1
|
Petratou D, Gjikolaj M, Kaulich E, Schafer W, Tavernarakis N. A proton-inhibited DEG/ENaC ion channel maintains neuronal ionstasis and promotes neuronal survival under stress. iScience 2023; 26:107117. [PMID: 37416472 PMCID: PMC10320524 DOI: 10.1016/j.isci.2023.107117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The nervous system participates in the initiation and modulation of systemic stress. Ionstasis is of utmost importance for neuronal function. Imbalance in neuronal sodium homeostasis is associated with pathologies of the nervous system. However, the effects of stress on neuronal Na+ homeostasis, excitability, and survival remain unclear. We report that the DEG/ENaC family member DEL-4 assembles into a proton-inactivated sodium channel. DEL-4 operates at the neuronal membrane and synapse to modulate Caenorhabditis elegans locomotion. Heat stress and starvation alter DEL-4 expression, which in turn alters the expression and activity of key stress-response transcription factors and triggers appropriate motor adaptations. Similar to heat stress and starvation, DEL-4 deficiency causes hyperpolarization of dopaminergic neurons and affects neurotransmission. Using humanized models of neurodegenerative diseases in C. elegans, we showed that DEL-4 promotes neuronal survival. Our findings provide insights into the molecular mechanisms by which sodium channels promote neuronal function and adaptation under stress.
Collapse
Affiliation(s)
- Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Martha Gjikolaj
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - William Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| |
Collapse
|
2
|
Manoli SS, Kisor K, Webb BA, Barber DL. Ethyl isopropyl amiloride decreases oxidative phosphorylation and increases mitochondrial fusion in clonal untransformed and cancer cells. Am J Physiol Cell Physiol 2021; 321:C147-C157. [PMID: 34038242 DOI: 10.1152/ajpcell.00001.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many cancer cells, regardless of their tissue origin or genetic landscape, have increased expression or activity of the plasma membrane Na-H exchanger NHE1 and a higher intracellular pH (pHi) compared with untransformed cells. A current perspective that remains to be validated is that increased NHE1 activity and pHi enable a Warburg-like metabolic reprogramming of increased glycolysis and decreased mitochondrial oxidative phosphorylation. We tested this perspective and find it is not accurate for clonal pancreatic and breast cancer cells. Using the pharmacological reagent ethyl isopropyl amiloride (EIPA) to inhibit NHE1 activity and decrease pHi, we observe no change in glycolysis, as indicated by secreted lactate and intracellular pyruvate, despite confirming increased activity of the glycolytic enzyme phosphofructokinase-1 at higher pH. Also, in contrast to predictions, we find a significant decrease in oxidative phosphorylation with EIPA, as indicated by oxygen consumption rate (OCR). Decreased OCR with EIPA is not associated with changes in pathways that fuel oxidative phosphorylation or with mitochondrial membrane potential but occurs with a change in mitochondrial dynamics that includes a significant increase in elongated mitochondrial networks, suggesting increased fusion. These findings conflict with current paradigms on increased pHi inhibiting oxidative phosphorylation and increased oxidative phosphorylation being associated with mitochondrial fusion. Moreover, these findings raise questions on the suggested use of EIPA-like compounds to limit metabolic reprogramming in cancer cells.
Collapse
Affiliation(s)
- Sagar S Manoli
- Department of Cell and Tissue Biology, University of California, San Francisco, California
| | - Kyle Kisor
- Department of Cell and Tissue Biology, University of California, San Francisco, California
| | - Bradley A Webb
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, California
| |
Collapse
|
3
|
Pedersen SF, Flinck M, Pardo LA. The Interplay between Dysregulated Ion Transport and Mitochondrial Architecture as a Dangerous Liaison in Cancer. Int J Mol Sci 2021; 22:ijms22105209. [PMID: 34069047 PMCID: PMC8156689 DOI: 10.3390/ijms22105209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Transport of ions and nutrients is a core mitochondrial function, without which there would be no mitochondrial metabolism and ATP production. Both ion homeostasis and mitochondrial phenotype undergo pervasive changes during cancer development, and both play key roles in driving the malignancy. However, the link between these events has been largely ignored. This review comprehensively summarizes and critically discusses the role of the reciprocal relationship between ion transport and mitochondria in crucial cellular functions, including metabolism, signaling, and cell fate decisions. We focus on Ca2+, H+, and K+, which play essential and highly interconnected roles in mitochondrial function and are profoundly dysregulated in cancer. We describe the transport and roles of these ions in normal mitochondria, summarize the changes occurring during cancer development, and discuss how they might impact tumorigenesis.
