1
|
Root J, Mendsaikhan A, Taylor G, Merino P, Nandy S, Wang M, Araujo LT, Ryu D, Holler C, Thompson BM, Astarita G, Blain JF, Kukar T. Granulins rescue inflammation, lysosome dysfunction, lipofuscin, and neuropathology in a mouse model of progranulin deficiency. Cell Rep 2024; 43:114985. [PMID: 39565694 PMCID: PMC11773623 DOI: 10.1016/j.celrep.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Progranulin (PGRN) deficiency is linked to neurodegenerative diseases, including frontotemporal dementia (FTD), Alzheimer's disease, and Parkinson's disease. Proper PGRN levels are critical for brain health; however, the function of PGRN is unclear. PGRN is composed of 7.5 repeat domains, called granulins, and processed into granulins inside the lysosome. PGRN is beneficial for neuronal health, but the role of individual granulins is controversial and unclear. We find that the expression of single granulins broadly rescues disease pathology in Grn-/- mice. Adeno-associated virus (AAV)-mediated expression of human granulin-2/F, granulin-4/A, or PGRN in Grn-/- mouse brain ameliorates dysregulated lysosomal proteins and lipids, microgliosis, and lipofuscinosis. Mechanistically, granulins localize to lysosomes in Grn-/- mouse brains or fibroblasts. These data support the hypothesis that PGRN is a precursor to granulins, which share a beneficial function inside the lysosome to maintain lipid and protein homeostasis to prevent neurodegeneration. Thus, granulins are potential therapeutics to treat FTD-GRN and related diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Anarmaa Mendsaikhan
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Georgia Taylor
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Srijita Nandy
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Minzheng Wang
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Ludmilla Troiano Araujo
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Danny Ryu
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Christopher Holler
- Arkuda Therapeutics, 200 Arsenal Yards Blvd., Suite 220, Watertown, MA 02472, USA
| | - Bonne M Thompson
- Arkuda Therapeutics, 200 Arsenal Yards Blvd., Suite 220, Watertown, MA 02472, USA
| | - Giuseppe Astarita
- Arkuda Therapeutics, 200 Arsenal Yards Blvd., Suite 220, Watertown, MA 02472, USA
| | - Jean-François Blain
- Arkuda Therapeutics, 200 Arsenal Yards Blvd., Suite 220, Watertown, MA 02472, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University, School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Bharathidasan D, Maity C. Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application. Top Curr Chem (Cham) 2024; 383:1. [PMID: 39607460 DOI: 10.1007/s41061-024-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.
Collapse
Affiliation(s)
- Dineshkumar Bharathidasan
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
3
|
Peyter AC, Baud D, Tolsa JF. Phosphodiesterase Inhibitors in Fetal Growth Restriction: Do Not Forget to Consider Fetal Sex and Subcellular Compartmentation. Biomedicines 2024; 12:2329. [PMID: 39457641 PMCID: PMC11505842 DOI: 10.3390/biomedicines12102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy, associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiometabolic diseases later in life. There is currently no effective approach to prevent or treat FGR, despite numerous animal and human studies assessing substances likely to improve fetal growth. Phosphodiesterase (PDE) inhibitors appeared as promising drugs to improve FGR management. However, to date, studies have led to somewhat disappointing or controversial results. In this Opinion article, we would like to draw attention to the need to consider the biological sex and the relative reactivity of human umbilical vein and arteries when developing therapeutic interventions to improve human umbilical circulation using PDE inhibitors. Indeed, we suspect that fetal sex, vessel type and the presence of FGR may influence subcellular compartmentation, which could jeopardize beneficial effects of PDE inhibitors.
Collapse
Affiliation(s)
- Anne-Christine Peyter
- Neonatal Research Laboratory, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - David Baud
- Obstetric Service, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
| | - Jean-François Tolsa
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
4
|
Cattaneo A, Bellenghi M, Ferroni E, Mangia C, Marconi M, Rizza P, Borghini A, Martini L, Luciani MN, Ortona E, Carè A, Appetecchia M, Ministry Of Health-Gender Medicine Team. Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research. J Pers Med 2024; 14:908. [PMID: 39338162 PMCID: PMC11433203 DOI: 10.3390/jpm14090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Gender medicine studies how health status and diseases differ between men and women in terms of prevention, therapeutic approach, prognosis, and psychological and social impact. Sex and gender analyses have been demonstrated to improve science, contributing to achieving real appropriateness and equity in the cure for each person. Therefore, it is fundamental to consider, both in preclinical and clinical research, the different clinical and biological features associated with sex and/or gender, where sex differences are mainly influenced by biological determinants and gender ones by socio-cultural and economic matters. This article was developed to provide knowledge and methodological tools for the development of studies/research protocols in which sex and gender should be taken into account.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Maria Bellenghi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eliana Ferroni
- Epidemiological System of the Veneto Region, Regional Center for Epidemiology, Veneto Region, 35100 Padova, Italy
| | - Cristina Mangia
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Matteo Marconi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Rizza
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alice Borghini
- Agenzia Nazionale per i Servizi Sanitari Regionali, 00187 Rome, Italy
| | - Lorena Martini
- Agenzia Nazionale per i Servizi Sanitari Regionali, 00187 Rome, Italy
| | | | - Elena Ortona
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Carè
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 00144 Rome, Italy
| | | |
Collapse
|
5
|
Mackenzie ACL, Chung S, Hoppes E, Mickler AK, Cartwright AF. Measurement of changes to the menstrual cycle: A transdisciplinary systematic review evaluating measure quality and utility for clinical trials. PLoS One 2024; 19:e0306491. [PMID: 39052601 PMCID: PMC11271926 DOI: 10.1371/journal.pone.0306491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the importance of menstruation and the menstrual cycle to health, human rights, and sociocultural and economic wellbeing, the study of menstrual health suffers from a lack of funding, and research remains fractured across many disciplines. We sought to systematically review validated approaches to measure four aspects of changes to the menstrual cycle-bleeding, blood, pain, and perceptions-caused by any source and used within any field. We then evaluated the measure quality and utility for clinical trials of the identified instruments. We searched MEDLINE, Embase, and four instrument databases and included peer-reviewed articles published between 2006 and 2023 that reported on the development or validation of instruments assessing menstrual changes using quantitative or mixed-methods methodology. From a total of 8,490 articles, 8,316 were excluded, yielding 174 articles reporting on 94 instruments. Almost half of articles were from the United States or United Kingdom and over half of instruments were only in English, Spanish, French, or Portuguese. Most instruments measured bleeding parameters, uterine pain, or perceptions, but few assessed characteristics of blood. Nearly 60% of instruments were developed for populations with menstrual or gynecologic disorders or symptoms. Most instruments had fair or good measure quality or clinical trial utility; however, most instruments lacked evidence on responsiveness, question sensitivity and/or transferability, and only three instruments had good scores of both quality and utility. Although we took a novel, transdisciplinary approach, our systematic review found important gaps in the literature and instrument landscape, pointing towards a need to examine the menstrual cycle in a more comprehensive, inclusive, and standardized way. Our findings can inform the development of new or modified instruments, which-if used across the many fields that study menstrual health and within clinical trials-can contribute to a more systemic and holistic understanding of menstruation and the menstrual cycle.
Collapse
Affiliation(s)
- Amelia C. L. Mackenzie
- Global Health and Population, FHI 360, Washington, District of Columbia, United States of America
| | - Stephanie Chung
- Global Health and Population, FHI 360, Durham, North Carolina, United States of America
- Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| | - Emily Hoppes
- Global Health and Population, FHI 360, Durham, North Carolina, United States of America
| | - Alexandria K Mickler
- Research, Technology and Utilization Division, United States Agency for International Development and the Public Health Institute, Office of Population and Reproductive Health, Bureau for Global Health, Washington, District of Columbia, United States of America
| | - Alice F. Cartwright
- Global Health and Population, FHI 360, Durham, North Carolina, United States of America
- Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Hart DA. Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease. Biomolecules 2024; 14:905. [PMID: 39199293 PMCID: PMC11352090 DOI: 10.3390/biom14080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Sebastian F, Vargas AI, Clarin J, Hurgoi A, Amini R. Meta Data Analysis of Sex Distribution of Study Samples Reported in Summer Biomechanics, Bioengineering, and Biotransport Annual Conference Abstracts. J Biomech Eng 2024; 146:060906. [PMID: 37943115 DOI: 10.1115/1.4064032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The biased use of male subjects in biomedical research has created limitations, underscoring the importance of including women to enhance the outcomes of evidence-based medicine and to promote human health. While federal policies (e.g., the 1993 Revitalization Act and the 2016 Sex as a Biological Variable Act) have aimed to improve sex balance in studies funded by the National Institutes of Health (NIH), data on sex inclusivity in non-NIH funded research remain limited. The objective of this study was to analyze the trend of sex inclusion in abstracts submitted to the Summer Biomechanics, Bioengineering, & Biotransport Conference (SB3C) over 7 years. We scored every abstract accepted to SB3C, and the findings revealed that approximately 20% of total abstracts included sex-related information, and this trend remained stable. Surprisingly, there was no significant increase in abstracts, including both sexes and those with balanced female and male samples. The proportion of abstracts with balanced sexes was notably lower than those including both sexes. Additionally, we examined whether the exclusion of one sex from the corresponding studies was justified by the research questions. Female-only studies had a 50% justification rate, while male-only studies had only 2% justification. Disparity in sex inclusion in SB3C abstracts was apparent, prompting us to encourage scientists to be more mindful of the sex of the research samples. Addressing sex inclusivity in biomechanics and mechanobiology research is essential for advancing medical knowledge and for promoting better healthcare outcomes for everyone.
