1
|
Gruenhagen GW, Mubeen T, Patil C, Stockert J, Streelman JT. Single Cell RNA Sequencing Reveals Deep Homology of Dental Cell Types Across Vertebrates. FRONTIERS IN DENTAL MEDICINE 2022; 3. [DOI: 10.3389/fdmed.2022.845449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Like most mammals, humans replace their teeth once throughout their lives and have limited regenerative capabilities. In contrast, mice continually renew tissues lost due to gnawing through a well characterized population of stem cells on the labial surface of the incisor. Most non-mammalian vertebrates replace teeth throughout life; the cellular and molecular mechanisms of successional tooth replacement are largely unknown. Here we use single nuclei RNA sequencing (snRNA-seq) of replacement teeth and adjacent oral lamina in Lake Malawi cichlids, species with lifelong whole–tooth replacement, to make two main discoveries. First, despite hundreds of millions of years of evolution, we demonstrate conservation of cell type gene expression across vertebrate teeth (fish, mouse, human). Second, we used an approach that combines marker gene expression and developmental potential of dental cells to uncover the transcriptional signature of stem-like cells in regenerating teeth. Our work underscores the importance of a comparative framework in the study of vertebrate oral and regenerative biology.
Collapse
|
2
|
Induced Pluripotent Stem Cells in Dental and Nondental Tissue Regeneration: A Review of an Unexploited Potential. Stem Cells Int 2020; 2020:1941629. [PMID: 32300365 PMCID: PMC7146092 DOI: 10.1155/2020/1941629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies currently represent the state of art for tissue regenerative treatment approaches for various diseases and disorders. Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells, using vectors carrying definite transcription factors, have manifested a breakthrough in regenerative medicine, relying on their pluripotent nature and ease of generation in large amounts from various dental and nondental tissues. In addition to their potential applications in regenerative medicine and dentistry, iPSCs can also be used in disease modeling and drug testing for personalized medicine. The current review discusses various techniques for the production of iPSC-derived osteogenic and odontogenic progenitors, the therapeutic applications of iPSCs, and their regenerative potential in vivo and in vitro. Through the present review, we aim to explore the potential applications of iPSCs in dental and nondental tissue regeneration and to highlight different protocols used for the generation of different tissues and cell lines from iPSCs.
Collapse
|
3
|
Huat TJ, Khan AA, Pati S, Mustafa Z, Abdullah JM, Jaafar H. IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci 2014; 15:91. [PMID: 25047045 PMCID: PMC4117972 DOI: 10.1186/1471-2202-15-91] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/07/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There has been increasing interest recently in the plasticity of mesenchymal stem cells (MSCs) and their potential to differentiate into neural lineages. To unravel the roles and effects of different growth factors in the differentiation of MSCs into neural lineages, we have differentiated MSCs into neural lineages using different combinations of growth factors. Based on previous studies of the roles of insulin-like growth factor 1 (IGF-1) in neural stem cell isolation in the laboratory, we hypothesized that IGF-1 can enhance proliferation and reduce apoptosis in neural progenitor-like cells (NPCs) during differentiation of MSCs into NCPs.We induced MSCs differentiation under four different combinations of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, (C) EGF + bFGF + LIF, (D) EGF + bFGF + BDNF, and (E) without growth factors, as a negative control. The neurospheres formed were characterized by immunofluorescence staining against nestin, and the expression was measured by flow cytometry. Cell proliferation and apoptosis were also studied by MTS and Annexin V assay, respectively, at three different time intervals (24 hr, 3 days, and 5 days). The neurospheres formed in the four groups were then terminally differentiated into neuron and glial cells. RESULTS The four derived NPCs showed a significantly higher expression of nestin than was shown by the negative control. Among the groups treated with growth factors, NPCs treated with IGF-1 showed the highest expression of nestin. Furthermore, NPCs derived using IGF-1 exhibited the highest cell proliferation and cell survival among the treated groups. The NPCs derived from IGF-1 treatment also resulted in a better yield after the terminal differentiation into neurons and glial cells than that of the other treated groups. CONCLUSIONS Our results suggested that IGF-1 has a crucial role in the differentiation of MSCs into neuronal lineage by enhancing the proliferation and reducing the apoptosis in the NPCs. This information will be beneficial in the long run for improving both cell-based and cell-free therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Tee Jong Huat
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | | | | | | | | | | |
Collapse
|
4
|
