1
|
Culp DJ, Zhang Z, Evans RL. VIP and muscarinic synergistic mucin secretion by salivary mucous cells is mediated by enhanced PKC activity via VIP-induced release of an intracellular Ca 2+ pool. Pflugers Arch 2020; 472:385-403. [PMID: 31932898 DOI: 10.1007/s00424-020-02348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Mucin secretion by salivary mucous glands is mediated predominantly by parasympathetic acetylcholine activation of cholinergic muscarinic receptors via increased intracellular free calcium ([Ca2+]i) and activation of conventional protein kinase C isozymes (cPKC). However, the parasympathetic co-neurotransmitter, vasoactive intestinal peptide (VIP), also initiates secretion, but to a lesser extent. In the present study, cross talk between VIP- and muscarinic-induced mucin secretion was investigated using isolated rat sublingual tubuloacini. VIP-induced secretion is mediated by cAMP-activated protein kinase A (PKA), independently of increased [Ca2+]i. Synergistic secretion between VIP and the muscarinic agonist, carbachol, was demonstrated but only with submaximal carbachol. Carbachol has no effect on cAMP ± VIP. Instead, PKA activated by VIP releases Ca2+ from an intracellular pool maintained by the sarco/endoplasmic reticulum Ca2+-ATPase pump. Calcium release was independent of phospholipase C activity. The resultant sustained [Ca2+]i increase is additive to submaximal, but not maximal carbachol-induced [Ca2+]i. Synergistic mucin secretion was mimicked by VIP plus either phorbol 12-myristate 13-acetate or 0.01 μM thapsigargin, and blocked by the PKC inhibitor, Gö6976. VIP-induced Ca2+ release also promoted store-operated Ca2+ entry. Synergism is therefore driven by VIP-mediated [Ca2+]i augmenting cPKC activity to enhance muscarinic mucin secretion. Additional data suggest ryanodine receptors control VIP/PKA-mediated Ca2+ release from a Ca2+ pool also responsive to maximal carbachol. A working model of muscarinic and VIP control of mucous cell exocrine secretion is presented. Results are discussed in relation to synergistic mechanisms in other secretory cells, and the physiological and therapeutic significance of VIP/muscarinic synergism controlling salivary mucous cell exocrine secretion.
Collapse
Affiliation(s)
- David J Culp
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA. .,Department of Oral Biology, UF College of Dentistry, P.O. Box 100424, Gainesville, FL, 32610-3003, USA.
| | - Z Zhang
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - R L Evans
- Center for Oral Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.,Unilever Research & Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, CH63 3JW, UK
| |
Collapse
|
2
|
Hakem Zadeh F, Teng ACT, Kuzmanov U, Chambers PJ, Tupling AR, Gramolini AO. AKAP6 and phospholamban colocalize and interact in HEK-293T cells and primary murine cardiomyocytes. Physiol Rep 2019; 7:e14144. [PMID: 31325238 PMCID: PMC6642276 DOI: 10.14814/phy2.14144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Phospholamban (PLN) is an important Ca2+ modulator at the sarcoplasmic reticulum (SR) of striated muscles. It physically interacts and inhibits sarcoplasmic reticulum Ca2+ATPase (SERCA2) function, whereas a protein kinase A (PKA)‐dependent phosphorylation at its serine 16 reverses the inhibition. The underlying mechanism of this post‐translational modification, however, remains not fully understood. Using publicly available databases, we identified A‐kinase anchoring protein 6 (AKAP6) as a candidate that might play some roles in PLN phosphorylation. Immunofluorescence showed colocalization between GFP‐AKAP6 and PLN in transfected HEK‐293T cells and cultured mouse neonatal cardiomyocytes (CMNCs). Co‐immunoprecipitation confirmed the functional interaction between AKAP6 and PLN in HEK‐293T and isolated adult rat cardiomyocytes in response to isoproterenol stimulation. Functionally, AKAP6 promoted Ca2+ uptake activity of SERCA1 in cotransfected HEK‐293T cells despite the presence of PLN. These results were further confirmed in adult rat cardiomyocytes. Immunofluorescence showed colocalization of both proteins around the perinuclear region, while protein–protein interaction was corroborated by immunoprecipitation of the nucleus‐enriched fraction of rat hearts. Our findings suggest AKAP6 as a novel interacting partner to PLN in HEK‐293T and murine cardiomyocytes.