Collapse
Affiliation(s)
| | - Ana I Vargas
- Department of Bioengineering, Northeastern University, Boston, MA 02120
| | - Julia Clarin
- Department of Bioengineering, Northeastern University, Boston, MA 02120
| | - Anthony Hurgoi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
- Northeastern University
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA 02115; Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
8
|
Lamorte S, Elford AR, Chung DC, Murakami K, McGaha TL, Jacquelot N. Differences in intratumor innate lymphoid cell composition between orthotopic and spontaneous pancreatic mouse models. Methods Cell Biol 2024; 188:153-169. [PMID: 38880522 DOI: 10.1016/bs.mcb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Pancreatic cancer remains an unmet medical need. Late diagnosis and the lack of efficient treatment significantly impact the prognosis of patients suffering from pancreatic cancer. Improving patient outcomes requires a deeper comprehension of the tumor ecosystem. To achieve this, a thorough exploration of the tumor microenvironment using pre-clinical models that accurately replicate human disease is imperative, particularly in understanding the dynamics of immune cell subsets. Surprisingly, the impact of model variations on the composition of the tumor microenvironment has been largely neglected. In this study, we introduce an orthotopic model of pancreatic ductal adenocarcinoma and a spontaneous model of insulinoma. Our findings reveal striking differences in the innate lymphoid cell infiltrate, highlighting the importance of considering model-specific influences when investigating the tumor microenvironment.
Collapse
Affiliation(s)
- Sara Lamorte
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Douglas C Chung
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kiichi Murakami
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, Calgary, AB, Canada.
| |
Collapse
|
9
|
Taylor JH, Elliott Albers H. Are there sex differences in oxytocin and vasopressin V1a receptors ligand binding affinities? Pharmacol Rep 2024; 76:416-423. [PMID: 38480666 DOI: 10.1007/s43440-024-00577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND There is substantial evidence for sex differences in the functioning of one of the most common receptor systems; G protein-coupled receptors (GPCRs). There are many points along the GPCR-mediated molecular signaling pathway at which males and females may differ, one of the first of which, chronologically, is in the stability of the interaction between the ligand and the receptor, or its binding affinity. Here we investigate the binding affinities of oxytocin (OT) and vasopressin (AVP) at the oxytocin receptor (OTR) and the vasopressin V1a receptor (V1aR), both of which are present in numerous in brain regions associated with social behavior. METHOD In order to investigate sex- and estrous cycle-dependent differences in ligand-receptor binding affinity, male (n = 6) Syrian hamsters (Mesocricetus auratus), females on the day of estrus (E females, n = 6), and females on the second day of diestrus (D2 females n = 6) were chosen for study. Brains from hamsters were mounted on slides and competition and saturation binding assays were conducted. RESULTS We report a remarkable similarity in the binding affinities of OT and AVP in males and females. Small differences were detected, however, in receptor and ligand specificity in females depending on whether they were in the estrous or diestrous stage of their ovulatory cycle. CONCLUSION These data suggest that sex differences in binding affinity are not a likely source of the many sex differences that have been observed in the effects of OT and AVP in hamsters and other species.
Collapse
Affiliation(s)
- Jack H Taylor
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
10
|
Park MN, Kim SE, Choi S, Chang Y, Kim H, Lee HE, Lee SK, Sung MK, Paik HY. Sex reporting of cells used in cancer research: A systematic review. FASEB J 2024; 38:e23552. [PMID: 38498336 DOI: 10.1096/fj.202301986r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
Sex and gender disparities in biomedical research have been emphasized to improve scientific knowledge applied for the health of both men and women. Despite sex differences in cancer incidence, prognosis, and responses to therapeutic agents, mechanistic explanations at molecular levels are far from enough. Recent studies suggested that cell sex is an important biological variable due to differences in sex chromosome gene expression and differences in events associated with developmental biology. The objective of this study was to analyze the reporting of sex of cells used in cancer research using articles published in Cancer Cell, Molecular Cancer, Journal of Hematology & Oncology, Journal for ImmunoTherapy of Cancer, and Cancer Research in 2020, and to examine whether there exists any sex bias. We found that the percentage of cells with sex notation in the article was 36.5%. Primary cells exhibited higher sex notation compared to cell lines. A higher percentage of female cells were used in cell cultures with sex notation. Also, sex-common cells omitted sex description more often compared to sex-specific cells. None of the cells isolated from embryo and esophagus reported the cell sex in the article. Our results indicate cell sex report in cancer research is limited to a small proportion of cells used in the study. These results call for acknowledging the sex of cells to increase the applicability of biomedical research discoveries.
Collapse
Affiliation(s)
- Mi-Na Park
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sungin Choi
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yoomee Chang
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyeyoon Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ha-Eun Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hee-Young Paik
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
- Korea Center for Gendered Innovations in Science and Technology Research, Seoul, Republic of Korea
| |
Collapse
|
11
|
Kirsch A, Grossmann T, Steffan B, Groselj-Strele A, Gerstenberger C, Gugatschka M. Vocal fold fibroblasts and exposure to vibration in vitro: Does sex matter? PLoS One 2024; 19:e0297168. [PMID: 38335206 PMCID: PMC10857603 DOI: 10.1371/journal.pone.0297168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024] Open
Abstract
Studies have shown that certain vocal fold pathologies are more common in one sex than the other. This is often explained by differences in the composition of the lamina propria and anatomical differences between female and male vocal folds, resulting in e.g. different fundamental frequencies. Here, we investigated a potential sex-specific voice frequency effect in an in vitro setting using vocal fold fibroblasts from one male and one female donor with and without cigarette smoke extract (CSE) addition. After exposure to either male or female vibration frequency with or without CSE, cells and supernatants were harvested. Gene and protein analysis were performed by means of qPCR, western blot, ELISA and Luminex. We found that exposure of cells to both male and female vibration pattern did not elicit significant changes in the expression of extracellular matrix-, inflammation-, and fibrosis-related genes, compared to control cells. The addition of CSE to vibration downregulated the gene expression of COL1A1 in cells exposed to the female vibration pattern, as well as induced MMP1 and PTGS2 in cells exposed to both female and male vibration pattern. The protein expression of MMP1 and COX2 was found to be significantly upregulated only in cells exposed to CSE and female vibration pattern. To conclude, different vibration patterns alone did not cause different responses of the cells. However, the female vibration pattern in combination with CSE had a tendency to elicit/maintain more pro-inflammatory responses in cells than the male vibration pattern.
Collapse
Affiliation(s)
- Andrijana Kirsch
- Division of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| | - Tanja Grossmann
- Division of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| | - Barbara Steffan
- Division of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Claus Gerstenberger
- Division of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| | - Markus Gugatschka
- Division of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| |
Collapse
|
12
|
Darphin X, Moor J, da Silva CE, Richters A, Özdemir BC. Awareness of the impact of sex and gender in the disease risk and outcomes in hematology and medical oncology-a survey of Swiss clinicians. Cancer Rep (Hoboken) 2024; 7:e1961. [PMID: 38258483 PMCID: PMC10849995 DOI: 10.1002/cnr2.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Although male and female cancer patients are distinct in many ways, there is a limited understanding in the differences between male and female biology and differing pharmacokinetic responses to cancer drugs. In fact, sex and gender are currently not considered in most treatment decisions in the fields of oncology and hematology. The lack of knowledge about potential sex differences in both disciplines may lead to differences in treatment efficacy, toxicity, and the overall survival (OS) of patients. AIM To evaluate their awareness about sex and gender in clinical practice we surveyed Swiss hematologists and oncologists from September to November 2022. METHODS We collected data about the clinical knowledge, experimental research, palliative care, quality of life, as well as the participant perception of the importance of sex and gender. We identified 767 eligible clinicians, of whom 150 completed the survey (20% response rate). RESULTS While most participants agreed that sex and gender were relevant when treating patients, it became clear that fewer participants knew about sex and gender differences in treatment toxicity and survival, which in turn would affect the treatment of their patients. Most participants agreed that this topic should be integrated into continuing education and research. CONCLUSION Our findings indicate the need for more awareness and training on sex and gender in cancer research and clinical care among oncologists and hematologists. Ideally, by better educating medical students and health professionals, a demand is created for improving research policies, publications and therefore patient care.
