1
|
Con P, Hamar J, Biran J, Kültz D, Cnaani A. Cell-based homologous expression system for in-vitro characterization of environmental effects on transmembrane peptide transport in fish. Curr Res Physiol 2024; 7:100118. [PMID: 38298473 PMCID: PMC10825657 DOI: 10.1016/j.crphys.2024.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
All organisms encounter environmental changes that lead to physiological adjustments that could drive evolutionary adaptations. The ability to adjust performance in order to cope with environmental changes depends on the organism's physiological plasticity. These adjustments can be reflected in behavioral, physiological, and molecular changes, which interact and affect each other. Deciphering the role of molecular adjustments in physiological changes will help to understand how multiple levels of biological organization are synchronized during adaptations. Transmembrane transporters, which facilitate a cell's interaction with its surroundings, are prime targets for molecular studies of the environmental effects on an organism's physiology. Fish are subjected to environmental fluctuations and exhibit different coping mechanisms. To study the molecular adjustments of fish transporters to their external surrounding, suitable experimental systems must be established. The Mozambique tilapia (Oreochromis mossambicus) is an excellent model for environmental stress studies, due to its extreme salinity tolerance. We established a homologous cellular-based expression system and uptake assay that allowed us to study the effects of environmental conditions on transmembrane transport. We applied our expression system to investigate the effects of environmental conditions on the activity of PepT2, a transmembrane transporter critical in the absorption of dietary peptides and drugs. We created a stable, modified fish cell-line, in which we exogenously expressed the tilapia PepT2, and tested the effects of water temperature and salinity on the uptake of a fluorescent di-peptide, β-Ala-Lys-AMCA. While temperature affected only Vmax, medium salinity had a bi-directional effect, with significantly reduced Vmax in hyposaline conditions and significantly increased Km in hypersaline conditions. These assays demonstrate the importance of suitable experimental systems for fish ecophysiology studies. Furthermore, our in-vitro results show how the effect of hypersaline conditions on the transporter activity can explain expression shifts seen in the intestine of saltwater-acclimated fish, emphasizing the importance of complimentary studies in better understanding environmental physiology. This research highlights the advantages of using homologous expression systems to study environmental effects encountered by fish, in a relevant cellular context. The presented tools and methods can be adapted to study other transporters in-vitro.
Collapse
Affiliation(s)
- Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Hamar
- Department of Animal Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
2
|
Vacca F, Gomes AS, De Gennaro M, Rønnestad I, Bossi E, Verri T. The teleost fish PepT1-type peptide transporters and their relationships with neutral and charged substrates. Front Physiol 2023; 14:1186475. [PMID: 37670771 PMCID: PMC10475540 DOI: 10.3389/fphys.2023.1186475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
In teleosts, two PepT1-type (Slc15a1) transporters, i.e., PepT1a and PepT1b, are expressed at the intestinal level. They translocate charged di/tripeptides with different efficiency, which depends on the position of the charged amino acid in the peptide and the external pH. The relation between the position of the charged amino acid and the capability of transporting the dipeptide was investigated in the zebrafish and Atlantic salmon PepT1-type transporters. Using selected charged (at physiological pH) dipeptides: i.e., the negatively charged Asp-Gly and Gly-Asp, and the positively charged Lys-Gly and Gly-Lys and Lys-Met and Met-Lys, transport currents and kinetic parameters were collected. The neutral dipeptide Gly-Gln was used as a reference substrate. Atlantic salmon PepT1a and PepT1b transport currents were similar in the presence of Asp-Gly and Gly-Asp, while zebrafish PepT1a elicited currents strongly dependent on the position of Asp in the dipeptide and zebrafish PepT1b elicited small transport currents. For Lys- and Met-containing dipeptides smaller currents compared to Gly-Gln were observed in PepT1a-type transporters. In general, for zebrafish PepT1a the currents elicited by all tested substrates slightly increased with membrane potential and pH. For Atlantic salmon PepT1a, the transport current increased with negative potential but only in the presence of Met-containing dipeptides and in a pH-dependent way. Conversely, large currents were shown for PepT1b for all tested substrates but Gly-Lys in Atlantic salmon. This shows that in Atlantic salmon PepT1b for Lys-containing substrates the position of the charged dipeptides carrying the Lys residue defines the current amplitudes, with larger currents observed for Lys in the N-terminal position. Our results add information on the ability of PepT1 to transport charged amino acids and show species-specificity in the kinetic behavior of PepT1-type proteins. They also suggest the importance of the proximity of the substrate binding site of residues such as LysPepT1a/GlnPepT1b for recognition and specificity of the charged dipeptide and point out the role of the comparative approach that exploits the natural protein variants to understand the structure and functions of membrane transporters.