Collapse
Affiliation(s)
- Farigol Hakem Zadeh
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Allen C T Teng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Uros Kuzmanov
- Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| | - Paige J Chambers
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario
| | - Allan R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario
| | - Anthony O Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario.,Translational Biology and Engineering Program (TBEP), Ted Rogers Centre for Heart Research, Toronto, Ontario
| |
Collapse
|
3
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
4
|
Bustos MA, Lucchesi O, Ruete MC, Tomes CN. Membrane-permeable Rab27A is a regulator of the acrosome reaction: Role of geranylgeranylation and guanine nucleotides. Cell Signal 2018; 44:72-81. [PMID: 29337043 DOI: 10.1016/j.cellsig.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
The acrosome reaction is the regulated exocytosis of mammalian sperm's single secretory granule, essential for fertilization. It relies on small GTPases, the cAMP binding protein Epac, and the SNARE complex, among other components. Here, we describe a novel tool to investigate Rab27-related signaling pathways: a hybrid recombinant protein consisting of human Rab27A fused to TAT, a cell penetrating peptide. With this tool, we aimed to unravel the connection between Rab3, Rab27 and Rap1 in sperm exocytosis and to deepen our understanding about how isoprenylation and guanine nucleotides influence the behaviour of Rab27 in exocytosis. Our results show that TAT-Rab27A-GTP-γ-S permeated into live sperm and triggered acrosomal exocytosis per se when geraylgeranylated but inhibited it when not lipid-modified. Likewise, an impermeant version of Rab27A elicited exocytosis in streptolysin O-permeabilized - but not in non-permeabilized - cells when geranylgeranylated and active. When GDP-β-S substituted for GTP-γ-S, isoprenylated TAT-Rab27A inhibited the acrosome reaction triggered by progesterone and an Epac-selective cAMP analogue, whereas the non-isoprenylated protein did not. Geranylgeranylated TAT-Rab27A-GTP-γ-S promoted the exchange of GDP for GTP on Rab3 and Rap1 detected by far-immunofluorescence with Rab3-GTP and Rap1-GTP binding cassettes. In contrast, TAT-Rab27A lacking isoprenylation or loaded with GDP-β-S prevented the activation of Rab3 and Rap1 elicited by progesterone. Challenging streptolysin O-permeabilized human sperm with calcium increased the population of sperm with Rap1-GTP, Rab3-GTP and Rab27-GTP in the acrosomal region; pretreatment with anti-Rab27 antibodies prevented the activation of all three. The novel findings reported here include: the description of membrane permeant TAT-Rab27A as a trustworthy tool to unveil the regulation of the human sperm acrosome reaction by Rab27 under physiological conditions; that the activation of endogenous Rab27 is required for that of Rab3 and Rap1; and the connection between Epac and Rab27 and between Rab27 and the configuration of the SNARE complex. Moreover, we present direct evidence that Rab27A's lipid modification, and activation/inactivation status correlate with its stimulatory or inhibitory roles in exocytosis.
Collapse
Affiliation(s)
- Matías A Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - María C Ruete
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Claudia N Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina.
| |
Collapse
|
5
|
Park S, Ahuja M, Kim MS, Brailoiu GC, Jha A, Zeng M, Baydyuk M, Wu LG, Wassif CA, Porter FD, Zerfas PM, Eckhaus MA, Brailoiu E, Shin DM, Muallem S. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV. EMBO Rep 2015; 17:266-78. [PMID: 26682800 DOI: 10.15252/embr.201541542] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 01/29/2023] Open
Abstract
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.
