1
|
Conte E, Boccanegra B, Dinoi G, Pusch M, De Luca A, Liantonio A, Imbrici P. Therapeutic Approaches to Tuberous Sclerosis Complex: From Available Therapies to Promising Drug Targets. Biomolecules 2024; 14:1190. [PMID: 39334956 PMCID: PMC11429992 DOI: 10.3390/biom14091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem disorder caused by heterozygous loss-of-function pathogenic variants in the tumour suppressor genes TSC1 and TSC2 encoding the tuberin and hamartin proteins, respectively. Both TSC1 and TSC2 inhibit the mammalian target of rapamycin (mTOR) complexes pathway, which is crucial for cell proliferation, growth, and differentiation, and is stimulated by various energy sources and hormonal signaling pathways. Pathogenic variants in TSC1 and TSC2 lead to mTORC1 hyperactivation, producing benign tumours in multiple organs, including the brain and kidneys, and drug-resistant epilepsy, a typical sign of TSC. Brain tumours, sudden unexpected death from epilepsy, and respiratory conditions are the three leading causes of morbidity and mortality. Even though several therapeutic options are available for the treatment of TSC, there is further need for a better understanding of the pathophysiological basis of the neurologic and other manifestations seen in TSC, and for novel therapeutic approaches. This review provides an overview of the main current therapies for TSC and discusses recent studies highlighting the repurposing of approved drugs and the emerging role of novel targets for future drug design.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Brigida Boccanegra
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Giorgia Dinoi
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Michael Pusch
- Institute of Biophysics, National Research Council, 16149 Genova, Italy;
| | - Annamaria De Luca
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Antonella Liantonio
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| | - Paola Imbrici
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (E.C.); (B.B.); (G.D.); (A.D.L.); (A.L.)
| |
Collapse
|
2
|
Tchoe Y, Lee J, Liu R, Bourhis AM, Vatsyayan R, Tonsfeldt KJ, Dayeh SA. Considerations and recent advances in nanoscale interfaces with neuronal and cardiac networks. APPLIED PHYSICS REVIEWS 2021; 8:041317. [PMID: 34868443 PMCID: PMC8596389 DOI: 10.1063/5.0052666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/07/2021] [Indexed: 05/21/2023]
Abstract
Nanoscale interfaces with biological tissue, principally made with nanowires (NWs), are envisioned as minimally destructive to the tissue and as scalable tools to directly transduce the electrochemical activity of a neuron at its finest resolution. This review lays the foundations for understanding the material and device considerations required to interrogate neuronal activity at the nanoscale. We first discuss the electrochemical nanoelectrode-neuron interfaces and then present new results concerning the electrochemical impedance and charge injection capacities of millimeter, micrometer, and nanometer scale wires with Pt, PEDOT:PSS, Si, Ti, ITO, IrO x , Ag, and AgCl materials. Using established circuit models for NW-neuron interfaces, we discuss the impact of having multiple NWs interfacing with a single neuron on the amplitude and temporal characteristics of the recorded potentials. We review state of the art advances in nanoelectrode-neuron interfaces, the standard control experiments to investigate their electrophysiological behavior, and present recent high fidelity recordings of intracellular potentials obtained with ultrasharp NWs developed in our laboratory that naturally permeate neuronal cell bodies. Recordings from arrays and individually addressable electrically shorted NWs are presented, and the long-term stability of intracellular recording is discussed and put in the context of established techniques. Finally, a perspective on future research directions and applications is presented.