Collapse
Affiliation(s)
- Stine F. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: (S.F.P.); (L.A.P.)
| | - Mette Flinck
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Correspondence: (S.F.P.); (L.A.P.)
| |
Collapse
|
4
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
5
|
Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. NANOSCALE RESEARCH LETTERS 2020; 15:115. [PMID: 32436107 PMCID: PMC7239959 DOI: 10.1186/s11671-020-03344-7] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/10/2020] [Indexed: 05/19/2023]
Abstract
The unique physicochemical characteristics of nanoparticles have recently gained increasing attention in a diverse set of applications, particularly in the biomedical field. However, concerns about the potential toxicological effects of nanoparticles remain, as they have a higher tendency to generate excessive amounts of reactive oxygen species (ROS). Due to the strong oxidation potential, the excess ROS induced by nanoparticles can result in the damage of biomolecules and organelle structures and lead to protein oxidative carbonylation, lipid peroxidation, DNA/RNA breakage, and membrane structure destruction, which further cause necrosis, apoptosis, or even mutagenesis. This review aims to give a summary of the mechanisms and responsible for ROS generation by nanoparticles at the cellular level and provide insights into the mechanics of ROS-mediated biotoxicity. We summarize the literature on nanoparticle toxicity and suggest strategies to optimize nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Zhongjie Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Jing Wang
- Oral Research Center, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Qihui Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
- Center for Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
6
|
Stoker ML, Newport E, Hulit JC, West AP, Morten KJ. Impact of pharmacological agents on mitochondrial function: a growing opportunity? Biochem Soc Trans 2019; 47:1757-1772. [PMID: 31696924 PMCID: PMC6925523 DOI: 10.1042/bst20190280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
Present-day drug therapies provide clear beneficial effects as many diseases can be driven into remission and the symptoms of others can be efficiently managed; however, the success of many drugs is limited due to both patient non-compliance and adverse off-target or toxicity-induced effects. There is emerging evidence that many of these side effects are caused by drug-induced impairment of mitochondrial function and eventual mitochondrial dysfunction. It is imperative to understand how and why drug-induced side effects occur and how mitochondrial function is affected. In an aging population, age-associated drug toxicity is another key area of focus as the majority of patients on medication are older. Therefore, with an aging population possessing subtle or even more dramatic individual differences in mitochondrial function, there is a growing necessity to identify and understand early on potentially significant drug-associated off-target effects and toxicity issues. This will not only reduce the number of unwanted side effects linked to mitochondrial toxicity but also identify useful mitochondrial-modulating agents. Mechanistically, many successful drug classes including diabetic treatments, antibiotics, chemotherapies and antiviral agents have been linked to mitochondrial targeted effects. This is a growing area, with research to repurpose current medications affecting mitochondrial function being assessed in cancer, the immune system and neurodegenerative disorders including Parkinson's disease. Here, we review the effects that pharmacological agents have on mitochondrial function and explore the opportunities from these effects as potential disease treatments. Our focus will be on cancer treatment and immune modulation.