Hynes K, Menicanin D, Mrozik K, Gronthos S, Bartold PM. Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem Cells Dev 2014; 23:1084-96. [PMID: 24367908 DOI: 10.1089/scd.2013.0111] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSC) has highlighted the need for identifying easily accessible and reliable sources of these cells. An alternative source for obtaining large populations of MSC is through the controlled differentiation of induced pluripotent stem cells (iPSC). In the present study, colonies of iPSC were cultured in MSC culture media for 2 weeks. Serial passaging then selected for fast growing MSC-like cells with a typical fibroblastic morphology and the capacity to proliferate on standard culture flasks without feeder cells. MSC-like cells were developed from iPSC lines arising from three different somatic tissues: gingiva, periodontal ligament (PDL), and lung. The iPSC-MSC like cells expressed key MSC-associated markers (CD73, CD90, CD105, CD146, and CD166) and lacked expression of pluripotent markers (TRA160, TRA181, and alkaline phosphatase) and hematopoietic markers (CD14, CD34, and CD45). In vitro iPSC-MSC-like cells displayed the capacity to differentiate into osteoblasts, adipocytes, and chondrocytes. In vivo subcutaneous implantation of the iPSC-MSC-like cells into NOD/SCID mice demonstrated that only the PDL-derived iPSC-MSC-like cells exhibited the capacity to form mature mineralized structures which were histologically similar to mature bone. These findings demonstrate that controlled induction of iPSC into fibroblastic-like cells that phenotypically and functionally resemble adult MSC is an attractive approach to obtain a readily available source of progenitor cells for orthopedic and dental-related tissue-engineering applications. However, a detailed characterization of the iPSC-MSC-like cells will be important, as MSC-like cells derived from different iPSC lines exhibit variability in their differentiation capacity.
Collapse
Affiliation(s)
- Kim Hynes
- 1 Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide , Adelaide, Australia
| | | | | | | | | |
Collapse
|
5
|
Hynes K, Menicanin D, Gronthos S, Bartold MP. Differentiation of iPSC to Mesenchymal Stem-Like Cells and Their Characterization. Methods Mol Biol 2014; 1357:353-74. [PMID: 25468410 DOI: 10.1007/7651_2014_142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSC) are a unique population of adult stem cells that have the capacity to differentiate into numerous cell types as well as the ability to modulate the immune system. As such, MSC represent a promising stem cell population for use in the clinical treatment of a range of disorders involving tissue regeneration as well as the immune system. The lack of accessibility to MSC is currently limiting the use of MSC in mainstream clinical treatment strategies. It is therefore imperative for the future success of stem cell-based treatment approaches that are more reliable, and accessible sources of MSC are identified. The present chapter describes a method for generating MSC-like cells from induced pluripotent stem cells (iPSC), with equivalent growth and functional properties to parental MSC populations.
Collapse
Affiliation(s)
- Kim Hynes
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia. .,Mesenchymal Stem Cell Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia. .,Mesenchymal Stem Cell Laboratory, Cancer Theme, Level 5 South, SAHMRI, North Terrace, Adelaide, SA, Australia.
| | - Danijela Menicanin
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia.,Mesenchymal Stem Cell Laboratory, Cancer Theme, Level 5 South, SAHMRI, North Terrace, Adelaide, SA, Australia.,Mesenchymal Stem Cell Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Cancer Theme, Level 5 South, SAHMRI, North Terrace, Adelaide, SA, Australia.,Mesenchymal Stem Cell Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark P Bartold
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Zhang YY, Yue J, Che H, Sun HY, Tse HF, Li GR. BKCaand hEag1 Channels Regulate Cell Proliferation and Differentiation in Human Bone Marrow-Derived Mesenchymal Stem Cells. J Cell Physiol 2013; 229:202-12. [DOI: 10.1002/jcp.24435] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 07/15/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Ying-Ying Zhang
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Jianbo Yue
- Department of Physiology; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Hui Che
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Hai-Ying Sun
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
- Department of Physiology; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Hung-Fat Tse
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Gui-Rong Li
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
- Department of Physiology; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| |
Collapse
|
7
|
Zhang J, Chan YC, Ho JCY, Siu CW, Lian Q, Tse HF. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel. Am J Physiol Cell Physiol 2012; 303:C115-25. [DOI: 10.1152/ajpcell.00326.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K+, Na+, Ca2+, and Cl− was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca2+-activated K+ current (BKCa), delayed rectifier K+ current ( IKDR), inwardly rectifying K+ current ( IKir), Ca2+-activated K+ current ( IKCa), and chloride current ( ICl)] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BKCa, IKDR, IKir, and IKCa) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IKDR with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs.
Collapse
Affiliation(s)
- Jiao Zhang
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Yau-Chi Chan
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Jenny Chung-Yee Ho
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Qizhou Lian
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
- Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| |
Collapse
|