Collapse
Affiliation(s)
- Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Ren Liu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Andrew M. Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
3
|
D'Adamo MC, Liantonio A, Conte E, Pessia M, Imbrici P. Ion Channels Involvement in Neurodevelopmental Disorders. Neuroscience 2020; 440:337-359. [PMID: 32473276 DOI: 10.1016/j.neuroscience.2020.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Inherited and sporadic mutations in genes encoding for brain ion channels, affecting membrane expression or biophysical properties, have been associated with neurodevelopmental disorders characterized by epilepsy, cognitive and behavioral deficits with significant phenotypic and genetic heterogeneity. Over the years, the screening of a growing number of patients and the functional characterization of newly identified mutations in ion channels genes allowed to recognize new phenotypes and to widen the clinical spectrum of known diseases. Furthermore, advancements in understanding disease pathogenesis at atomic level or using patient-derived iPSCs and animal models have been pivotal to orient therapeutic intervention and to put the basis for the development of novel pharmacological options for drug-resistant disorders. In this review we will discuss major improvements and critical issues concerning neurodevelopmental disorders caused by dysfunctions in brain sodium, potassium, calcium, chloride and ligand-gated ion channels.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | | | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|
4
|
Imbrici P, Nematian-Ardestani E, Hasan S, Pessia M, Tucker SJ, D'Adamo MC. Altered functional properties of a missense variant in the TRESK K + channel (KCNK18) associated with migraine and intellectual disability. Pflugers Arch 2020; 472:923-930. [PMID: 32394190 DOI: 10.1007/s00424-020-02382-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022]
Abstract
Mutations in the KCNK18 gene that encodes the TRESK K2P potassium channel have previously been linked with typical familial migraine with aura. Recently, an atypical clinical case has been reported in which a male individual carrying the p.Trp101Arg (W101R) missense mutation in the KCNK18 gene was diagnosed with intellectual disability and migraine with brainstem aura. Here we report the functional characterization of this new missense variant. This mutation is located in a highly conserved residue close to the selectivity filter, and our results show although these mutant channels retain their K+ selectivity and calcineurin-dependent regulation, the variant causes an overall dramatic loss of TRESK channel function as well as an initial dominant-negative effect when co-expressed with wild-type channels in Xenopus laevis oocytes. The dramatic functional consequences of this mutation thereby support a potentially pathogenic role for this variant and provide further insight into the relationship between the structure and function of this ion channel.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Ehsan Nematian-Ardestani
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD, Msida, 2080, Malta
| | - Sonia Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mauro Pessia
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD, Msida, 2080, Malta.,Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Maria Cristina D'Adamo
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD, Msida, 2080, Malta.
| |
Collapse
|
5
|
D’Adamo MC, Liantonio A, Rolland JF, Pessia M, Imbrici P. Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21082935. [PMID: 32331416 PMCID: PMC7215777 DOI: 10.3390/ijms21082935] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.
Collapse
Affiliation(s)
- Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
| | - Antonella Liantonio
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain Po Box 17666, UAE
| | - Paola Imbrici
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Correspondence:
| |
Collapse
|
6
|
Clinical Spectrum of KCNA1 Mutations: New Insights into Episodic Ataxia and Epilepsy Comorbidity. Int J Mol Sci 2020; 21:ijms21082802. [PMID: 32316562 PMCID: PMC7215408 DOI: 10.3390/ijms21082802] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the KCNA1 gene, which encodes voltage-gated Kv1.1 potassium channel α-subunits, cause a variety of human diseases, complicating simple genotype–phenotype correlations in patients. KCNA1 mutations are primarily associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1). However, some patients have EA1 in combination with epilepsy, whereas others have epilepsy alone. KCNA1 mutations can also cause hypomagnesemia and paroxysmal dyskinesia in rare cases. Why KCNA1 variants are associated with such phenotypic heterogeneity in patients is not yet understood. In this review, literature databases (PubMed) and public genetic archives (dbSNP and ClinVar) were mined for known pathogenic or likely pathogenic mutations in KCNA1 to examine whether patterns exist between mutation type and disease manifestation. Analyses of the 47 deleterious KCNA1 mutations that were identified revealed that epilepsy or seizure-related variants tend to cluster in the S1/S2 transmembrane domains and in the pore region of Kv1.1, whereas EA1-associated variants occur along the whole length of the protein. In addition, insights from animal models of KCNA1 channelopathy were considered, as well as the possible influence of genetic modifiers on disease expressivity and severity. Elucidation of the complex relationship between KCNA1 variants and disease will enable better diagnostic risk assessment and more personalized therapeutic strategies for KCNA1 channelopathy.
