1
|
Wang Q, Michalak M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020; 90:102242. [PMID: 32574906 DOI: 10.1016/j.ceca.2020.102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada.
| |
Collapse
|
2
|
Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 2020; 42:267-279. [PMID: 32488451 DOI: 10.1007/s10974-020-09583-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Calsequestrin (CASQ) is the most abundant Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The genome of vertebrates contains two genes, CASQ1 and CASQ2. CASQ1 and CASQ2 have a high level of homology, but show specific patterns of expression. Fast-twitch skeletal muscle fibers express only CASQ1, both CASQ1 and CASQ2 are present in slow-twitch skeletal muscle fibers, while CASQ2 is the only protein present in cardiomyocytes. Depending on the intraluminal SR Ca2+ levels, CASQ monomers assemble to form large polymers, which increase their Ca2+ binding ability. CASQ interacts with triadin and junctin, two additional SR proteins which contribute to localize CASQ to the junctional region of the SR (j-SR) and also modulate CASQ ability to polymerize into large macromolecular complexes. In addition to its ability to bind Ca2+ in the SR, CASQ appears also to be able to contribute to regulation of Ca2+ homeostasis in muscle cells. Both CASQ1 and CASQ2 are able to either activate and inhibit the ryanodine receptors (RyRs) calcium release channels, likely through their interactions with junctin and triadin. Additional evidence indicates that CASQ1 contributes to regulate the mechanism of store operated calcium entry in skeletal muscle via a direct interaction with the Stromal Interaction Molecule 1 (STIM1). Mutations in CASQ2 and CASQ1 have been identified, respectively, in patients with catecholamine-induced polymorphic ventricular tachycardia and in patients with some forms of myopathy. This review will highlight recent developments in understanding CASQ1 and CASQ2 in health and diseases.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Alessandra Gamberucci
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Caterina Amato
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Loredana Migliore
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| |
Collapse
|
3
|
Walmsley GL, Blot S, Venner K, Sewry C, Laporte J, Blondelle J, Barthélémy I, Maurer M, Blanchard-Gutton N, Pilot-Storck F, Tiret L, Piercy RJ. Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:441-456. [PMID: 27939133 DOI: 10.1016/j.ajpath.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 11/16/2022]
Abstract
Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes.
Collapse
Affiliation(s)
- Gemma L Walmsley
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, London, United Kingdom.
| | - Stéphane Blot
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Kerrie Venner
- Electron Microscopy Unit, Institute of Neurology, London, United Kingdom
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, University College London Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Cellular and Molecular Biology (IGBMC), Inserm U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Jordan Blondelle
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Inès Barthélémy
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Marie Maurer
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Nicolas Blanchard-Gutton
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Fanny Pilot-Storck
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Laurent Tiret
- French National Institute of Health and Medical Research (Inserm), Mondor Institute of Biomedical Research (IMRB) U955-E10 Biology of the Neuromuscular System, Créteil, France; University of Paris East, Alfort School of Veterinary Medicine (EnvA), Maisons-Alfort, France
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
4
|
Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, Nori A. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil 2015; 37:27-39. [PMID: 26585961 DOI: 10.1007/s10974-015-9432-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/07/2015] [Indexed: 12/13/2022]
Abstract
Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located.
Collapse
Affiliation(s)
- Sandra Furlan
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Viale G. Colombo 3, 35121, Padua, Italy
| | - Simone Mosole
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U.Bassi 58/B, 35121, Padua, Italy
| | - Pompeo Volpe
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Viale G. Colombo 3, 35121, Padua, Italy
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, Istituto Interuniversitario di Miologia, University of Padova, Viale G. Colombo 3, 35121, Padua, Italy.