Collapse
Affiliation(s)
- Megan L. Stoker
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
| | - Emma Newport
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, U.K
| | | | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Byran, TX, U.S.A
| | - Karl J. Morten
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
| |
Collapse
|
7
|
Martín-Montañez E, Pavia J, Valverde N, Boraldi F, Lara E, Oliver B, Hurtado-Guerrero I, Fernandez O, Garcia-Fernandez M. The S1P mimetic fingolimod phosphate regulates mitochondrial oxidative stress in neuronal cells. Free Radic Biol Med 2019; 137:116-130. [PMID: 31035004 DOI: 10.1016/j.freeradbiomed.2019.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022]
Abstract
Fingolimod is one of the few oral drugs available for the treatment of multiple sclerosis (MS), a chronic, inflammatory, demyelinating and neurodegenerative disease. The mechanism of action proposed for this drug is based in the phosphorylation of the molecule to produce its active metabolite fingolimod phosphate (FP) which, in turns, through its interaction with S1P receptors, triggers the functional sequestration of T lymphocytes in lymphoid nodes. On the other hand, part if not most of the damage produced in MS and other neurological disorders seem to be mediated by reactive oxygen species (ROS), and mitochondria is one of the main sources of ROS. In the present work, we have evaluated the anti-oxidant profile of FP in a model of mitochondrial oxidative damage induced by menadione (Vitk3) on neuronal cultures. We provide evidence that incubation of neuronal cells with FP alleviates the Vitk3-induced toxicity, due to a decrease in mitochondrial ROS production. It also decreases regulated cell death triggered by imbalance in oxidative stress (restore values of advanced oxidation protein products and total thiol levels). Also restores mitochondrial function (cytochrome c oxidase activity, mitochondrial membrane potential and oxygen consumption rate) and morphology. Furthermore, increases the expression and activity of protective factors (increases Nrf2, HO1 and Trx2 expression and GST and NQO1 activity), being some of these effects modulated by its interaction with the S1P receptor. FP seems to increase mitochondrial stability and restore mitochondrial dynamics under conditions of oxidative stress, making this drug a potential candidate for the treatment of neurodegenerative diseases other than MS.
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - J Pavia
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - N Valverde
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - E Lara
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain
| | - B Oliver
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, Malaga, Spain
| | - I Hurtado-Guerrero
- Neuroscience Unit, Biomedical Research Institute of Malaga (IBIMA), Malaga University Hospital, Malaga, Spain
| | - O Fernandez
- Department of Pharmacology and Paediatrics, Faculty of Medicine, Malaga University, Malaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Faculty of Medicine, Malaga University, Malaga, Spain.
| |
Collapse
|
8
|
Zhu L, Lu Y, Zhang J, Hu Q. Subcellular Redox Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:385-398. [DOI: 10.1007/978-3-319-63245-2_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Queliconi BB, Kowaltowski AJ, Gottlieb RA. Bicarbonate Increases Ischemia-Reperfusion Damage by Inhibiting Mitophagy. PLoS One 2016; 11:e0167678. [PMID: 27973540 PMCID: PMC5156406 DOI: 10.1371/journal.pone.0167678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/20/2016] [Indexed: 12/31/2022] Open
Abstract
During an ischemic event, bicarbonate and CO2 concentration increase as a consequence of O2 consumption and lack of blood flow. This event is important as bicarbonate/CO2 is determinant for several redox and enzymatic reactions, in addition to pH regulation. Until now, most work done on the role of bicarbonate in ischemia-reperfusion injury focused on pH changes; although reperfusion solutions have a fixed pH, cardiac resuscitation protocols commonly employ bicarbonate to correct the profound acidosis associated with respiratory arrest. However, we previously showed that bicarbonate can increase tissue damage and protein oxidative damage independent of pH. Here we show the molecular basis of bicarbonate-induced reperfusion damage: the presence of bicarbonate selectively impairs mitophagy, with no detectable effect on autophagy, proteasome activity, reactive oxygen species production or protein oxidation. We also show that inhibition of autophagy reproduces the effects of bicarbonate in reperfusion injury, providing additional evidence in support of this mechanism. This phenomenon is especially important because bicarbonate is widely used in resuscitation protocols after cardiac arrest, and while effective as a buffer, may also contribute to myocardial injury.