Collapse
|
7
|
Niespodziany I, Mullier B, André VM, Ghisdal P, Jnoff E, Moreno-Delgado D, Swinnen D, Sands Z, Wood M, Wolff C. Discovery of a small molecule modulator of the Kv1.1/Kvβ1 channel complex that reduces neuronal excitability and in vitro epileptiform activity. CNS Neurosci Ther 2018; 25:442-451. [PMID: 30242974 DOI: 10.1111/cns.13060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/27/2022] Open
Abstract
AIMS Kv1.1 (KCNA1) channels contribute to the control of neuronal excitability and have been associated with epilepsy. Kv1.1 channels can associate with the cytoplasmic Kvβ1 subunit resulting in rapid inactivating A-type currents. We hypothesized that removal of channel inactivation, by modulating Kv1.1/Kvβ1 interaction with a small molecule, would lead to decreased neuronal excitability and anticonvulsant activity. METHODS We applied high-throughput screening to identify ligands able to modulate the Kv1.1-T1 domain/Kvβ1 protein complex. We then selected a compound that was characterized on recombinant Kv1.1/Kvβ1 channels by electrophysiology and further evaluated on sustained neuronal firing and on in vitro epileptiform activity using a high K+ -low Ca2+ model in hippocampal slices. RESULTS We identified a novel compound able to modulate the interaction of the Kv1.1/Kvβ1 complex and that produced a functional inhibition of Kv1.1/Kvβ1 channel inactivation. We demonstrated that this compound reduced the sustained repetitive firing in hippocampal neurons and was able to abolish the development of in vitro epileptiform activity. CONCLUSIONS This study describes a rational drug discovery approach for the identification of novel ligands that inhibit Kv1.1 channel inactivation and provides pharmacological evidence that such a mechanism translates into physiological effects by reducing in vitro epileptiform activity.
Collapse
Affiliation(s)
| | - Brice Mullier
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | | | - Philippe Ghisdal
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Eric Jnoff
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | | | - Dominique Swinnen
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Zara Sands
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Martyn Wood
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Christian Wolff
- Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| |
Collapse
|
8
|
Rogers A, Golumbek P, Cellini E, Doccini V, Guerrini R, Wallgren-Pettersson C, Thuresson AC, Gurnett CA. De novo KCNA1 variants in the PVP motif cause infantile epileptic encephalopathy and cognitive impairment similar to recurrent KCNA2 variants. Am J Med Genet A 2018; 176:1748-1752. [PMID: 30055040 DOI: 10.1002/ajmg.a.38840] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 11/08/2022]
Abstract
Derangements in voltage-gated potassium channel function are responsible for a range of paroxysmal neurologic disorders. Pathogenic variants in the KCNA1 gene, which encodes the voltage-gated potassium channel Kv1.1, are responsible for Episodic Ataxia Type 1 (EA1). Patients with EA1 have an increased incidence of epilepsy, but KCNA1 variants have not been described in epileptic encephalopathy. Here, we describe four patients with infantile-onset epilepsy and cognitive impairment who harbor de novo KCNA1 variants located within the Kv-specific Pro-Val-Pro (PVP) motif which is essential for channel gating. The first two patients have KCNA1 variants resulting in (p.Pro405Ser) and (p.Pro405Leu), respectively, and a set of identical twins has a variant affecting a nearby residue (p.Pro403Ser). Notably, recurrent de novo variants in the paralogous PVP motif of KCNA2 have previously been shown to abolish channel function and also cause early-onset epileptic encephalopathy. Importantly, this report extends the range of phenotypes associated with KCNA1 variants to include epileptic encephalopathy when the PVP motif is involved.