| |
Collapse
|
5
|
Bortoloso E, Megighian A, Furlan S, Gorza L, Volpe P. Homer 2 antagonizes protein degradation in slow-twitch skeletal muscles. Am J Physiol Cell Physiol 2013; 304:C68-77. [DOI: 10.1152/ajpcell.00108.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homer represents a new and diversified family of proteins made up of several isoforms. The presence of Homer isoforms, referable to 1b/c and 2a/b, was investigated in fast- and slow-twitch skeletal muscles from both rat and mouse. Homer 1b/c was identical irrespective of the muscle, and Homer 2a/b was instead characteristic of the slow-twitch phenotype. Transition in Homer isoform composition was studied in two established experimental models of atrophy, i.e., denervation and disuse of slow-twitch skeletal muscles of the rat. No change of Homer 1b/c was observed up to 14 days after denervation, whereas Homer 2a/b was found to be significantly decreased at 7 and 14 days after denervation by 70 and 90%, respectively, and in parallel to reduction of muscle mass; 3 days after denervation, relative mRNA was reduced by 90% and remained low thereafter. Seven-day hindlimb suspension decreased Homer 2a/b protein by 70%. Reconstitution of Homer 2 complement by in vivo transfection of denervated soleus allowed partial rescue of the atrophic phenotype, as far as muscle mass, muscle fiber size, and ubiquitinazion are concerned. The counteracting effects of exogenous Homer 2 were mediated by downregulation of MuRF1, Atrogin, and Myogenin, i.e., all genes known to be upregulated at the onset of atrophy. On the other hand, slow-to-fast transition of denervated soleus, another landmark of denervation atrophy, was not rescued by Homer 2 replacement. The present data show that 1) downregulation of Homer 2 is an early event of atrophy, and 2) Homer 2 participates in the control of ubiquitinization and ensuing proteolysis via transcriptional downregulation of MuRF1, Atrogin, and Myogenin. Homers are key players of skeletal muscle plasticity, and Homer 2 is required for trophic homeostasis of slow-twitch skeletal muscles.
Collapse
Affiliation(s)
- Elena Bortoloso
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Padova, Italy; and
| | - Aram Megighian
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Padova, Italy; and
| | - Sandra Furlan
- Istituto di Neuroscienze del Consiglio Nazionale delle Ricerche, Padova, Italy
| | - Luisa Gorza
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Padova, Italy; and
| | - Pompeo Volpe
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Padova, Italy; and
- Istituto di Neuroscienze del Consiglio Nazionale delle Ricerche, Padova, Italy
| |
Collapse
|
6
|
Bartley EJ, Rhudy JL. Endogenous inhibition of the nociceptive flexion reflex (NFR) and pain ratings during the menstrual cycle in healthy women. Ann Behav Med 2012; 43:343-51. [PMID: 22289982 DOI: 10.1007/s12160-012-9345-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND The menstrual cycle influences pain, with symptoms often increasing during the premenstrual (late-luteal) phase. Deficiencies in endogenous inhibition of afferent nociception at the spinal level might contribute to menstrual phase-related changes in pain. PURPOSE This study assessed whether conditioned pain modulation (CPM) of spinal nociception differs between mid-follicular and late-luteal phases. METHODS CPM was evoked by a blood pressure cuff affixed to the right forearm and inflated to induce ischemia in 41 healthy women during both menstrual phases. Suprathreshold electric stimuli were delivered to the left sural nerve to evoke pain and the nociceptive flexion reflex (NFR) before, during, and after forearm ischemia. RESULTS Forearm ischemia produced CPM of electrocutaneous pain and NFR, but inhibition did not differ across mid-follicular and late-luteal phases. CONCLUSIONS Mechanisms contributing to changes in experimental pain across mid-follicular and late-luteal phases in healthy women are not due to deficits in CPM of spinal nociception.
