrolysable ATP, whose protective action is almost completely prevented by inhibition of serine/threonine but not tyrosine or lipid kinases. Protein kinase inhibition also mimics the effects of run-down in intact cells, reduces the peak current density, and hyperpolarizes the voltage dependence of gating. Together, our findings indicate that ATP promotes phosphorylation of either the channel or an associated protein, whereas dephosphorylation during cell dialysis results in run-down. These data also distinguish the effects of ATP on Cav2.3 channels from those on other VGCCs because neither direct nucleotide binding nor PIP2 synthesis is required for protection from run-down. We conclude that protein phosphorylation is required for Cav2.3 channel function and could directly influence the normal features of current carried by these channels. Curiously, some of our findings also point to a role for leupeptin-sensitive proteases in run-up and possibly ATP protection from run-down. As such, the present study provides a reliable baseline for further studies on Cav2.3 channel regulation by protein kinases, phosphatases, and possibly proteases.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Serdar Alpdogan
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Rodrigues AL, Brescia M, Koschinski A, Moreira TH, Cameron RT, Baillie G, Beirão PSL, Zaccolo M, Cruz JS. Increase in Ca 2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells. Life Sci 2017; 192:144-150. [PMID: 29183797 DOI: 10.1016/j.lfs.2017.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
AIMS Ca2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca2+ currents and proliferation in pituitary tumor GH3 cells. MAIN METHODS Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. KEY FINDINGS Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. SIGNIFICANCE We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca2+ current density and this phenomenon impacts proliferation rate in GH3 cells.
Collapse
Affiliation(s)
- Andréia Laura Rodrigues
- Laboratório CaCIA, Faculdade de Ciências Humanas Sociais e da Saúde, Universidade FUMEC, Brazil.
| | - Marcella Brescia
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Thaís Helena Moreira
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ryan T Cameron
- Institute of Cardiovascular and Medical Sciences, Glasgow University, Glasgow, UK
| | - George Baillie
- Institute of Cardiovascular and Medical Sciences, Glasgow University, Glasgow, UK
| | - Paulo S L Beirão
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Jader S Cruz
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Lyu L, Gao Q, Xu J, Minobe E, Zhu T, Kameyama M. A new interaction between proximal and distal C-terminus of Cav1.2 channels. J Pharmacol Sci 2017; 133:240-246. [DOI: 10.1016/j.jphs.2017.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022] Open
|
9
|
Minobe E, Mori MX, Kameyama M. Calmodulin and ATP support activity of the Cav1.2 channel through dynamic interactions with the channel. J Physiol 2017; 595:2465-2477. [PMID: 28130847 PMCID: PMC5390892 DOI: 10.1113/jp273736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/06/2017] [Indexed: 11/08/2022] Open
Abstract
Key points Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant‐derivatives, C‐terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside‐out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C‐tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM‐linked channels are useful tools for investigating Cav1.2 channels in the inside‐out mode; the fast run‐down is prevented by only ATP and the slow run‐down is nearly absent.
Abstract Calmodulin (CaM) plays a critical role in regulation of Cav1.2 Ca2+ channels. CaM binds to the channel directly, maintaining channel activity and regulating it in a Ca2+‐dependent manner. To explore the molecular mechanisms involved, we compared the activity of the wildtype channel (α1C) and mutant derivatives, C‐terminal deleted (α1C∆) and α1C∆ linked to CaM (α1C∆CaM). These were co‐expressed with β2a and α2δ subunits in HEK293 cells. In the inside‐out mode, α1C and α1C∆ showed minimal open‐probabilities in a basic internal solution (run‐down), whereas α1C∆ with CaM and α1C∆CaM maintained detectable channel activity, confirming that CaM was necessary, but not sufficient, for channel activity. Previously, we reported that ATP was required to maintain channel activity of α1C. Unlike α1C, the mutant channels did not require ATP for activation in the early phase (3–5 min). However, α1C∆ with CaM + ATP and α1C∆CaM with ATP maintained activity, even in the late phase (after 7–9 min). These results suggested that CaM and ATP interacted dynamically with the proximal C‐terminal tail of the channel and, thereby, produced channel activity. In addition, okadaic acid, a protein phosphatase inhibitor, could substitute for the effects of ATP on α1C but not on the mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels, further indicating that ATP has dual effects. One maintains phosphorylation of the channel and the other becomes apparent when the distal carboxyl‐terminal tail is removed. Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant‐derivatives, C‐terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside‐out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C‐tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM‐linked channels are useful tools for investigating Cav1.2 channels in the inside‐out mode; the fast run‐down is prevented by only ATP and the slow run‐down is nearly absent.
Collapse
Affiliation(s)
- Etsuko Minobe
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| |
Collapse
|
10
|
Heijman J, Ghezelbash S, Wehrens XHT, Dobrev D. Serine/Threonine Phosphatases in Atrial Fibrillation. J Mol Cell Cardiol 2017; 103:110-120. [PMID: 28077320 DOI: 10.1016/j.yjmcc.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Serine/threonine protein phosphatases control dephosphorylation of numerous cardiac proteins, including a variety of ion channels and calcium-handling proteins, thereby providing precise post-translational regulation of cardiac electrophysiology and function. Accordingly, dysfunction of this regulation can contribute to the initiation, maintenance and progression of cardiac arrhythmias. Atrial fibrillation (AF) is the most common heart rhythm disorder and is characterized by electrical, autonomic, calcium-handling, contractile, and structural remodeling, which include, among other things, changes in the phosphorylation status of a wide range of proteins. Here, we review AF-associated alterations in the phosphorylation of atrial ion channels, calcium-handling and contractile proteins, and their role in AF-pathophysiology. We highlight the mechanisms controlling the phosphorylation of these proteins and focus on the role of altered dephosphorylation via local type-1, type-2A and type-2B phosphatases (PP1, PP2A, and PP2B, also known as calcineurin, respectively). Finally, we discuss the challenges for phosphatase research, potential therapeutic significance of altered phosphatase-mediated protein dephosphorylation in AF, as well as future directions.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (Cardiology), Pediatrics, Baylor College of Medicine, Houston, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|