Collapse
Affiliation(s)
- Amanda Rogers
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Paul Golumbek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Elena Cellini
- Anna Meyer Children's Hospital, University of Florence, Firenze, Italy
| | - Viola Doccini
- Anna Meyer Children's Hospital, University of Florence, Firenze, Italy
| | - Renzo Guerrini
- Anna Meyer Children's Hospital, University of Florence, Firenze, Italy
| | - Carina Wallgren-Pettersson
- Department of Medical and Clinical Genetics, Folkhaelsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Ann-Charlotte Thuresson
- Science for Life Laboratory, Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
9
|
Karalok ZS, Megaro A, Cenciarini M, Guven A, Hasan SM, Taskin BD, Imbrici P, Ceylaner S, Pessia M, D'Adamo MC. Identification of a New de Novo Mutation Underlying Regressive Episodic Ataxia Type I. Front Neurol 2018; 9:587. [PMID: 30140249 PMCID: PMC6094999 DOI: 10.3389/fneur.2018.00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022] Open
Abstract
Episodic ataxia type 1 (EA1), a Shaker-like K+channelopathy, is a consequence of genetic anomalies in the KCNA1 gene that lead to dysfunctions in the voltage-gated K+ channel Kv1. 1. Generally, KCNA1 mutations are inherited in an autosomal dominant manner. Here we report the clinical phenotype of an EA1 patient characterized by ataxia attacks that decrease in frequency with age, and eventually leading to therapy discontinuation. A new de novo mutation (c.932G>A) that changed a highly conserved glycine residue into an aspartate (p.G311D) was identified by using targeted next-generation sequencing. The conserved glycine is located in the S4–S5 linker, a crucial domain controlling Kv1.1 channel gating. In silico analyses predicted the mutation deleterious. Heterologous expression of the mutant (Kv1.1-G311D) channels resulted in remarkably decreased amplitudes of measured current, confirming the identified variant is pathogenic. Collectively, these findings corroborate the notion that EA1 also results from de novo variants and point out that regardless of the mutation-induced deleterious loss of Kv1.1 channel function the ataxia phenotype may improve spontaneously.
Collapse
Affiliation(s)
- Zeynep S Karalok
- Department of Pediatric Neurology, Ankara Children's Hematology Oncology Research and Training Hospital, Ankara, Turkey
| | - Alfredo Megaro
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Marta Cenciarini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Alev Guven
- Department of Pediatric Neurology, Ankara Children's Hematology Oncology Research and Training Hospital, Ankara, Turkey
| | - Sonia M Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Birce D Taskin
- Department of Pediatric Neurology, Ankara Children's Hematology Oncology Research and Training Hospital, Ankara, Turkey
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Maria C D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
10
|
Zhang J, Mohamad FH, Wong JH, Mohamad H, Ismail AH, Mohamed Yusoff AA, Osman H, Wong KT, Idris Z, Abdullah JM. The Effects of 4-Hydroxybenzoic Acid Identified from Bamboo ( Dendrocalamus asper) Shoots on Kv1.4 Channel. Malays J Med Sci 2018; 25:101-113. [PMID: 29599640 DOI: 10.21315/mjms2018.25.1.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 12/30/2017] [Indexed: 10/17/2022] Open
Abstract
Background Bamboo shoot has been used as a treatment for epilepsy in traditional Chinese medicine for generations to treat neuronal disorders such as convulsive, dizziness and headaches. 