Collapse
Affiliation(s)
- Francesca Vacca
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Ana S. Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Marco De Gennaro
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
3
|
Vacca F, Gomes AS, Murashita K, Cinquetti R, Roseti C, Barca A, Rønnestad I, Verri T, Bossi E. Functional characterization of Atlantic salmon (Salmo salar L.) PepT2 transporters. J Physiol 2022; 600:2377-2400. [PMID: 35413133 PMCID: PMC9321897 DOI: 10.1113/jp282781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract The high‐affinity/low‐capacity system Slc15a2 (PepT2) is responsible for the reuptake of di/tripeptides from the renal proximal tubule, but it also operates in many other tissues and organs. Information regarding PepT2 in teleost fish is limited and, to date, functional data are available from the zebrafish (Danio rerio) only. Here, we report the identification of two slc15a2 genes in the Atlantic salmon (Salmo salar) genome, namely slc15a2a and slc15a2b. The two encoded PepT2 proteins share 87% identity and resemble both structurally and functionally the canonical vertebrate PepT2 system. The mRNA tissue distribution analyses reveal a widespread distribution of slc15a2a transcripts, being more abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and the distal part of the gastrointestinal tract. The function of the two transporters was investigated by heterologous expression in Xenopus laevis oocytes and two‐electrode voltage‐clamp recordings of transport and presteady‐state currents. Both PepT2a and PepT2b in the presence of Gly‐Gln elicit pH‐dependent and Na+ independent inward currents. The biophysical and kinetic analysis of the recorded currents defined the transport properties, confirming that the two Atlantic salmon PepT2 proteins behave as high‐affinity/low‐capacity transporters. The recent structures and the previous kinetic schemes of rat and human PepT2 qualitatively account for the characteristics of the two Atlantic salmon proteins. This study is the first to report on the functional expression of two PepT2‐type transporters that operate in the same vertebrate organism as a result of (a) gene duplication process(es). Key points Two slc15a2‐type genes, slc15a2a and slc15a2b coding for PepT2‐type peptide transporters were found in the Atlantic salmon. slc15a2a
transcripts, widely distributed in the fish tissues, are abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and distal gastrointestinal tract. Amino acids involved in vertebrate Slc15 transport function are conserved in PepT2a and PepT2b proteins. Detailed kinetic analysis indicates that both PepT2a and PepT2b operate as high‐affinity transporters. The kinetic schemes and structures proposed for the mammalian models of PepT2 are suitable to explain the function of the two Atlantic salmon transporters.