Collapse
Affiliation(s)
- Xenia Darphin
- Department of HematologySpital LimmattalSchlierenSwitzerland
| | - Jeanne Moor
- Department of Internal MedicineBern University HospitalBernSwitzerland
| | | | - Anke Richters
- Department of Research and DevelopmentThe Netherlands Comprehensive Cancer OrganisationUtrechtThe Netherlands
| | - Berna C. Özdemir
- Department of Medical OncologyBern University HospitalBernSwitzerland
| |
Collapse
|
13
|
Buedo P, Prieto E, Perek-Białas J, Odziemczyk-Stawarz I, Waligora M. More ethics in the laboratory, please! Scientists' perspectives on ethics in the preclinical phase. Account Res 2024:1-16. [PMID: 38235967 PMCID: PMC11778529 DOI: 10.1080/08989621.2023.2294996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
In recent years there have been calls to improve ethics in preclinical research. Promoting ethics in preclinical research should consider the perspectives of scientists. Our study aims to explore researchers' perspectives on ethics in the preclinical phase. Using interviews and focus groups, we collected views on ethical issues in preclinical research from experienced (n = 11) and early-stage researchers (ESRs) (n = 14) working in a gene therapy and regenerative medicine consortium. A recurring theme among ESRs was the impact of health-related preclinical research on climate change. They highlighted the importance of strengthening ethics in relations within the scientific community. Experienced researchers were focused on technicalities of methods used in preclinical research. They stressed the need for more safeguards to protect the sensitive personal data they work with. Both groups drew attention to the importance of the social context of research and its social impact. They agreed that it is important to be socially responsible - to be aware of and be sensitive to the needs and views of society. This study helps to identify key ethical challenges and, when combined with more data, can ultimately lead to informed and evidence-based improvements to existing regulations.
Collapse
Affiliation(s)
- Paola Buedo
- Research Ethics in Medicine Study Group (REMEDY), Jagiellonian University Medical College, Krakow, Poland
| | - Eugenia Prieto
- Instituto de Diversidad y Evolución Austral (IDEAus), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Jolanta Perek-Białas
- Institute of Sociology and Center of Evaluation and Public Policy Analysis, Jagiellonian University, Poland and Warsaw School of Economics, Warsaw, Poland
| | | | - Marcin Waligora
- Research Ethics in Medicine Study Group (REMEDY), Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
14
|
GRASENICK K. The Binary Illusion. NEUROETHICS AND CULTURAL DIVERSITY 2024:217-234. [DOI: 10.1002/9781394257522.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Dalla C, Jaric I, Pavlidi P, Hodes GE, Kokras N, Bespalov A, Kas MJ, Steckler T, Kabbaj M, Würbel H, Marrocco J, Tollkuhn J, Shansky R, Bangasser D, Becker JB, McCarthy M, Ferland-Beckham C. Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research. J Neurosci Methods 2024; 401:110003. [PMID: 37918446 PMCID: PMC10842858 DOI: 10.1016/j.jneumeth.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgia E Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice (PAASP GmbH), Heidelberg, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences & Neurosciences, College of Medicine, Florida State University, USA
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jordan Marrocco
- Department of Biology, Touro University, New York, NY 10027, USA
| | | | - Rebecca Shansky
- Department of Psychology, Northeastern University, Boston, MA 02128, USA
| | - Debra Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Jill B Becker
- Department of Psychology and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore MD, USA
| | | |
Collapse
|
16
|
Gilmer G, Hettinger ZR, Tuakli-Wosornu Y, Skidmore E, Silver JK, Thurston RC, Lowe DA, Ambrosio F. Female aging: when translational models don't translate. NATURE AGING 2023; 3:1500-1508. [PMID: 38052933 PMCID: PMC11099540 DOI: 10.1038/s43587-023-00509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/25/2023] [Indexed: 12/07/2023]
Abstract
For many pathologies associated with aging, female patients present with higher morbidity and more frequent adverse events from treatments compared to male patients. While preclinical models are the foundation of our mechanistic understanding of age-related diseases, the most common models fail to recapitulate archetypical female aging trajectories. For example, while over 70% of the top age-related diseases are influenced by the systemic effects of reproductive senescence, we found that preclinical studies that include menopausal phenotypes modeling those seen in humans make up <1% of published aging biology research. The long-term impacts of pregnancy, birthing and breastfeeding are also typically omitted from preclinical work. In this Perspective, we summarize limitations in the most commonly used aging models, and we provide recommendations for better incorporating menopause, pregnancy and other considerations of sex in vivo and in vitro. Lastly, we outline action items for aging biology researchers, journals, funding agencies and animal providers to address this gap.
Collapse
Affiliation(s)
- Gabrielle Gilmer
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yetsa Tuakli-Wosornu
- Department of Social and Behavioral Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Skidmore
- Department of Occupational Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie K Silver
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca C Thurston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding Rehabilitation, Boston, MA, USA.
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA.
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Samuelson Bannow B, Cushman M. Sex Matters: Policy on Reporting Sex as a Biological Variable at Research and Practice in Thrombosis and Hemostasis. Res Pract Thromb Haemost 2023; 7:102256. [PMID: 38053984 PMCID: PMC10694598 DOI: 10.1016/j.rpth.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Affiliation(s)
| | - Mary Cushman
- Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Vanden Noven ML, Anselmo M, Tahsin CT, Carter JR, Keller-Ross ML. A review of the historical use of sex as a biological variable in the American Journal of Physiology-Heart and Circulatory Physiology. Am J Physiol Heart Circ Physiol 2023; 325:H768-H773. [PMID: 37594486 PMCID: PMC10643001 DOI: 10.1152/ajpheart.00278.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Despite National Institute of Health (NIH) mandates requiring sex as a biological variable (SABV), female underrepresentation persists in research, driving the American Journal of Physiology-Heart and Circulatory Physiology (Am J Physiol-Heart Circ) to publish SABV expectations in 2021. To determine progress within the Am J Physiol-Heart Circ, this mini-review evaluated SABV during the first 6 mo of each decade from 1980 to 2020, and 2019, to mitigate pandemic influence. Of the 1,205 articles published, 1,087 articles were included in this review (articles without original research subjects were excluded), of which 72.9% identified subjects. There were consistently fewer female human participants than males, except within 2019 (1980: females n = 3, males n = 5; 1990: females n = 70, males n = 199; 2000: females n = 305, males n = 355; 2010: females n = 186, males n = 472; 2019: females n = 1,695, males n = 1,550; 2020: females n = 1,157, males n = 1,222) and fewer female animals than males (1980: females n = 58, males n = 1,291; 1990: females n = 447, males n = 2,628; 2000: females n = 590, males n = 3,083; 2010: females n = 663, males n = 4,517; 2019: females n = 338, males n = 1,340; 2020: females n = 1,372, males n = 1,973). Only 16 (12.3%) articles including humans discussed SABV from 1980 to 2020. There are persistent SABV disparities within Am J Physiol-Heart Circ with some improvements in recent years. It is imperative that organizations such as the American Physiological Society and NIH foster an expectation of SABV as the norm, not the exception.
Collapse
Affiliation(s)
- Marnie L Vanden Noven
- Department of Exercise Science, Belmont University, Nashville, Tennessee, United States
| | - Miguel Anselmo
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Chowdhury Tasnova Tahsin
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jason R Carter
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Manda L Keller-Ross
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
19
|
Roth L, Michl P, Rosendahl J. [Sex-specific differences in gastroenterological diseases]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:736-743. [PMID: 36884055 DOI: 10.1007/s00108-023-01491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
Diseases of the gastrointestinal tract present with substantial sex differences that have a potential impact on patient outcome. This fact is not sufficiently addressed either in basic research or in clinical studies. For example, most animal studies utilize male animals. Despite differences in incidence, sex may affect complication rates, prognosis, or therapeutic response. The incidence of gastrointestinal cancers is frequently higher in males, but this observation cannot solely rely on a distinct risk behaviour. Here, differences in immune response and p53 signalling may be factors responsible for this finding. Nevertheless, taking sex differences into account and improving our understanding of relevant mechanisms is crucial and will most likely have a substantial impact on disease outcome. This overview aims to highlight sex differences in the context of various gastroenterological diseases, primarily to enhance awareness. Attention to sex-specific differences is essential to improve individualized treatment.