Collapse
Affiliation(s)
- Emily J Bartley
- Department of Psychology, The University of Tulsa, OK 74104, USA
| | | |
Collapse
|
7
|
Tomasi M, Canato M, Paolini C, Dainese M, Reggiani C, Volpe P, Protasi F, Nori A. Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice. Am J Physiol Cell Physiol 2011; 302:C575-86. [PMID: 22049211 DOI: 10.1152/ajpcell.00119.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amplitude of Ca(2+) transients, ultrastructure of Ca(2+) release units, and molecular composition of sarcoplasmic reticulum (SR) are altered in fast-twitch skeletal muscles of calsequestrin-1 (CASQ1)-null mice. To determine whether such changes are directly caused by CASQ1 ablation or are instead the result of adaptive mechanisms, here we assessed ability of CASQ1 in rescuing the null phenotype. In vivo reintroduction of CASQ1 was carried out by cDNA electro transfer in flexor digitorum brevis muscle of the mouse. Exogenous CASQ1 was found to be correctly targeted to the junctional SR (jSR), as judged by immunofluorescence and confocal microscopy; terminal cisternae (TC) lumen was filled with electron dense material and its width was significantly increased, as judged by electron microscopy; peak amplitude of Ca(2+) transients was significantly increased compared with null muscle fibers transfected only with green fluorescent protein (control); and finally, transfected fibers were able to sustain cytosolic Ca(2+) concentration during prolonged tetanic stimulation. Only the expression of TC proteins, such as calsequestrin 2, sarcalumenin, and triadin, was not rescued as judged by Western blot. Thus our results support the view that CASQ1 plays a key role in both Ca(2+) homeostasis and TC structure.
Collapse
Affiliation(s)
- Mirta Tomasi
- Dept. of Experimental Biomedical Sciences, Univ. of Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ramadan W, Marsili A, Huang S, Larsen PR, Silva JE. Type-2 iodothyronine 5'deiodinase in skeletal muscle of C57BL/6 mice. I. Identity, subcellular localization, and characterization. Endocrinology 2011; 152:3082-92. [PMID: 21628384 PMCID: PMC3138240 DOI: 10.1210/en.2011-0137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/06/2011] [Indexed: 01/21/2023]
Abstract
RT-PCR shows that mouse skeletal muscle contains type-2 iodothyronine deiodinase (D2) mRNA. However, the D2 activity has been hard to measure. Except for newborn mice, muscle homogenates have no detectable activity. However, we have reported D2 activity in mouse muscle microsomes. As the mRNA, activity is higher in slow- than in fast-twitch muscle. We addressed here the major problems in measuring D2 activity in muscle by: homogenizing muscle in high salt to improve yield of membranous structures; separating postmitochondrial supernatant between 38 and 50% sucrose, to eliminate lighter membranes lacking D2; washing these with 0.1 M Na(2)CO(3) to eliminate additional contaminating proteins; pretreating all buffers with Chelex, to eliminate catalytic metals; and eliminating the EDTA from the assay, as this can bind iron that enhances dithiothreitol oxidation and promotes peroxidation reactions. Maximum velocity of T(3) generation by postgradient microsomes from red muscles was approximately 1100 fmol/(h · mg) protein with a Michaelis-Menten constant for T(4) of 1.5 nM. D2-specific activity of Na(2)CO(3)-washed microsomes was 6-10 times higher. The enrichment in D2 activity increased in parallel with the capacity of microsomes to load (sarco/endoplasmic reticulum Ca(2+)-ATPase) and bind Ca(2+) (calsequestrin), indicating that D2 resides in the inner sarcoplasmic reticulum, close to the nuclei. The presence of D3 in the sarcolemma suggests that the most of D2-generated T(3) acts locally. Estimates from maximum velocity, Michaelis-Menten constant, and muscle T(4) content suggest that mouse red, type-1, aerobic mouse muscle fibers can generate physiologically relevant amounts of T(3) and, further, that muscle D2 plays an important role in thyroid hormone-dependent muscle thermogenesis.
Collapse
Affiliation(s)
- W Ramadan
- Baystate Medical Center, Tufts University School of Medicine, Springfield, Massachusetts 01199, USA
| | | | | | | | | |
Collapse
|
9
|
Feltrin E, Campanaro S, Diehl AD, Ehler E, Faulkner G, Fordham J, Gardin C, Harris M, Hill D, Knoell R, Laveder P, Mittempergher L, Nori A, Reggiani C, Sorrentino V, Volpe P, Zara I, Valle G, Deegan J. Muscle Research and Gene Ontology: New standards for improved data integration. BMC Med Genomics 2009; 2:6. [PMID: 19178689 PMCID: PMC2657163 DOI: 10.1186/1755-8794-2-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 01/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO) Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. RESULTS The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. CONCLUSION The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic) experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki http://wiki.geneontology.org/index.php/Muscle_Biology.