Collapse
Affiliation(s)
- Francesca Vacca
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Po. Box 7803, Bergen, NO-5020, Norway
| | - Koji Murashita
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami-ise, Mie, 516-0193, Japan
| | - Raffella Cinquetti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Cristina Roseti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Amilcare Barca
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Po. Box 7803, Bergen, NO-5020, Norway
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| |
Collapse
|
4
|
Del Vecchio G, Murashita K, Verri T, Gomes AS, Rønnestad I. Leptin receptor-deficient (knockout) zebrafish: Effects on nutrient acquisition. Gen Comp Endocrinol 2021; 310:113832. [PMID: 34089707 DOI: 10.1016/j.ygcen.2021.113832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
In mammals, knockout of LEPR results in a hyperphagic, morbid obese, and diabetic phenotype, which supports that leptin plays an important role in the control of appetite and energy metabolism, and that its receptor, LEPR, mediates these effects. To date, little is known about the role(s) of lepr in teleost physiology. We investigated a zebrafish (Danio rerio) homozygous lepr knockout (lepr-/-) line generated by CRISPR/Cas9 in comparison to its wt counterpart with respect to nutrient acquisition, energy allocation, and metabolism. The metabolic characterization included oxygen consumption rate and morphometric parameters (yolk sac area, standard length, wet weight, and condition factor) as proxies for use and allocation of energy in developing (embryos, larvae, and juveniles) zebrafish and showed no particular differences between the two lines, in agreement with previous studies. One exception was found in oxygen consumption at 72 hpf, when zebrafish switch from embryonic to early larval stages and food-seeking behavior could be observed. In this case, the metabolic rate was significantly lower in lepr-/- than in wt. Both phenotypes showed similar responses, with respect to metabolic rate, to acute alterations (22 and 34 °C) in water temperature (measured in terms of Q10 and activation energy) compared to the standard (28 °C) rearing conditions. To assess lepr involvement in signaling the processing and handling of incoming nutrients when an exogenous meal is digested and absorbed, we conducted an in vivo analysis in lepr-/- and wt early (8 days post-fertilization) zebrafish larvae. The larvae were administered a bolus of protein hydrolysate (0%, 1%, 5%, and 15% lactalbumin) directly into the digestive tract lumen, and changes in the mRNA expression profile before and after (1 and 3 h) administration were quantified. The analysis showed transcriptional differences in the expressions of genes involved in the control of appetite and energy metabolism (cart, npy, agrp, and mc4r), sensing (casr, t1r1, t1r3, t1r2-1, t1r2-2, pept1a, and pept1b), and digestion (cck, pyy, try, ct, and amy), with more pronounced effects observed in the orexigenic than in the anorexigenic pathways, suggesting a role of lepr in their regulations. Differences in the mRNA levels of these genes in lepr-/-vs. wt larvae were also observed. Altogether, our analyses suggest an influence of lepr on physiological processes involved in nutrient acquisition, mainly control of food intake and digestion, during early development, whereas metabolism, energy allocation, and growth seem to be only slightly influenced.
Collapse
Affiliation(s)
- Gianmarco Del Vecchio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy; Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway; Aquaculture Research Department, Fisheries Technology Institute, Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway.
| |
Collapse
|
5
|
Del Vecchio G, Lai F, Gomes AS, Verri T, Kalananthan T, Barca A, Handeland S, Rønnestad I. Effects of Short-Term Fasting on mRNA Expression of Ghrelin and the Peptide Transporters PepT1 and 2 in Atlantic Salmon ( Salmo salar). Front Physiol 2021; 12:666670. [PMID: 34234687 PMCID: PMC8255630 DOI: 10.3389/fphys.2021.666670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 01/20/2023] Open
Abstract
Food intake is a vital process that supplies necessary energy and essential nutrients to the body. Information regarding luminal composition in the gastrointestinal tract (GIT) collected through mechanical and nutrient sensing mechanisms are generally conveyed, in both mammals and fish, to the hypothalamic neurocircuits. In this context, ghrelin, the only known hormone with an orexigenic action, and the intestinal peptide transporters 1 and 2, involved in absorption of dietary di- and tripeptides, exert important and also integrated roles for the nutrient uptake. Together, both are potentially involved in signaling pathways that control food intake originating from different segments of the GIT. However, little is known about the role of different paralogs and their response to fasting. Therefore, after 3 weeks of acclimatization, 12 Atlantic salmon (Salmo salar) post-smolt were fasted for 4 days to explore the gastrointestinal response in comparison with fed control (n = 12). The analysis covered morphometric (weight, length, condition factor, and wet content/weight fish %), molecular (gene expression variations), and correlation analyses. Such short-term fasting is a common and recommended practice used prior to any handling in commercial culture of the species. There were no statistical differences in length and weight but a significant lower condition factor in the fasted group. Transcriptional analysis along the gastrointestinal segments revealed a tendency of downregulation for both paralogous genes slc15a1a and slc15a1b and with significant lowered levels in the pyloric ceca for slc15a1a and in the pyloric ceca and midgut for slc15a1b. No differences were found for slc15a2a and slc15a2b (except a higher expression of the fasted group in the anterior midgut), supporting different roles for slc15 paralogs. This represents the first report on the effects of fasting on slc15a2 expressed in GIT in teleosts. Transcriptional analysis of ghrelin splicing variants (ghrl-1 and ghrl-2) showed no difference between treatments. However, correlation analysis showed that the mRNA expression for all genes (restricted to segment with the highest levels) were affected by the residual luminal content. Overall, the results show minimal effects of 4 days of induced fasting in Atlantic salmon, suggesting that more time is needed to initiate a large GIT response.