Collapse
Affiliation(s)
- Soonhong Park
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan City, Korea
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Archana Jha
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Mei Zeng
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Maryna Baydyuk
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christopher A Wassif
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Patricia M Zerfas
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Eckhaus
- Diagnostic and Research Services Branch, Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Eugen Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Messenger SW, Falkowski MA, Groblewski GE. Ca²⁺-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 2014; 55:369-75. [PMID: 24742357 DOI: 10.1016/j.ceca.2014.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/09/2023]
Abstract
Protein secretion from acinar cells of the pancreas and parotid glands is controlled by G-protein coupled receptor activation and generation of the cellular messengers Ca(2+), diacylglycerol and cAMP. Secretory granule (SG) exocytosis shares some common characteristics with nerve, neuroendocrine and endocrine cells which are regulated mainly by elevated cell Ca(2+). However, in addition to diverse signaling pathways, acinar cells have large ∼1 μm diameter SGs (∼30 fold larger diameter than synaptic vesicles), respond to stimulation at slower rates (seconds versus milliseconds), demonstrate significant constitutive secretion, and in isolated acini, undergo sequential compound SG-SG exocytosis at the apical membrane. Exocytosis proceeds as an initial rapid phase that peaks and declines over 3 min followed by a prolonged phase that decays to near basal levels over 20-30 min. Studies indicate the early phase is triggered by Ca(2+) and involves the SG proteins VAMP2 (vesicle associated membrane protein2), Ca(2+)-sensing protein synatotagmin 1 (syt1) and the accessory protein complexin 2. The molecular details for regulation of VAMP8-mediated SG exocytosis and the prolonged phase of secretion are still emerging. Here we review the known regulatory molecules that impact the sequential exocytic process of SG tethering, docking, priming and fusion in acinar cells.
Collapse
Affiliation(s)
- Scott W Messenger
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Michelle A Falkowski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Guy E Groblewski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
7
|
Sabbatini ME, Gorelick F, Glaser S. Adenylyl cyclases in the digestive system. Cell Signal 2014; 26:1173-81. [PMID: 24521753 DOI: 10.1016/j.cellsig.2014.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 01/31/2014] [Indexed: 02/08/2023]
Abstract
Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed.
Collapse
Affiliation(s)
| | - Fred Gorelick
- Department of Cell Biology and Medicine, Yale University, United States; VA CT, United States
| | - Shannon Glaser
- Department of Internal Medicine, Scott & White-Digestive Disease Research Center, Texas A&M Health Science Center, Central Texas Veterans Health Care System, United States
| |
Collapse
|
8
|
Bruzzone A, Saulière A, Finana F, Sénard JM, Lüthy I, Galés C. Dosage-dependent regulation of cell proliferation and adhesion through dual β2-adrenergic receptor/cAMP signals. FASEB J 2013; 28:1342-54. [PMID: 24308976 DOI: 10.1096/fj.13-239285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of β-adrenergic receptors (β-ARs) remains controversial in normal and tumor breast. Herein we explore the cAMP signaling involved in β-AR-dependent control of proliferation and adhesion of nontumor human breast cell line MCF-10A. Low concentrations of a β-agonist, isoproterenol (ISO), promote cell adhesion (87.5% cells remaining adherent to the plastic dishes following specific detachment vs. 35.0% in control, P<0.001), while increasing concentrations further engages an additional 36% inhibition of Erk1/2 phosphorylation (p-Erk1/2)-dependent cell proliferation (P<0.01). Isoproterenol dose response on cell adhesion was fitted to a 2-site curve (EC50(1): 16.5±11.5 fM, EC50(2): 4.08±3.09 nM), while ISO significantly inhibited p-Erk1/2 according to a 1-site model (EC50: 0.25±0.13 nM). Using β-AR-selective agonist/antagonists and cAMP analogs/inhibitors, we identified a dosage-dependent signaling in which low ISO concentrations target a β2-AR population localized in raft microdomains and stimulate a Gs/cAMP/Epac/adhesion-signaling module, while higher concentrations engage a concomitant activation of another β2-AR population outside rafts and inhibit the proliferation by a Gs/cAMP/PKA-dependent signaling module. Our data provide a new molecular basis for the dose-dependent switch of β-AR signaling. This study also sheds light on a new cAMP pathway core mechanism with a single receptor triggering dual cAMP signaling controlled by PKA or Epac but with different cellular outputs.
Collapse
Affiliation(s)
- Ariana Bruzzone
- 2Inserm U1048, Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, 1, avenue Jean-Poulhès, BP84225, 31432 Toulouse Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
9
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|