Collapse
Affiliation(s)
- Laura Roth
- Universitätsklinik und Poliklinik für Innere Medizin I, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland.
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Patrick Michl
- Universitätsklinik und Poliklinik für Innere Medizin I, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland
- Klinik für Innere Medizin IV, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Jonas Rosendahl
- Universitätsklinik und Poliklinik für Innere Medizin I, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland.
| |
Collapse
|
20
|
Xu M, Yang F, Shen B, Wang J, Niu W, Chen H, Li N, Chen W, Wang Q, HE Z, Ding R. A bibliometric analysis of acute myocardial infarction in women from 2000 to 2022. Front Cardiovasc Med 2023; 10:1090220. [PMID: 37576112 PMCID: PMC10416645 DOI: 10.3389/fcvm.2023.1090220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/01/2023] [Indexed: 08/15/2023] Open
Abstract
Background Plenty of publications had been written in the last several decades on acute myocardial infarction (AMI) in women. However, there are few bibliometric analyses in such field. In order to solve this problem, we attempted to examine the knowledge structure and development of research about AMI in women based on analysis of related publications. Method The Web of Science Core Collection was used to extract all publications regarding AMI in women, ranging from January 2000 to August 2022. Bibliometric analysis was performed using VOSviewer, Cite Space, and an online bibliometric analysis platform. Results A total of 14,853 publications related to AMI in women were identified from 2000 to 2022. Over the past 20 years, the United States had published the most articles in international research and participated in international cooperation the most frequently. The primary research institutions were Harvard University and University of Toronto. Circulation was the most cited journal and had an incontrovertible academic impact. 67,848 authors were identified, among which Harlan M Krumholz had the most significant number of articles and Thygesen K was co-cited most often. And the most common keywords included risk factors, disease, prognosis, mortality, criteria and algorithm. Conclusion The research hotspots and trends of AMI in women were identified and explored using bibliometric and visual methods. Researches about AMI in women are flourishing. Criteria and algorithms might be the focus of research in the near future, which deserved great attentions.
Collapse
Affiliation(s)
- Ming Xu
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
- Department of Cardiology, Shanghai Navy Feature Medical Center, Naval Medical University, Shanghai, China
| | - Fupeng Yang
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| | - Bin Shen
- Department of Cardiology, Shanghai Navy Feature Medical Center, Naval Medical University, Shanghai, China
| | - Jiamei Wang
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| | - Wenhao Niu
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| | - Hui Chen
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| | - Na Li
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| | - Wei Chen
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| | - Qinqin Wang
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| | - Zhiqing HE
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| | - Ru Ding
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Shanghai Cardiovascular Institute of Integrative Medicine, Shanghai, China
| |
Collapse
|
21
|
Dill MN, Tabatabaei M, Kamat M, Basso KB, Moore E, Simmons CS. Generation and characterization of two immortalized dermal fibroblast cell lines from the spiny mouse (Acomys). PLoS One 2023; 18:e0280169. [PMID: 37418364 PMCID: PMC10328323 DOI: 10.1371/journal.pone.0280169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
The spiny mouse (Acomys) is gaining popularity as a research organism due to its phenomenal regenerative capabilities. Acomys recovers from injuries to several organs without fibrosis. For example, Acomys heals full thickness skin injuries with rapid re-epithelialization of the wound and regeneration of hair follicles, sebaceous glands, erector pili muscles, adipocytes, and dermis without scarring. Understanding mechanisms of Acomys regeneration may uncover potential therapeutics for wound healing in humans. However, access to Acomys colonies is limited and primary fibroblasts can only be maintained in culture for a limited time. To address these obstacles, we generated immortalized Acomys dermal fibroblast cell lines using two methods: transfection with the SV40 large T antigen and spontaneous immortalization. The two cell lines (AcoSV40 and AcoSI-1) maintained the morphological and functional characteristics of primary Acomys fibroblasts, including maintenance of key fibroblast markers and ECM deposition. The availability of these cells will lower the barrier to working with Acomys as a model research organism, increasing the pace at which new discoveries to promote regeneration in humans can be made.
Collapse
Affiliation(s)
- Michele N. Dill
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Mohammad Tabatabaei
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Erika Moore
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Chelsey S. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
22
|
Franke M, Mancino C, Taraballi F. Reasons for the Sex Bias in Osteoarthritis Research: A Review of Preclinical Studies. Int J Mol Sci 2023; 24:10386. [PMID: 37373536 DOI: 10.3390/ijms241210386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common degenerative diseases of articular cartilage. During OA, all the elements that contribute to the joint undergo physiological and structural changes that impair the joint function and cause joint pain and stiffness. OA can arise naturally, with the aging population witnessing an increase in diagnoses of this pathology, but the root causes of OA have yet to be identified, and increasing interest is arising towards investigating biological sex as a risk factor. Clinical studies show increased prevalence and worse clinical outcomes for female patients, yet most clinical and preclinical studies have disproportionately focused on male subjects. This review provides a critical overview of preclinical practices in the context of OA, highlighting the underlying need for taking biological sex as both a risk factor and an important component affecting treatment outcome. A unique insight into the possible reasons for female underrepresentation in preclinical studies is offered, including factors such as lack of specific guidelines requiring the analysis of sex as a biological variable (SABV), research-associated costs and animal handling, and wrongful application of the reduction principle. Additionally, a thorough investigation of sex-related variables is provided, stressing how each of them could add valuable information for the understanding of OA pathophysiology, as well as sex-dependent treatment strategies.
Collapse
Affiliation(s)
- Madeline Franke
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
23
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
24
|
Jablon KL, Akerstrom VL, Li M, Braun SE, Norton CE, Castorena-Gonzalez JA. Isolation and short-term culturing of primary lymphatic endothelial cells from collecting lymphatics: A techniques study. Microcirculation 2023; 30:e12778. [PMID: 35879879 PMCID: PMC9873843 DOI: 10.1111/micc.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To develop an experimental method for routine isolation and short-term culture of primary lymphatic endothelial cells from specific collecting vessels. METHODS Lymphatic endothelial cell tubes (LECTs) were isolated from micro-dissected collecting vessels. LECTs were allowed to attach and grow for ~3 weeks before being passaged. Non-purified cultures were partially characterized by immunofluorescence and RT-PCR at passages 1-2. RESULTS The method was validated in cultures of primary lymphatic endothelial cells (LECs) from male and female mice. After 1 or 2 passages, >60% of the LECs maintained expression of Prox1. Expression of 22 different genes was assessed using RT-PCR. Prox1, Vegfr3, eNos, Cdh5, Pecam1, Cx43, Cx37, and Cx47, among others, were expressed in these short-term cultured LECs, while Myh11, Cnn1, Desmin, and Cd11b were not detected. Prox1 expression, as determined by western blotting, was similar in cultured LECs from age-matched male and female mice. Confocal imaging of intracellular calcium in cultures of primary LECs from Cdh5-GCaMP8 mice demonstrated that a functional phenotype was maintained, similar to lymphatic endothelial cells in freshly isolated vessels. CONCLUSIONS This method provides an innovative tool for routine isolation and study of primary LECs from specific collecting lymphatic vessels from any mouse, and in fact, from other species.
Collapse
Affiliation(s)
- Kelli L. Jablon
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Victoria L. Akerstrom
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Stephen E. Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | | |
Collapse
|
25
|
Baraibar I, Ros J, Saoudi N, Salvà F, García A, Castells M, Tabernero J, Élez E. Sex and gender perspectives in colorectal cancer. ESMO Open 2023; 8:101204. [PMID: 37018873 PMCID: PMC10163160 DOI: 10.1016/j.esmoop.2023.101204] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 04/05/2023] Open
Abstract
Historically women were frequently excluded from clinical trials and drug usage to protect unborn babies from potential harm. As a consequence, the impact of sex and gender on both tumour biology and clinical outcomes has been largely underestimated. Although interrelated and often used interchangeably, sex and gender are not equivalent concepts. Sex is a biological attribute that defines species according to their chromosomal makeup and reproductive organ, while gender refers to a chosen sexual identity. Sex dimorphisms are rarely taken into account, in either preclinical or clinical research, with inadequate analysis of differences in outcomes according to sex or gender still widespread, reflecting a gap in our knowledge for a large proportion of the target population. Underestimation of sex-based differences in study design and analyses has invariably led to 'one-drug' treatment regimens for both males and females. For patients with colorectal cancer (CRC), sex also has an impact on the disease incidence, clinicopathological features, therapeutic outcomes, and tolerability to anticancer treatments. Although the global incidence of CRC is higher in male subjects, the proportion of patients presenting right-sided tumours and BRAF mutations is higher among females. Concerning sex-related differences in treatment efficacy and toxicity, drug dosage does not take into account sex-specific differences in pharmacokinetics. Toxicity associated with fluoropyrimidines, targeted therapies, and immunotherapies has been reported to be more extensive for females with CRC than for males, although evidence about differences in efficacy is more controversial. This article aims to provide an overview of the research achieved so far into sex and gender differences in cancer and summarize the growing body of literature illustrating the sex and gender perspective in CRC and their impact in relation to tumour biology and treatment efficacy and toxicity. We propose endorsing research on how biological sex and gender influence CRC as an added value for precision oncology.