Collapse
Affiliation(s)
- Erika Feltrin
- CRIBI- Interdepartmental Biotechnology Center, University of Padua, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Li X, Duan H, Fulton TR, Eu JP, Meissner G. Altered stored calcium release in skeletal myotubes deficient of triadin and junctin. Cell Calcium 2008; 45:29-37. [PMID: 18620751 DOI: 10.1016/j.ceca.2008.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/27/2022]
Abstract
Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10mM KCl) by 20-25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 microM 4-chloro-m-cresol, 10mM caffeine, 400 microM UTP, or 1 microM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins' mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | | | | | | | | | | |
Collapse
|
11
|
Rossi D, Barone V, Giacomello E, Cusimano V, Sorrentino V. The sarcoplasmic reticulum: an organized patchwork of specialized domains. Traffic 2008; 9:1044-9. [PMID: 18266914 DOI: 10.1111/j.1600-0854.2008.00717.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The sarcoplasmic reticulum (SR) of skeletal muscle cells is a convoluted structure composed of a variety of tubules and cisternae, which share a continuous lumen delimited by a single continuous membrane, branching to form a network that surrounds each myofibril. In this network, some specific domains basically represented by the longitudinal SR and the junctional SR can be distinguished. These domains are mainly dedicated to Ca(2+) homeostasis in relation to regulation of muscle contraction, with the longitudinal SR representing the sites of Ca(2+) uptake and storage and the junctional SR representing the sites of Ca(2+) release. To perform its functions, the SR takes contact with other cellular elements, the sarcolemma, the contractile apparatus and the mitochondria, giving rise to a number of interactions, most of which are still to be defined at the molecular level. This review will describe some of the most recent advancements in understanding the organization of this complex network and its specific domains. Furthermore, we shall address initial evidence on how SR proteins are retained at distinct SR domains.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience and Interuniversitary Institute of Myology, University of Siena, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
12
|
Stening K, Eriksson O, Wahren L, Berg G, Hammar M, Blomqvist A. Pain sensations to the cold pressor test in normally menstruating women: comparison with men and relation to menstrual phase and serum sex steroid levels. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1711-6. [PMID: 17652363 DOI: 10.1152/ajpregu.00127.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of gonadal hormones on pain sensations was investigated in normally menstruating women (n = 16) using the cold pressor test. Tolerance time, pain threshold, and pain intensity were examined once a week during a 4-wk period, and serum concentrations of 17beta-estradiol and progesterone were determined at each test session, which were classified into the early follicular phase, late follicular phase, early luteal phase, and late luteal phase, as determined by the first day of menses and the actual hormone levels recorded. A group of men (n = 10) of the same age interval was examined for comparison. The data show that pain threshold was reduced during the late luteal phase compared with the late follicular phase, and hormone analyses showed significant positive correlation between the progesterone concentration and lowered pain threshold and increasing pain intensity. Hormone analysis also showed an interaction between S-estradiol and S-progesterone on pain intensity, demonstrating that the increased perceived pain intensity that was associated with high progesterone concentrations was significantly reduced with increasing levels of estradiol. While no statistically significant sex differences in pain measurements were found, women displayed much more pronounced, and statistically significant, session-to-session effects than men, with increased pain threshold and decreased pain intensity with each test session. Hence, these data suggest that the changes in the serum concentration of gonadal hormones that occur during the menstrual cycle influence pain sensations elicited by noxious tonic cold stimulation and show that adaptation to the cold pressor test may be sex dependent.
Collapse
Affiliation(s)
- Kent Stening
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Berkley KJ, Zalcman SS, Simon VR. Sex and gender differences in pain and inflammation: a rapidly maturing field. Am J Physiol Regul Integr Comp Physiol 2006; 291:R241-4. [PMID: 16675636 DOI: 10.1152/ajpregu.00287.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Karen J Berkley
- Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA.
| | | | | |
Collapse
|