4-hydroxybenzoic acid (4-hba) is a non-flavonoid phenol found abundantly in Dendrocalamus asper shoots (bamboo), fruits (strawberries and apples) and flowers. Kv1.4 is a rapidly inactivating Shaker-related member of the voltage-gated potassium channels with two inactivation mechanisms; the fast N-type and slow C-type. It plays vital roles in repolarisation, hyperpolarisation and signaling the restoration of resting membrane potential through the regulation of the movement of K+ across the cellular membrane. Methods Chemical compounds from Dendrocalamus asper bamboo shoots were purified and identified as major palmitic acids mixed with other minor fatty acids, palmitic acid, 4-hydroxybenzaldehyde, lauric acid, 4-hydroxybenzoic acid and cholest-4-ene-3-one. The response of synthetic 4-hydroxybenzoic acid was tested on Kv1.4 potassium channel which was injected into viable oocytes that was extracted from Xenopus laevis. The current were detected by the two-microelectrode voltage clamp, holding potential starting from -80 mV with 20 mV step-up until +80 mV. Readings of treatments with 0.1% DMSO, 4-hba concentrations and K channel blockers were taken at +60 mV. The ratio of tail/peak amplitude is the index of the activity of the Kv1.4 channels with n ≥ 6 (number of oocytes tested). The decreases of the ratios of five different concentrations (1 μM, 10 μM, 100 μM, 1 mM and 2.5 mM) were compared with 0.1% DMSO as the control. Results All concentration showed statistically significant results with P < 0.05 except for 100 μM. The normalised current of the 4-hba concentrations were compared with potassium channel blockers (TEA and 4-AP) and all groups showed statistically significant results. This study also showed that time taken for each concentration to affect Kv1.4 does not play any significant roles. Conclusion 4-hydroxybenzoic acid was found to be able to enhance the inactivation of Kv1.4 by lowering the membrane potential so that the abnormal neuronal firing can be inhibited. With IC50 slightly higher than 10 μM, increasing concentrations (100 μM, 1 mM and 2.5 mM) had shown to exhibit toxicity effects. The best concentration from this study is 10 μM with Hill slope of 0.1799.
Collapse
Affiliation(s)
- Jingli Zhang
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Fatin H Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jia Hui Wong
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Abdul Hadi Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Center for Neuroscience Services and Research, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Kok Tong Wong
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Zamzuri Idris
- Center for Neuroscience Services and Research, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Center for Neuroscience Services and Research, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
11
|
Li H, Sun S, Chen J, Xu G, Wang H, Qian Q. Genetics of Magnesium Disorders. KIDNEY DISEASES 2017; 3:85-97. [PMID: 29344503 DOI: 10.1159/000477730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/23/2017] [Indexed: 12/30/2022]
Abstract
Background Magnesium (Mg2+), the second most abundant cation in the cell, is woven into a multitude of cellular functions. Dysmagnesemia is associated with multiple diseases and, when severe, can be life-threatening. Summary This review discusses Mg2+ homeostasis and function with specific focus on renal Mg2+ handling. Intrarenal channels and transporters related to Mg2+ absorption are discussed. Unraveling the rare genetic diseases with manifestations of dysmagnesemia has greatly increased our understanding of the complex and intricate regulatory network in the kidney, specifically, functions of tight junction proteins including claudin-14, -16, -19, and -10; apical ion channels including: TRPM6, Kv1.1, and ROMK; small regulatory proteins including AC3 and ANK3; and basolateral proteins including EGF receptor, γ-subunit (FXYD2) of Na-K-ATPase, Kir4.1, CaSR, CNNM2, and SLC41A. Although our understanding of Mg2+ handling of the kidney has expanded considerably in the last two decades, many questions remain. Future studies are needed to elucidate a multitude of unknown aspects of Mg2+ handling in the kidney. Key Message Understanding rare and genetic diseases of Mg2+ dysregulation has expanded our knowledge and furthers the development of strategies for preventing and managing dysmagnesemia.