Collapse
|
26
|
Tanneberger AE, Weiss DJ, Magin CM. An Introduction to Engineering and Modeling the Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:1-13. [PMID: 37195523 DOI: 10.1007/978-3-031-26625-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the last decade, the field of lung biology has evolved considerably due to many advancements, including the advent of single-cell RNA (scRNA) sequencing, induced pluripotent stem cell (iPSC) reprogramming, and 3D cell and tissue culture. Despite rigorous research and tireless efforts, chronic pulmonary diseases remain the third leading cause of death globally, with transplantation being the only option for treating end-stage disease. This chapter will introduce the broader impacts of understanding lung biology in health and disease, provide an overview of lung physiology and pathophysiology, and summarize the key takeaways from each chapter describing engineering translational models of lung homeostasis and disease. This book is divided into broad topic areas containing chapters covering basic biology, engineering approaches, and clinical perspectives related to (1) the developing lung, (2) the large airways, (3) the mesenchyme and parenchyma, (4) the pulmonary vasculature, and (5) the interface between lungs and medical devices. Each section highlights the underlying premise that engineering strategies, when applied in collaboration with cell biologists and pulmonary physicians, will address critical challenges in pulmonary health care.
Collapse
Affiliation(s)
- Alicia E Tanneberger
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
27
|
Campbell DM, Cowlings PD, Tholanah M, Robinson MJ, Graham G, Aseru S, Dubé K, Cohn SE, Bar KJ, Connick E, Mngqbisa R, Scully EP, Stockman JK, Gianella S. A Community Call to Action to Prioritize Inclusion and Enrollment of Women in HIV Cure-related Research. J Acquir Immune Defic Syndr 2022; 91:e12-e14. [PMID: 36083494 PMCID: PMC9646409 DOI: 10.1097/qai.0000000000003084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Danielle M. Campbell
- Joint Doctoral Program in Public Health, University of California, San Diego/San Diego State University, La Jolla, CA
- Charles R. Drew University of Medicine and Science (CDU), Los Angeles, CA
| | - Portia D. Cowlings
- Charles R. Drew University of Medicine and Science (CDU), Los Angeles, CA
- Department of Education, Graduate School of Education and Psychology, Pepperdine University, Los Angeles, CA
| | - Martha Tholanah
- Milton Park Clinical Research Site, Community Advisory Board, University of Zimbabwe Clinical Trials Research Center, Milton Park
| | | | - Gail Graham
- Johns Hopkins University AIDS Clinical Trials Group Clinical Research Site, Community Advisory Board, Baltimore, MD
| | - Scovia Aseru
- Joint Clinical Research Centre (JCRC)/Kampala Clinical Research Site, Kampala, Uganda
| | - Karine Dubé
- UNC Gillings School of Global Public Health, Chapel Hill, NC
| | - Susan E. Cohn
- Infectious Diseases Division, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | - Rosie Mngqbisa
- Durban International Clinical Research Site, AIDS Clinical Trials Group, Durban, South Africa
| | - Eileen P. Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Jamila K. Stockman
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA
| |
Collapse
|
28
|
Ozaki M, Glasgow A, Oglesby IK, Ng WL, Kelly S, Greene CM, Durcan L, Hurley K. Sexual Dimorphism in Interstitial Lung Disease. Biomedicines 2022; 10:biomedicines10123030. [PMID: 36551792 PMCID: PMC9775147 DOI: 10.3390/biomedicines10123030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Interstitial lung diseases (ILD) are a group of heterogeneous progressive pulmonary disorders, characterised by tissue remodelling and/or fibrotic scarring of the lung parenchyma. ILD patients experience lung function decline with progressive symptoms, poor response to treatment, reduced quality of life and high mortality. ILD can be idiopathic or associated with systemic or connective tissue diseases (CTD) but idiopathic pulmonary fibrosis (IPF) is the most common form. While IPF has a male predominance, women are affected more greatly by CTD and therefore associated ILDs. The mechanisms behind biological sex differences in these progressive lung diseases remain unclear. However, differences in environmental exposures, variable expression of X-chromosome related inflammatory genes and sex hormones play a role. Here, we will outline sex-related differences in the incidence, progression and mechanisms of action of these diseases and discuss existing and novel cellular and pre-clinical studies. Furthermore, we will highlight how sex-differences are not adequately considered in pre-clinical disease models, how gender bias exists in clinical diagnosis and how women are underrepresented in clinical trials. Future action on these observations will hopefully shed light on the role of biological sex in disease development, identify potential targets for intervention and increase female participant numbers in clinical trials.
Collapse
Affiliation(s)
- Mari Ozaki
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
| | - Arlene Glasgow
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, D09 YD60 Dublin 9, Ireland
| | - Irene K. Oglesby
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
| | - Wan Lin Ng
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
- Department of Rheumatology, Beaumont Hospital, D09V2N0 Dublin 9, Ireland
| | - Sile Kelly
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
| | - Catherine M. Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, D09 YD60 Dublin 9, Ireland
| | - Laura Durcan
- Department of Rheumatology, Beaumont Hospital, D09V2N0 Dublin 9, Ireland
| | - Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, D09 YD60 Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland
- Correspondence:
| |
Collapse
|
29
|
Bazan IS, Kim SJ, Ardito TA, Zhang Y, Shan P, Sauler M, Lee PJ. Reply to Suresh. Am J Physiol Lung Cell Mol Physiol 2022; 323:L648-L649. [PMID: 36351165 PMCID: PMC9662795 DOI: 10.1152/ajplung.00294.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Isabel S Bazan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - So-Jin Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
- Section of Pulmonary and Critical Care Medicine, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Taylor A Ardito
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Yi Zhang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Peiying Shan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
- Section of Pulmonary and Critical Care Medicine, Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
30
|
Dietrich E, Jomard A, Osto E. Crosstalk between high-density lipoproteins and endothelial cells in health and disease: Insights into sex-dependent modulation. Front Cardiovasc Med 2022; 9:989428. [PMID: 36304545 PMCID: PMC9594152 DOI: 10.3389/fcvm.2022.989428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Intense research in vascular biology has advanced our knowledge of molecular mechanisms of its onset and progression until complications; however, several aspects of the patho-physiology of atherosclerosis remain to be further elucidated. Endothelial cell homeostasis is fundamental to prevent atherosclerosis as the appearance of endothelial cell dysfunction is considered the first pro-atherosclerotic vascular modification. Physiologically, high density lipoproteins (HDLs) exert protective actions for vessels and in particular for ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute to the regulation of vascular lipid metabolism, and have immune-modulatory, anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent differences are increasingly recognized as important, although not fully elucidated, factors in cardiovascular health and disease patho-physiology. In this review, we highlight the importance of sex hormones and sex-specific gene expression in the regulation of HDL and EC cross-talk and their contribution to cardiovascular disease.
Collapse
Affiliation(s)
- Elisa Dietrich
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Anne Jomard
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Cox‐Flaherty K, Baird GL, Braza J, Guarino BD, Princiotto A, Ventetuolo CE, Harrington EO. Commercial human pulmonary artery endothelial cells have in-vitro behavior that varies by sex. Pulm Circ 2022; 12:e12165. [PMID: 36484057 PMCID: PMC9723258 DOI: 10.1002/pul2.12165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
It is unknown whether biological sex influences phenotypes of commercially available human pulmonary artery endothelial cells (HPAECs). Ten lots of commercial HPAECs were used (Lonza Biologics; PromoCell). Five (50%) were confirmed to be genotypically male (SRY+) and five (50%) were confirmed to be female (SRY-). Experiments were conducted between passages five and eight. HPAEC phenotype was confirmed with a panel of cell expression markers. Standard assays for proliferation, migration and tube formation were performed in triplicate with technical replicates, under three treatment conditions (EndoGRO; Sigma-Aldrich). Apoptosis was assessed by exposing cells treated with complete media or low serum media to hypoxic (1% oxygen) or normoxic (20% oxygen) conditions. Laboratory staff was blinded. The median (range) age of male and female donors from whom the HPAECs were derived was 58 (48-60) and 56 (33-67), respectively. Our results suggest decreased proliferation in genotypically female cells compared with male cells (p = 0.09). With increasing donor age, female cells were less proliferative and male cells were more proliferative (p = 0.001). Female cells were significantly more apoptotic than male cells by condition (p = 0.001). Female cells were significantly more migratory than male cells in complete media but less migratory than male cells under vascular endothelial growth factor enriched conditions (p = 0.001). There are subtle sex-based differences in the behavior of HPAECs that depend on donor sex and, less so, age. These differences may undermine rigor and reproducibility. Future studies should define whether biological sex is an important regulator of HPAEC function in health and disease.