Collapse
Affiliation(s)
- Gianmarco Del Vecchio
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | - Amilcare Barca
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sigurd Handeland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Vacca F, Barca A, Gomes AS, Mazzei A, Piccinni B, Cinquetti R, Del Vecchio G, Romano A, Rønnestad I, Bossi E, Verri T. The peptide transporter 1a of the zebrafish Danio rerio, an emerging model in nutrigenomics and nutrition research: molecular characterization, functional properties, and expression analysis. GENES AND NUTRITION 2019; 14:33. [PMID: 31890051 PMCID: PMC6923934 DOI: 10.1186/s12263-019-0657-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Background Peptide transporter 1 (PepT1, alias Slc15a1) mediates the uptake of dietary di/tripeptides in all vertebrates. However, in teleost fish, more than one PepT1-type transporter might function, due to specific whole genome duplication event(s) that occurred during their evolution leading to a more complex paralogue gene repertoire than in higher vertebrates (tetrapods). Results Here, we describe a novel di/tripeptide transporter in the zebrafish (Danio rerio), i.e., the zebrafish peptide transporter 1a (PepT1a; also known as Solute carrier family 15 member a1, Slc15a1a), which is a paralogue (78% similarity, 62% identity at the amino acid level) of the previously described zebrafish peptide transporter 1b (PepT1b, alias PepT1; also known as Solute carrier family 15 member 1b, Slc15a1b). Also, we report a basic analysis of the pept1a (slc15a1a) mRNA expression levels in zebrafish adult tissues/organs and embryonic/early larval developmental stages. As assessed by expression in Xenopus laevis oocytes and two-electrode voltage clamp measurements, zebrafish PepT1a, as PepT1b, is electrogenic, Na+-independent, and pH-dependent and functions as a low-affinity system, with K0.5 values for Gly-Gln at − 60 mV of 6.92 mmol/L at pH 7.6 and 0.24 mmol/L at pH 6.5 and at − 120 mV of 3.61 mmol/L at pH 7.6 and 0.45 mmol/L at pH 6.5. Zebrafish pept1a mRNA is highly expressed in the intestine and ovary of the adult fish, while its expression in early development undergoes a complex trend over time, with pept1a mRNA being detected 1 and 2 days post-fertilization (dpf), possibly due to its occurrence in the RNA maternal pool, decreasing at 3 dpf (~ 0.5-fold) and increasing above the 1–2 dpf levels at 4 to 7 dpf, with a peak (~ 7-fold) at 6 dpf. Conclusions We show that the zebrafish PepT1a-type transporter is functional and co-expressed with pept1b (slc15a1b) in the adult fish intestine. Its expression is also confirmed during the early phases of development when the yolk syncytial layer is present and yolk protein resorption processes are active. While completing the missing information on PepT1-type transporters function in the zebrafish, these results open to future investigations on the similar/differential role(s) of PepT1a/PepT1b in zebrafish and teleost fish physiology.
Collapse
Affiliation(s)
- Francesca Vacca
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Amilcare Barca
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Ana S Gomes
- 3Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Aurora Mazzei
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Barbara Piccinni
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy.,Present address: Physiopathology of Reproduction and IVF Unit, Nardò Hospital, Nardò Health and Social Care District, Lecce Local Health Agency, I-73048 Nardò, Lecce Italy
| | - Raffaella Cinquetti
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Gianmarco Del Vecchio
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Alessandro Romano
- 5Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, I-20132 Milan, Italy
| | - Ivar Rønnestad
- 3Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Elena Bossi
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Tiziano Verri
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| |
Collapse
|