Collapse
Affiliation(s)
- Heng Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Goushuang Xu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Hanmin Wang
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Hasan S, Bove C, Silvestri G, Mantuano E, Modoni A, Veneziano L, Macchioni L, Hunter T, Hunter G, Pessia M, D'Adamo MC. A channelopathy mutation in the voltage-sensor discloses contributions of a conserved phenylalanine to gating properties of Kv1.1 channels and ataxia. Sci Rep 2017; 7:4583. [PMID: 28676720 PMCID: PMC5496848 DOI: 10.1038/s41598-017-03041-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Channelopathy mutations prove informative on disease causing mechanisms and channel gating dynamics. We have identified a novel heterozygous mutation in the KCNA1 gene of a young proband displaying typical signs and symptoms of Episodic Ataxia type 1 (EA1). This mutation is in the S4 helix of the voltage-sensing domain and results in the substitution of the highly conserved phenylalanine 303 by valine (p.F303V). The contributions of F303 towards K+ channel voltage gating are unclear and here have been assessed biophysically and by performing structural analysis using rat Kv1.2 coordinates. We observed significant positive shifts of voltage-dependence, changes in the activation, deactivation and slow inactivation kinetics, reduced window currents, and decreased current amplitudes of both Kv1.1 and Kv1.1/1.2 channels. Structural analysis revealed altered interactions between F303V and L339 and I335 of the S5 helix of a neighboring subunit. The substitution of an aromatic phenylalanine with an aliphatic valine within the voltage-sensor destabilizes the open state of the channel. Thus, F303 fine-tunes the Kv1.1 gating properties and contributes to the interactions between the S4 segment and neighboring alpha helices. The resulting channel's loss of function validates the clinical relevance of the mutation for EA1 pathogenesis.
Collapse
Affiliation(s)
- Sonia Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, 13110, Kuwait
| | - Cecilia Bove
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Gabriella Silvestri
- Institute of Neurology, Catholic University of Sacred Heart, Fondazione Gemelli, Rome, Italy
| | - Elide Mantuano
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Anna Modoni
- Institute of Neurology, Catholic University of Sacred Heart, Fondazione Gemelli, Rome, Italy
| | - Liana Veneziano
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| | - Lara Macchioni
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy
| | - Therese Hunter
- Faculty of Medicine & Surgery, Department of Physiology & Biochemistry, University of Malta, MSD 2080, Msida, Malta
| | - Gary Hunter
- Faculty of Medicine & Surgery, Department of Physiology & Biochemistry, University of Malta, MSD 2080, Msida, Malta
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia, Perugia, Italy.,Faculty of Medicine & Surgery, Department of Physiology & Biochemistry, University of Malta, MSD 2080, Msida, Malta
| | - Maria Cristina D'Adamo
- Faculty of Medicine & Surgery, Department of Physiology & Biochemistry, University of Malta, MSD 2080, Msida, Malta.
| |
Collapse
|
13
|
Imbrici P, Altamura C, Gualandi F, Mangiatordi GF, Neri M, De Maria G, Ferlini A, Padovani A, D'Adamo MC, Nicolotti O, Pessia M, Conte D, Filosto M, Desaphy JF. A novel KCNA1 mutation in a patient with paroxysmal ataxia, myokymia, painful contractures and metabolic dysfunctions. Mol Cell Neurosci 2017; 83:6-12. [PMID: 28666963 DOI: 10.1016/j.mcn.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/05/2017] [Accepted: 06/25/2017] [Indexed: 11/26/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is a human dominant neurological syndrome characterized by continuous myokymia, episodic attacks of ataxic gait and spastic contractions of skeletal muscles that can be triggered by emotional stress and fatigue. This rare disease is caused by missense mutations in the KCNA1 gene coding for the neuronal voltage gated potassium channel Kv1.1, which contributes to nerve cell excitability in the cerebellum, hippocampus, cortex and peripheral nervous system. We identified a novel KCNA1 mutation, E283K, in an Italian proband presenting with paroxysmal ataxia and myokymia aggravated by painful contractures and metabolic dysfunctions. The E283K mutation is located in the S3-S4 extracellular linker belonging to the voltage sensor domain of Kv channels. In order to test whether the E283K mutation affects Kv1.1 biophysical properties we transfected HEK293 cells with WT or mutant