Collapse
Affiliation(s)
- Katherine Cox‐Flaherty
- Departments of Medicine and Health ServicesPolicy and Practice, Brown UniversityProvidenceRhode IslandUSA
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| | | | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| | - Brianna D. Guarino
- Departments of Medicine and Health ServicesPolicy and Practice, Brown UniversityProvidenceRhode IslandUSA
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| | - Amy Princiotto
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| | - Corey E. Ventetuolo
- Departments of Medicine and Health ServicesPolicy and Practice, Brown UniversityProvidenceRhode IslandUSA
- Health Services, Policy and PracticeBrown UniversityProvidenceRhode IslandUSA
| | - Elizabeth O. Harrington
- Departments of Medicine and Health ServicesPolicy and Practice, Brown UniversityProvidenceRhode IslandUSA
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| |
Collapse
|
32
|
Rao S. Sex differences in HIV-1 persistence and the implications for a cure. Front Glob Womens Health 2022; 3:942345. [PMID: 36212905 PMCID: PMC9538461 DOI: 10.3389/fgwh.2022.942345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Of the 38 million people currently living with Human Immunodeficiency Virus type-1 (HIV-1), women, especially adolescents and young women, are disproportionally affected by the HIV-1 pandemic. Acquired immunodeficiency syndrome (AIDS) - related illnesses are the leading cause of death in women of reproductive age worldwide. Although combination antiretroviral therapy (cART) can suppress viral replication, cART is not curative due to the presence of a long-lived viral reservoir that persists despite treatment. Biological sex influences the characteristics of the viral reservoir as well as the immune responses to infection, factors that can have a significant impact on the design and quantification of HIV-1 curative interventions in which women are grossly underrepresented. This mini-review will provide an update on the current understanding of the impact of biological sex on the viral reservoir and will discuss the implications of these differences in the context of the development of potential HIV-1 curative strategies, with a focus on the shock and kill approach to an HIV-1 cure. This mini-review will also highlight the current gaps in the knowledge of sex-based differences in HIV-1 persistence and will speculate on approaches to address them to promote the development of more scalable, effective curative approaches for people living with HIV-1.
Collapse
|
33
|
Diaz Rosario M, Kaur H, Tasci E, Shankavaram U, Sproull M, Zhuge Y, Camphausen K, Krauze A. The Next Frontier in Health Disparities-A Closer Look at Exploring Sex Differences in Glioma Data and Omics Analysis, from Bench to Bedside and Back. Biomolecules 2022; 12:1203. [PMID: 36139042 PMCID: PMC9496358 DOI: 10.3390/biom12091203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Sex differences are increasingly being explored and reported in oncology, and glioma is no exception. As potentially meaningful sex differences are uncovered, existing gender-derived disparities mirror data generated in retrospective and prospective trials, real-world large-scale data sets, and bench work involving animals and cell lines. The resulting disparities at the data level are wide-ranging, potentially resulting in both adverse outcomes and failure to identify and exploit therapeutic benefits. We set out to analyze the literature on women's data disparities in glioma by exploring the origins of data in this area to understand the representation of women in study samples and omics analyses. Given the current emphasis on inclusive study design and research, we wanted to explore if sex bias continues to exist in present-day data sets and how sex differences in data may impact conclusions derived from large-scale data sets, omics, biospecimen analysis, novel interventions, and standard of care management.
Collapse
Affiliation(s)
- Maria Diaz Rosario
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA
- School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960, USA
| | - Harpreet Kaur
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA
| | - Erdal Tasci
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA
| | - Mary Sproull
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA
| | - Ying Zhuge
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA
| | - Kevin Camphausen
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA
| | - Andra Krauze
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Zhang K, Yang J, Qin Z, Lu T, Lou D, Ran Q, Huang H, Cheng S, Zellmer L, Ma H, Liao DJ. Establishment of New Genetic Markers and Methods for Sex Determination of Mouse and Human Cells using Polymerase Chain Reactions and Crude DNA Samples. Curr Genomics 2022; 23:275-288. [PMID: 36777874 PMCID: PMC9875541 DOI: 10.2174/1389202923666220610121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The currently available methods for sexing human or mouse cells have weaknesses. Therefore, it is necessary to establish new methods. Methods: We used bioinformatics approach to identify genes that have alleles on both the X and Y chromosomes of mouse and human genomes and have a region showing a significant difference between the X and Y alleles. We then used polymerase chain reactions (PCR) followed by visualization of the PCR amplicons in agarose gels to establish these genomic regions as genetic sex markers. Results: Our bioinformatics analyses identified eight mouse sex markers and 56 human sex markers that are new, i.e. are previously unreported. Six of the eight mouse markers and 14 of the 56 human markers were verified using PCR and ensuing visualization of the PCR amplicons in agarose gels. Most of the tested and untested sex markers possess significant differences in the molecular weight between the X- and Y-derived PCR amplicons and are thus much better than most, if not all, previously-reported genetic sex markers. We also established several simple and essentially cost-free methods for extraction of crude genomic DNA from cultured cells, blood samples, and tissues that could be used as template for PCR amplification. Conclusion: We have established new sex genetic markers and methods for extracting genomic DNA and for sexing human and mouse cells. Our work may also lend some methodological strategies to the identification of new genetic sex markers for other organismal species.
Collapse
Affiliation(s)
- Keyin Zhang
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China;,Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China
| | - Jianglin Yang
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P. R. China;,Center for Clinical Laboratories, Guizhou Medical University Hospital, 4 Beijing Rd, Guiyang 550004, Guizhou Province, P.R. China
| | - Zhenwei Qin
- Forensic Science Section, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang 550025, Guizhou Province, P.R. China
| | - Tianzu Lu
- Department of Stomatology, School of Stomatology, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China
| | - Didong Lou
- Forensic Science Section, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang 550025, Guizhou Province, P.R. China
| | - Qianchuan Ran
- Forensic Science Section, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang 550025, Guizhou Province, P.R. China
| | - Hai Huang
- Center for Clinical Laboratories, Guizhou Medical University Hospital, 4 Beijing Rd, Guiyang 550004, Guizhou Province, P.R. China
| | - Shuqiang Cheng
- Center for Clinical Laboratories, Guizhou Medical University Hospital, 4 Beijing Rd, Guiyang 550004, Guizhou Province, P.R. China
| | - Lucas Zellmer
- Department of Medicine, Hennepin County Medical Center, 730 South 8th St., Minneapolis, MN 5415
| | - Hong Ma
- Department of Stomatology, School of Stomatology, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China;,Address correspondence to these authors at the Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China; Tel/Fax: 86-85186752814; E-mail: and Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University 9 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China; Tel/Fax: 86-851-88512238; E-mail:
| | - Dezhong J. Liao
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China;,Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China;,Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P. R. China;,Address correspondence to these authors at the Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China; Tel/Fax: 86-85186752814; E-mail: and Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University 9 Beijing Road, Guiyang 550004, Guizhou Province, P.R. China; Tel/Fax: 86-851-88512238; E-mail:
| |
Collapse
|
35
|
King DE. The Inclusion of Sex and Gender Beyond the Binary in Toxicology. FRONTIERS IN TOXICOLOGY 2022; 4:929219. [PMID: 35936387 PMCID: PMC9355551 DOI: 10.3389/ftox.2022.929219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dillon E. King
- Integrated Toxicology and Environmental Health, Nicholas School of the Environment, Duke University, Durham, NC, United States,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Dillon E. King,
| |
Collapse
|
36
|
McShane A, Mole SE. Sex bias and omission exists in Batten disease research: Systematic review of the use of animal disease models. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166489. [PMID: 35840041 DOI: 10.1016/j.bbadis.2022.166489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Batten disease, also known as the neuronal ceroid lipofuscinoses (NCL), is a group of inherited neurodegenerative disorders mainly affecting children. NCL are characterised by seizures, loss of vision, and progressive motor and cognitive decline, and are the most common form of childhood dementia. At least one type of Batten disease and three types of mouse disease models show sex differences in their severity and progression. Scientific research has a recognised prevalent omission of female animals when using model organisms for basic and preclinical research. Sex bias and omission in research using animal models of Batten disease may affect understanding and treatment development. We conducted a systematic review of research publications since the first identification of NCL genes in 1995, identifying those using animal models. We found that <10 % of these papers considered sex as a biological variable. There was consistent omission of female model organisms in studies. This varied over the period but is improving; one third of papers considered sex as a biological variable in the last decade, and there is a noticeable increase in the last 5 years. The wide-ranging reasons for this published sex bias are discussed, including misunderstanding regarding oestrogen, impact on sample size, and the underrepresentation of female scientists. Their implications for Batten disease and future research are considered. Recommendations going forward support requirements by funders for consideration of sex in all stages of experimental design and implementation, and a role for publishers, families and others with a particular interest in Batten disease.