Collapse
Affiliation(s)
- Bruno B. Queliconi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Roberta A. Gottlieb
- Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
11
|
A γ-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics 2015; 201:1453-66. [PMID: 26500256 DOI: 10.1534/genetics.115.182808] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) occur in most early onset familial Alzheimer's Disease. Despite the identification of the involvement of PSEN in Alzheimer's Disease (AD) ∼20 years ago, the underlying role of PSEN in AD is not fully understood. To gain insight into the biological function of PSEN, we investigated the role of the PSEN homolog SEL-12 in Caenorhabditis elegans. Using genetic, cell biological, and pharmacological approaches, we demonstrate that mutations in sel-12 result in defects in calcium homeostasis, leading to mitochondrial dysfunction. Moreover, consistent with mammalian PSEN, we provide evidence that SEL-12 has a critical role in mediating endoplasmic reticulum (ER) calcium release. Furthermore, we found that in SEL-12-deficient animals, calcium transfer from the ER to the mitochondria leads to fragmentation of the mitochondria and mitochondrial dysfunction. Additionally, we show that the impact that SEL-12 has on mitochondrial function is independent of its role in Notch signaling, γ-secretase proteolytic activity, and amyloid plaques. Our results reveal a critical role for PSEN in mediating mitochondrial function by regulating calcium transfer from the ER to the mitochondria.
Collapse
|
12
|
Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163:560-9. [PMID: 26496603 DOI: 10.1016/j.cell.2015.10.001] [Citation(s) in RCA: 883] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 02/07/2023]
Abstract
Generation, transformation, and utilization of organic molecules in support of cellular differentiation, growth, and maintenance are basic tenets that define life. In eukaryotes, mitochondrial oxygen consumption plays a central role in these processes. During the process of oxidative phosphorylation, mitochondria utilize oxygen to generate ATP from organic fuel molecules but in the process also produce reactive oxygen species (ROS). While ROS have long been appreciated for their damage-promoting, detrimental effects, there is now a greater understanding of their roles as signaling molecules. Here, we review mitochondrial ROS-mediated signaling pathways with an emphasis on how they are involved in various basal and adaptive physiological responses that control organismal homeostasis.
Collapse
Affiliation(s)
- Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven CT 06520; Department of Genetics, Yale School of Medicine, New Haven CT 06520; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven CT 06520.
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven CT 06520; Section of Comparative Medicine, Yale School of Medicine, New Haven CT 06520; Department of Neurobiology, Yale School of Medicine, New Haven CT 06520.
| |
Collapse
|
13
|
Abstract
Although serotonin was discovered over 65 years ago, it has been only within the past decade that serotonin was found to be involved in a covalent post-translational modification to proteins. The enzyme transglutaminase catalyzes the transamidation of serotonin to a protein-bound glutamine residue; the amino group of serotonin is covalently bound to the gamma carboxamide of glutamine. The term serotonylation is used to describe this transamidation reaction to serotonin. Not only can serotonin be a substrate for transamidation to proteins but also other monoamine neurotransmitters are substrates including histamine, dopamine, and noradrenaline. The term monoaminylation has been coined to describe the transamidation of monoamines to protein substrates. Small G proteins have emerged as the most common substrate for monoaminylation and are activated by this post-translational modification. Fibronectin and cytoskeletal proteins are also substrates for monoaminylation. Serotonylation and monoaminylation are involved in a number of physiological functions, including platelet activation, insulin release, smooth muscle contraction, and regulation of membrane localization of the serotonin transporter. Stimulation of 5-HT2A receptors increases serotonylation and activates the small G protein Rac1, which plays a role in dendritic spine regulation. Monoaminylation is implicated in pathophysiological processes as well such as diabetes and hypertension. The availability of monoamines for monoaminylation is altered by antidepressants that target serotonin transporters, noradrenaline transporters, or the enzymatic degradation of monoamines as well as drugs of abuse such as cocaine and amphetamines. Further research on monoaminylation is needed to elucidate its physiological and pathophysiological roles and to explore monoaminylation as a novel target for drug therapy.
