1
|
Said EA, Lewis RW, Dallas ML, Peers C, Ross FA, Unciti-Broceta A, Grahame Hardie D, Mark Evans A. The thienopyridine A-769662 and benzimidazole 991 inhibit human TASK-3 potassium channels in an AMPK-independent manner. Biochem Pharmacol 2024; 230:116562. [PMID: 39362502 DOI: 10.1016/j.bcp.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Heteromeric Tandem pore domain Acid Sensitive (TASK)-1/3 channels are critical to oxygen-sensing by carotid body type 1 cells, where hypoxia-induced inhibition of TASK-3 and/or TASK-1/3 potassium currents leads to voltage-gated calcium entry, exocytotic transmitter release and increases in carotid body afferent input responses that initiate corrective changes in breathing patterns. It was proposed that, in response to hypoxia, the AMP-activated protein kinase (AMPK) might directly phosphorylate and inhibit TASK channels, in particular TASK-3, but studies on rat type I cells questioned this view. However, sequence alignment identified a putative AMPK recognition motif in human (h) TASK-3, but not hTASK-1, with Ser55 representing a potential phosphorylation site. We therefore studied the effects of five different AMPK activators on recombinant hTASK-3 potassium channels expressed in human embryonic kidney (HEK)-293 cells. Two structurally unrelated AMPK activators, the thienopyridine A-769662 (100-500 µM) and the benzimidazole 991 (3-30 µM) inhibited hTASK-3 currents in a concentration-dependent manner, while the 4-azabenzimidazole MK-8722 (3-30 µM) partially inhibited hTASK-3 at concentrations above those required for maximal AMPK activation. By contrast, the 4-azabenzimidazole, BI-9774 (10-100 µM; a closely related analogue of MK8722) and the pro-drug AICA-riboside (1 mM; metabolised to ZMP, an AMP-mimetic) had no significant effect on hTASK-3 currents at concentrations sufficient to maximally activate AMPK. Importantly, A-769662 (300 µM) also inhibited hTASK-3 channel currents in HEK-293 cells that stably over-expressed an AMPK-β1 subunit mutant (S108A) that renders AMPK insensitive to activators that bind to the Allosteric Drug and Metabolite site, such as A-769662. We therefore identify A-769662 and 991 as novel hTASK-3 channel inhibitors and provide conclusive evidence that AMPK does not regulate hTASK-3 channel currents.
Collapse
Affiliation(s)
- Esraa A Said
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ryan W Lewis
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Mark L Dallas
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | - Chris Peers
- Previous affiliation: School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Fiona A Ross
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 4HN, UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - D Grahame Hardie
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 4HN, UK
| | - A Mark Evans
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
2
|
Recovery of Human Embryonic Stem Cells-Derived Neural Progenitors Exposed to Hypoxic-Ischemic-Reperfusion Injury by Indirect Exposure to Wharton’s Jelly Mesenchymal Stem Cells Through Phosphatidyl-inositol-3-Kinase Pathway. Cell Mol Neurobiol 2020; 42:1167-1188. [DOI: 10.1007/s10571-020-01007-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
|
3
|
Ding XW, Li R, Geetha T, Tao YX, Babu JR. Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165858. [PMID: 32531260 DOI: 10.1016/j.bbadis.2020.165858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
As the population ages, obesity and metabolic complications as well as neurological disorders are becoming more prevalent, with huge economic burdens on both societies and families. New therapeutics are urgently needed. Nerve growth factor (NGF), first discovered in 1950s, is a neurotrophic factor involved in regulating cell proliferation, growth, survival, and apoptosis in both central and peripheral nervous systems. NGF and its precursor, proNGF, bind to TrkA and p75 receptors and initiate protein phosphorylation cascades, resulting in changes of cellular functions, and are associated with obesity, diabetes and its complications, and Alzheimer's disease. In this article, we summarize changes in NGF levels in metabolic and neuronal disorders, the signal transduction initiated by NGF and proNGF, the physiological and pathophysiological relevance, and therapeutic potential in treating chronic metabolic diseases and cognitive decline.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
4
|