Collapse
Affiliation(s)
- Annie McShane
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
37
|
Hulce KR, Jaishankar P, Lee GM, Bohn MF, Connelly EJ, Wucherer K, Ongpipattanakul C, Volk RF, Chuo SW, Arkin MR, Renslo AR, Craik CS. Inhibiting a dynamic viral protease by targeting a non-catalytic cysteine. Cell Chem Biol 2022; 29:785-798.e19. [PMID: 35364007 PMCID: PMC9133232 DOI: 10.1016/j.chembiol.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/07/2022] [Accepted: 03/10/2022] [Indexed: 11/03/2022]
Abstract
Viruses are responsible for some of the most deadly human diseases, yet available vaccines and antivirals address only a fraction of the potential viral human pathogens. Here, we provide a methodology for managing human herpesvirus (HHV) infection by covalently inactivating the HHV maturational protease via a conserved, non-catalytic cysteine (C161). Using human cytomegalovirus protease (HCMV Pr) as a model, we screened a library of disulfides to identify molecules that tether to C161 and inhibit proteolysis, then elaborated hits into irreversible HCMV Pr inhibitors that exhibit broad-spectrum inhibition of other HHV Pr homologs. We further developed an optimized tool compound targeted toward HCMV Pr and used an integrative structural biology and biochemical approach to demonstrate inhibitor stabilization of HCMV Pr homodimerization, exploiting a conformational equilibrium to block proteolysis. Irreversible HCMV Pr inhibition disrupts HCMV infectivity in cells, providing proof of principle for targeting proteolysis via a non-catalytic cysteine to manage viral infection.
Collapse
Affiliation(s)
- Kaitlin R Hulce
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Gregory M Lee
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Markus-Frederik Bohn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Emily J Connelly
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Kristin Wucherer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Chayanid Ongpipattanakul
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Regan F Volk
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA; Small Molecule Discovery Center, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94143-2280, USA.
| |
Collapse
|
38
|
Yom SS, Deville C, Boerma M, Carlson D, Jabbour SK, Braverman L. Evaluating the Generalizability and Reproducibility of Scientific Research. Int J Radiat Oncol Biol Phys 2022; 113:1-4. [PMID: 35427541 PMCID: PMC10862357 DOI: 10.1016/j.ijrobp.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022]
Affiliation(s)
| | - Curtiland Deville
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Marjan Boerma
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - David Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers University, New Brunswick, New Jersey
| | | |
Collapse
|
39
|
An analysis of neuroscience and psychiatry papers published from 2009 and 2019 outlines opportunities for increasing discovery of sex differences. Nat Commun 2022; 13:2137. [PMID: 35440664 PMCID: PMC9018784 DOI: 10.1038/s41467-022-29903-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Sex differences exist in many neurological and psychiatric diseases, but these have not always been addressed adequately in research. In order to address this, it is necessary to consider how sex is incorporated into the design (e.g. using a balanced design) and into the analyses (e.g. using sex as a covariate) in the published literature. We surveyed papers published in 2009 and 2019 across six journals in neuroscience and psychiatry. In this sample, we find a 30% increase in the percentage of papers reporting studies that included both sexes in 2019 compared with 2009. Despite this increase, in 2019 only 19% of papers in the sample reported using an optimal design for discovery of possible sex differences, and only 5% of the papers reported studies that analysed sex as a discovery variable. We conclude that progress to date has not been sufficient to address the importance of sex differences in research for discovery and therapeutic potential for neurological and psychiatric disease. Sex differences occur in many neurological and psychiatric diseases, and yet research is not always designed optimally to identify these. Here the authors perform a study of how sex was incorporated into the design and analyses of papers published six journals in neuroscience and psychiatry in 2009 compared with 2019.
Collapse
|
40
|
Abstract
Irene Miguel-Aliaga comments on the importance of considering biological sex as an experimental variable.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
41
|
Aguado BA, Walker CJ, Grim JC, Schroeder ME, Batan D, Vogt BJ, Rodriguez AG, Schwisow JA, Moulton KS, Weiss RM, Heistad DD, Leinwand LA, Anseth KS. Genes That Escape X Chromosome Inactivation Modulate Sex Differences in Valve Myofibroblasts. Circulation 2022; 145:513-530. [PMID: 35000411 PMCID: PMC8844107 DOI: 10.1161/circulationaha.121.054108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aortic valve stenosis is a sexually dimorphic disease, with women often presenting with sustained fibrosis and men with more extensive calcification. However, the intracellular molecular mechanisms that drive these clinically important sex differences remain underexplored. METHODS Hydrogel biomaterials were designed to recapitulate key aspects of the valve tissue microenvironment and to serve as a culture platform for sex-specific valvular interstitial cells (VICs; precursors to profibrotic myofibroblasts). The hydrogel culture system was used to interrogate intracellular pathways involved in sex-dependent VIC-to-myofibroblast activation and deactivation. RNA sequencing was used to define pathways involved in driving sex-dependent activation. Interventions with small molecule inhibitors and siRNA transfections were performed to provide mechanistic insight into sex-specific cellular responses to microenvironmental cues, including matrix stiffness and exogenously delivered biochemical factors. RESULTS In both healthy porcine and human aortic valves, female leaflets had higher baseline activation of the myofibroblast marker α-smooth muscle actin compared with male leaflets. When isolated and cultured, female porcine and human VICs had higher levels of basal α-smooth muscle actin stress fibers that further increased in response to the hydrogel matrix stiffness, both of which were higher than in male VICs. A transcriptomic analysis of male and female porcine VICs revealed Rho-associated protein kinase signaling as a potential driver of this sex-dependent myofibroblast activation. Furthermore, we found that genes that escape X-chromosome inactivation such as BMX and STS (encoding for Bmx nonreceptor tyrosine kinase and steroid sulfatase, respectively) partially regulate the elevated female myofibroblast activation through Rho-associated protein kinase signaling. This finding was confirmed by treating male and female VICs with endothelin-1 and plasminogen activator inhibitor-1, factors that are secreted by endothelial cells and known to drive myofibroblast activation through Rho-associated protein kinase signaling. CONCLUSIONS Together, in vivo and in vitro results confirm sex dependencies in myofibroblast activation pathways and implicate genes that escape X-chromosome inactivation in regulating sex differences in myofibroblast activation and subsequent aortic valve stenosis progression. Our results underscore the importance of considering sex as a biological variable to understand the molecular mechanisms of aortic valve stenosis and to help guide sex-based precision therapies.