Collapse
Affiliation(s)
- Nancy A. Muma
- Department
of Pharmacology
and Toxicology, University of Kansas School of Pharmacy, Lawrence, Kansas 66045, United States
| | - Zhen Mi
- Department
of Pharmacology
and Toxicology, University of Kansas School of Pharmacy, Lawrence, Kansas 66045, United States
| |
Collapse
|
14
|
Biala AK, Dhingra R, Kirshenbaum LA. Mitochondrial dynamics: Orchestrating the journey to advanced age. J Mol Cell Cardiol 2015; 83:37-43. [PMID: 25918048 DOI: 10.1016/j.yjmcc.2015.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/30/2015] [Accepted: 04/19/2015] [Indexed: 12/20/2022]
Abstract
Aging is a degenerative process that unfortunately is an inevitable part of life and risk factor for cardiovascular disease including heart failure. Among the several theories purported to explain the effects of age on cardiac dysfunction, the mitochondrion has emerged a central regulator of this process. Hence, it is not surprising that abnormalities in mitochondrial quality control including biogenesis and turnover have such detrimental effects on cardiac function. In fact mitochondria serve as a conduit for biological signals for apoptosis, necrosis and autophagy respectively. The removal of damaged mitochondria by autophagy/mitophagy is essential for mitochondrial quality control and cardiac homeostasis. Defects in mitochondrial dynamism fission/fusion events have been linked to cardiac senescence and heart failure. In this review we discuss the impact of aging on mitochondrial dynamics and senescence on cardiovascular health. This article is part of a Special Issue entitled: CV Aging.
Collapse
Affiliation(s)
- Agnieszka K Biala
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada; Department of Physiology, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada; Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Rimpy Dhingra
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada; Department of Physiology, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada; Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Lorrie A Kirshenbaum
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada; Department of Physiology, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada; Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada.
| |
Collapse
|
15
|
Regulated spatial organization and sensitivity of cytosolic protein oxidation in Caenorhabditis elegans. Nat Commun 2014; 5:5020. [PMID: 25262602 PMCID: PMC4181376 DOI: 10.1038/ncomms6020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
Cells adjust their behavior in response to redox events by regulating protein activity through the reversible formation of disulfide bridges between cysteine thiols. However, the spatial and temporal control of these modifications remains poorly understood in multicellular organisms. Here, we measured the protein thiol-disulfide balance in live C. elegans using a genetically-encoded redox sensor and found that it is specific to tissues and patterned spatially within a tissue. Insulin signaling regulates the sensor's oxidation at both of these levels. Unexpectedly, we found that isogenic individuals exhibit large differences in the sensor's thiol-disulfide balance. This variation contrasts with the general view that glutathione acts as the main cellular redox buffer. Indeed, our work suggests that glutathione converts small changes in its oxidation level into large changes in its redox potential. We therefore propose that glutathione facilitates the sensitive control of the thioldisulfide balance of target proteins in response to cellular redox events.
Collapse
|
16
|
Jin YN, Yu YV, Gundemir S, Jo C, Cui M, Tieu K, Johnson GVW. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One 2013; 8:e57932. [PMID: 23469253 PMCID: PMC3585875 DOI: 10.1371/journal.pone.0057932] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
Huntington disease (HD) is an inherited neurodegenerative disease resulting from an abnormal expansion of polyglutamine in huntingtin (Htt). Compromised oxidative stress defense systems have emerged as a contributing factor to the pathogenesis of HD. Indeed activation of the Nrf2 pathway, which plays a prominent role in mediating antioxidant responses, has been considered as a therapeutic strategy for the treatment of HD. Given the fact that there is an interrelationship between impairments in mitochondrial dynamics and increased oxidative stress, in this present study we examined the effect of mutant Htt (mHtt) on these two parameters. STHdh(Q111/Q111) cells, striatal cells expressing mHtt, display more fragmented mitochondria compared to STHdh(Q7/Q7) cells, striatal cells expressing wild type Htt, concurrent with alterations in the expression levels of Drp1 and Opa1, key regulators of mitochondrial fission and fusion, respectively. Studies of mitochondrial dynamics using cell fusion and mitochondrial targeted photo-switchable Dendra revealed that mitochondrial fusion is significantly decreased in STHdh(Q111/Q111) cells. Oxidative stress leads to dramatic increases in the number of STHdh(Q111/Q111) cells containing swollen mitochondria, while STHdh(Q7/Q7) cells just show increases in the number of fragmented mitochondria. mHtt expression results in reduced activity of Nrf2, and activation of the Nrf2 pathway by the oxidant tBHQ is significantly impaired in STHdh(Q111/Q111) cells. Nrf2 expression does not differ between the two cell types, but STHdh(Q111/Q111) cells show reduced expression of Keap1 and p62, key modulators of Nrf2 signaling. In addition, STHdh(Q111/Q111) cells exhibit increases in autophagy, whereas the basal level of autophagy activation is low in STHdh(Q7/Q7) cells. These results suggest that mHtt disrupts Nrf2 signaling which contributes to impaired mitochondrial dynamics and may enhance susceptibility to oxidative stress in STHdh(Q111/Q111) cells.