TASK channels: channelopathies, trafficking, and receptor-mediated inhibition. Pflugers Arch 2020; 472:911-922. [DOI: 10.1007/s00424-020-02403-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023]
|
5
|
Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells. Cell Signal 2020; 65:109434. [DOI: 10.1016/j.cellsig.2019.109434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022]
|
6
|
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
7
|
Matsuoka H, Inoue M. Molecular mechanism for muscarinic M 1 receptor-mediated endocytosis of TWIK-related acid-sensitive K + 1 channels in rat adrenal medullary cells. J Physiol 2017; 595:6851-6867. [PMID: 28944482 DOI: 10.1113/jp275039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/15/2017] [Indexed: 01/25/2023] Open
Abstract
KEY POINTS The muscarinic acetylcholine receptor (mAChR)-mediated increase in excitability in rat adrenal medullary cells is at least in part due to inhibition of TWIK (tandem of P domains in a weak inwardly rectifying K+ channel)-related acid-sensitive K+ (TASK)1 channels. In this study we focused on the molecular mechanism of mAChR-mediated inhibition of TASK1 channels. Exposure to muscarine resulted in a clathrin-dependent endocytosis of TASK1 channels following activation of the muscarinic M1 receptor (M1 R). This muscarinic signal for the endocytosis was mediated in sequence by phospholipase C (PLC), protein kinase C (PKC), and then the non-receptor tyrosine kinase Src with the consequent tyrosine phosphorylation of TASK1. The present results establish that TASK1 channels are tyrosine phosphorylated and internalized in a clathrin-dependent manner in response to M1 R stimulation and this translocation is at least in part responsible for muscarinic inhibition of TASK1 channels in rat AM cells. ABSTRACT Activation of muscarinic receptor (mAChR) in rat adrenal medullary (AM) cells induces depolarization through the inhibition of TWIK-related acid-sensitive K+ (TASK)1 channels. Here, pharmacological and immunological approaches were used to elucidate the molecular mechanism for this mAChR-mediated inhibition. TASK1-like immunoreactive (IR) material was mainly located at the cell periphery in dissociated rat AM cells, and its majority was internalized in response to muscarine. The muscarine-induced inward current and translocation of TASK1 were suppressed by dynasore, a dynamin inhibitor. The muscarinic translocation was suppressed by MT7, a specific M1 antagonist, and the dose-response curves for muscarinic agonist-induced translocation were similar to those for the muscarinic inhibition of TASK1 currents. The muscarine-induced inward current and/or translocation of TASK1 were suppressed by inhibitors for phospholipase C (PLC), protein kinase C (PKC), and/or Src. TASK1 channels in AM cells and PC12 cells were transiently associated with Src and were tyrosine phosphorylated in response to muscarinic stimulation. After internalization, TASK1 channels were quickly dephosphorylated even while they remained in the cytoplasm. The cytoplasmic TASK1-like IR material quickly recycled back to the cell periphery after muscarine stimulation for 0.5 min, but not 10 min. We conclude that M1 R stimulation results in internalization of TASK1 channels through the PLC-PKC-Src pathway with the consequent phosphorylation of tyrosine and that this M1 R-mediated internalization is at least in part responsible for muscarinic inhibition of TASK1 channels in rat AM cells.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, 807-8555, Japan
| | - Masumi Inoue
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, 807-8555, Japan
| |
Collapse
|
8
|
Leist M, Rinné S, Datunashvili M, Aissaoui A, Pape HC, Decher N, Meuth SG, Budde T. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. J Physiol 2017; 595:5875-5893. [PMID: 28714121 DOI: 10.1113/jp274527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.
Collapse
Affiliation(s)
- Michael Leist
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Susanne Rinné
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Maia Datunashvili
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Ania Aissaoui
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, AG Vegetative Physiologie, Philipps-Universität, Deutschhausstraße 1-2, D-35037, Marburg, Germany
| | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| |
Collapse
|
9
|
Muscarinic receptors in adrenal chromaffin cells: physiological role and regulation of ion channels. Pflugers Arch 2017; 470:29-38. [DOI: 10.1007/s00424-017-2047-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
|