Collapse
Affiliation(s)
- Brian A. Aguado
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Cierra J. Walker
- Materials Science and Engineering Program, University of Colorado Boulder, CO 80309, USA
- Department of Biochemistry, University of Colorado Boulder, CO 80303, USA
| | - Joseph C. Grim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
| | - Megan E. Schroeder
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, CO 80309, USA
| | - Dilara Batan
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Department of Biochemistry, University of Colorado Boulder, CO 80303, USA
| | - Brandon J. Vogt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Andrea Gonzalez Rodriguez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
| | - Jessica A. Schwisow
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karen S. Moulton
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Donald D. Heistad
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, CO 80309, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, CO 80309, USA
| |
Collapse
|
42
|
Kim N, Schiebinger L. Why Is Sex/Gender-Specific Medicine Needed? SEX/GENDER-SPECIFIC MEDICINE IN THE GASTROINTESTINAL DISEASES 2022:3-10. [DOI: 10.1007/978-981-19-0120-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Mirna M, Schmutzler L, Topf A, Hoppe UC, Lichtenauer M. Biological Sex and Its Impact on Clinical Characteristics in Patients Presenting with Myocarditis. Med Princ Pract 2022; 31:74-82. [PMID: 34763343 PMCID: PMC8995638 DOI: 10.1159/000520870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Biological sex has a paramount influence on the pathophysiology of diseases, and thus on clinical presentation. In this study, we provide a comprehensive analysis of sex-specific differences in patients with myocarditis. MATERIALS AND METHODS Patients with myocarditis who were admitted to our study center in the time-period of 2009-2019 were retrospectively enrolled in this study. Clinical data, laboratory parameters, and measurements from transthoracic echocardiography were extracted from hospital records. Follow-up was acquired for 2 years after admission. RESULTS Two hundred twenty-four patients with myocarditis were enrolled in this study. Of these, 78% were men and 22% women. Female patients were older (median 50 years vs. 35 years, p < 0.0001), had a higher prevalence of respiratory tract infections, and had less frequently ST-segment elevations on electrocardiogram (ECG) (28% vs. 59%, p = 0.003). Furthermore, C-reactive protein was lower in women (median 0.60 mg/dL vs. 3.90 mg/dL, p < 0.0001), but showed a less pronounced decrease within 3 days when compared to men (fold-change 1.00 vs. 0.80, p = 0.002). Cardiac magnetic resonance imaging was conducted less often in women, whereas time to coronary angiography was significantly longer. We found no difference in left ventricular systolic function or all-cause-mortality between the 2 sexes. CONCLUSION We observed sex-specific differences in laboratory parameters, abnormalities on ECG, and diagnostic procedures conducted in patients with myocarditis. Understanding these differences, both at the cellular level and in regard to the clinical presentation of patients, could be helpful in the diagnosis and treatment of this disease, and could further expand our understanding of its pathophysiology.
Collapse
|
44
|
Human-Induced Pluripotent Stem Cell-Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:57-88. [PMID: 34921676 DOI: 10.1007/5584_2021_683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The prevalence of neurodegenerative diseases is steadily increasing worldwide, and epidemiological studies strongly suggest that many of the diseases are sex-biased. It has long been suggested that biological sex differences are crucial for neurodegenerative diseases; however, how biological sex affects disease initiation, progression, and severity is not well-understood. Sex is a critical biological variable that should be taken into account in basic research, and this review aims to highlight the utility of human-induced pluripotent stem cells (iPSC)-derived models for studying sex-specific differences in neurodegenerative diseases, with advantages and limitations. In vitro systems utilizing species-specific, renewable, and physiologically relevant cell sources can provide powerful platforms for mechanistic studies, toxicity testings, and drug discovery. Matched healthy, patient-derived, and gene-corrected human iPSCs, from both sexes, can be utilized to generate neuronal and glial cell types affected by specific neurodegenerative diseases to study sex-specific differences in two-dimensional (2D) and three-dimensional (3D) human culture systems. Such relatively simple and well-controlled systems can significantly contribute to the elucidation of molecular mechanisms underlying sex-specific differences, which can yield effective, and potentially sex-based strategies, against neurodegenerative diseases.
Collapse
|
45
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
46
|
Abstract
Significant sex differences exist across cellular, tissue organization, and body system scales to serve the distinct sex-specific functions required for reproduction. They are present in all animals that reproduce sexually and have widespread impacts on normal development, aging, and disease. Observed from the moment of fertilization, sex differences are patterned by sexual differentiation, a lifelong process that involves mechanisms related to sex chromosome complement and the epigenetic and acute activational effects of sex hormones. In this mini-review, we examine evidence for sex differences in cellular responses to DNA damage, their underlying mechanisms, and how they might relate to sex differences in cancer incidence and response to DNA-damaging treatments.
Collapse
Affiliation(s)
- Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
47
|
Pollitzer E. Why gender is relevant to materials science and engineering. MRS COMMUNICATIONS 2021; 11:656-661. [PMID: 34548939 PMCID: PMC8445500 DOI: 10.1557/s43579-021-00093-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
For historical reasons science today has substantially more evidence for males and men than for females and women, which means that quality of research and innovation outcomes may often be worse for women than for men. I explore how the gender dimension-a term used to mean effects of biological (sex) and/or socio-cultural (gender) characteristics-fits into new materials research and engineering and especially in nano-materials applications. Horizon Europe expects that grant proposals should include explanation if gender dimension is relevant to the project's objectives. This paper shows that often the answer should be yes it is.
Collapse
|
48
|
Kurmann L, Okoniewski M, Dubey RK. Estradiol Inhibits Human Brain Vascular Pericyte Migration Activity: A Functional and Transcriptomic Analysis. Cells 2021; 10:cells10092314. [PMID: 34571963 PMCID: PMC8472363 DOI: 10.3390/cells10092314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stroke is the third leading cause of mortality in women and it kills twice as many women as breast cancer. A key role in the pathophysiology of stroke plays the disruption of the blood–brain barrier (BBB) within the neurovascular unit. While estrogen induces vascular protective actions, its influence on stroke remains unclear. Moreover, experiments assessing its impact on endothelial cells to induce barrier integrity are non-conclusive. Since pericytes play an active role in regulating BBB integrity and function, we hypothesize that estradiol may influence BBB by regulating their activity. In this study using human brain vascular pericytes (HBVPs) we investigated the impact of estradiol on key pericyte functions known to influence BBB integrity. HBVPs expressed estrogen receptors (ER-α, ER-β and GPER) and treatment with estradiol (10 nM) inhibited basal cell migration but not proliferation. Since pericyte migration is a hallmark for BBB disruption following injury, infection and inflammation, we investigated the effects of estradiol on TNFα-induced PC migration. Importantly, estradiol prevented TNFα-induced pericyte migration and this effect was mimicked by PPT (ER-α agonist) and DPN (ER-β agonist), but not by G1 (GPR30 agonist). The modulatory effects of estradiol were abrogated by MPP and PHTPP, selective ER-α and ER-β antagonists, respectively, confirming the role of ER-α and ER-β in mediating the anti-migratory actions of estrogen. To delineate the intracellular mechanisms mediating the inhibitory actions of estradiol on PC migration, we investigated the role of AKT and MAPK activation. While estradiol consistently reduced the TNFα-induced MAPK and Akt phosphorylation, only the inhibition of MAPK, but not Akt, significantly abrogated the migratory actions of TNFα. In transendothelial electrical resistance measurements, estradiol induced barrier function (TEER) in human brain microvascular endothelial cells co-cultured with pericytes, but not in HBMECs cultured alone. Importantly, transcriptomics analysis of genes modulated by estradiol in pericytes showed downregulation of genes known to increase cell migration and upregulation of genes known to inhibit cell migration. Taken together, our findings provide the first evidence that estradiol modulates pericyte activity and thereby improves endothelial integrity.
Collapse
Affiliation(s)
- Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
| | | | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
49
|
Abstract
Disparities in health care have risen to the forefront of medicine in the past several years. One of the most notable disparities in the research and delivery of health care relates to sex and gender. Sex and gender affect the epidemiology, pathophysiology, and outcomes of disease and social determinants of health and access to medical care. This article discusses some of the history of considering sex as a biologic variable in medical research and clinical care. It also clarifies the definitions and terminology necessary for understanding the biologic and social underpinnings of sex and gender.
Collapse
Affiliation(s)
- Shannon Kay
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, PO Box 208057, New Haven, CT 06519, USA
| | - Margaret A Pisani
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, PO Box 208057, New Haven, CT 06519, USA.
| |
Collapse
|
50
|
Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW. Let's talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev 2021; 175:113804. [PMID: 34015416 DOI: 10.1016/j.addr.2021.05.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
Professor Henry Higgins in My Fair Lady said, 'Why can't a woman be more like a man?' Perhaps unintended, such narration extends to the reality of current drug development. A clear sex-gap exists in pharmaceutical research spanning from preclinical studies, clinical trials to post-marketing surveillance with a bias towards males. Consequently, women experience adverse drug reactions from approved drug products more often than men. Distinct differences in pharmaceutical response across drug classes and the lack of understanding of disease pathophysiology also exists between the sexes, often leading to suboptimal drug therapy in women. This review explores the influence of sex as a biological variable in drug delivery, pharmacokinetic response and overall efficacy in the context of pharmaceutical research and practice in the clinic. Prospective recommendations are provided to guide researchers towards the consideration of sex differences in methodologies and analyses. The promotion of disaggregating data according to sex to strengthen scientific rigour, encouraging innovation through the personalisation of medicines and adopting machine learning algorithms is vital for optimised drug development in the sexes and population health equity.
Collapse
Affiliation(s)
- Christine M Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Francesca K H Gavins
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|