Collapse
Affiliation(s)
- Youngnam N. Jin
- Departmentsof Pharmacology and Physiology, University of Rochester, Rochester, New York, United States of America
| | - Yanxun V. Yu
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Soner Gundemir
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
| | - Chulman Jo
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
| | - Mei Cui
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
| | - Kim Tieu
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
| | - Gail V. W. Johnson
- Departmentsof Pharmacology and Physiology, University of Rochester, Rochester, New York, United States of America
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Allman E, Waters K, Ackroyd S, Nehrke K. Analysis of Ca2+ signaling motifs that regulate proton signaling through the Na+/H+ exchanger NHX-7 during a rhythmic behavior in Caenorhabditis elegans. J Biol Chem 2013; 288:5886-95. [PMID: 23319594 DOI: 10.1074/jbc.m112.434852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane proton transporters contribute to pH homeostasis but have also been shown to transmit information between cells in close proximity through regulated proton secretion. For example, the nematode intestinal Na(+)/H(+) exchanger NHX-7 causes adjacent muscle cells to contract by transiently acidifying the extracellular space between the intestine and muscle. NHX-7 operates during a Ca(2+)-dependent rhythmic behavior and contains several conserved motifs for regulation by Ca(2+) input, including motifs for calmodulin and phosphatidylinositol 4,5-bisphosphate binding, protein kinase C- and calmodulin-dependent protein kinase type II phosphorylation, and a binding site for calcineurin homologous protein. Here, we tested the idea that Ca(2+) input differentiates proton signaling from pH housekeeping activity. Each of these motifs was mutated, and their contribution to NHX-7 function was assessed. These functions included pH recovery from acidification in cells in culture expressing recombinant NHX-7, extracellular acidification measured during behavior in live moving worms, and muscle contraction strength as a result of this acidification. Our data suggest that multiple levels of Ca(2+) input regulate NHX-7, whose transport capacity normally exceeds the minimum necessary to cause muscle contraction. Furthermore, extracellular acidification limits NHX-7 proton transport through feedback inhibition, likely to prevent metabolic acidosis from occurring. Our findings are consistent with an integrated network whereby both Ca(2+) and pH contribute to proton signaling. Finally, our results obtained by expressing rat NHE1 in Caenorhabditis elegans suggest that a conserved mechanism of regulation may contribute to cell-cell communication or proton signaling by Na(+)/H(+) exchangers in mammals.
Collapse
Affiliation(s)
- Erik Allman
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
18
|
Li Q, Zhou LY, Gao GF, Jiao JQ, Li PF. Mitochondrial network in the heart. Protein Cell 2012; 3:410-8. [PMID: 22752872 DOI: 10.1007/s13238-012-2921-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/17/2012] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are subcellular organelles that provide energy for the cell. They form a dynamic tubular network and play an important role in maintaining the cell function and integrity. Heart is a powerful organ that supplies the motivation for circulation, thereby requiring large amounts of energy. Thus, the healthiness of cardiomyocytes and mitochondria is necessary for the normal cardiac function. Mitochondria not only lie in the center of the cell apoptotic pathway, but also are the major source of reactive oxygen species (ROS) generation. Mitochondrial morphological change includes fission and fusion that are regulated by a large number of proteins. In this review we discuss the regulators of mitochondrial fission/fusion and their association with cell apoptosis, autophagy and ROS production in the heart.
Collapse
Affiliation(s)
- Qian Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|