cDNAs alone or in a 1:1 combination, and recorded relative potassium currents in the whole-cell configuration of patch-clamp. Mutant E283K channels display voltage-dependent activation shifted by 10mV toward positive potentials and kinetics of activation slowed by ~2 fold compared to WT channels. Potassium currents resulting from heteromeric WT/E283K channels show voltage-dependent gating and kinetics of activation intermediate between WT and mutant homomeric channels. Based on homology modeling studies of the mutant E283K, we propose a molecular explanation for the reduced voltage sensitivity and slow channel opening. Overall, our results suggest that the replacement of a negatively charged residue with a positively charged lysine at position 283 in Kv1.1 causes a drop of potassium current that likely accounts for EA-1 symptoms in the heterozygous carrier.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Concetta Altamura
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Gualandi
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | | | - Marcella Neri
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | | | - Alessandra Ferlini
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | - Alessandro Padovani
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST "Spedali Civili", and University of Brescia, Brescia, Italy
| | - Maria Cristina D'Adamo
- Faculty of Medicine, Department of Physiology and Biochemistry, University of Malta, MSD-2080 Msida, Malta
| | - Orazio Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mauro Pessia
- Faculty of Medicine, Department of Physiology and Biochemistry, University of Malta, MSD-2080 Msida, Malta; Department of Experimental Medicine, Section of Physiology & Biochemistry, University of Perugia School of Medicine, Perugia, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST "Spedali Civili", and University of Brescia, Brescia, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization. Proc Natl Acad Sci U S A 2017; 114:2395-2400. [PMID: 28193892 PMCID: PMC5338558 DOI: 10.1073/pnas.1608763114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog-digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels.
Collapse
|
15
|
Kaya N, Alsagob M, D'Adamo MC, Al-Bakheet A, Hasan S, Muccioli M, Almutairi FB, Almass R, Aldosary M, Monies D, Mustafa OM, Alyounes B, Kenana R, Al-Zahrani J, Naim E, Binhumaid FS, Qari A, Almutairi F, Meyer B, Plageman TF, Pessia M, Colak D, Al-Owain M. KCNA4 deficiency leads to a syndrome of abnormal striatum, congenital cataract and intellectual disability. J Med Genet 2016; 53:786-792. [PMID: 27582084 DOI: 10.1136/jmedgenet-2015-103637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 07/20/2016] [Accepted: 08/06/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Voltage-gated potassium channels are highly diverse proteins representing the most complex class of voltage-gated ion channels from structural and functional perspectives. Deficiency of these channels usually results in various human disorders. OBJECTIVES To describe a novel autosomal recessive syndrome associated with KCNA4 deficiency leading to congenital cataract, abnormal striatum, intellectual disability and attention deficit hyperactivity disorder. METHODS We used SNP arrays, linkage analyses, autozygosity mapping, whole-exome sequencing, RT-PCR and two-electrode voltage-clamp recording. RESULTS We identified a missense variant (p.Arg89Gln) in KCNA4 in four patients from a consanguineous family manifesting a novel syndrome of congenital cataract, abnormal striatum, intellectual disability and attention deficit hyperactivity disorder. The variant was fully segregated with the disease and absent in 747 ethnically matched exomes. Xenopus oocytes were injected with human Kv1.4 wild-type mRNA, R89Q and WT/R89Q channels. The wild type had mean current amplitude that was significantly greater than those recorded from the cells expressing the same amount of mutant mRNA. Co-expression of the wild type and mutant mRNAs resulted in mean current amplitude that was significantly different from that of the wild type. RT-PCR indicated that KCNA4 is present in mouse brain, lens and retina. KCNA4 interacts with several molecules including synaptotagmin I, DLG1 and DLG2. The channel co-localises with cholinergic amacrine and rod bipolar cells in rats and is widely distributed in the central nervous system. Based on previous studies, the channel is highly expressed in outer retina, rod inner segments, hippocampus and concentrated in axonal membranes. CONCLUSION KCNA4 (Kv1.4) is implicated in a novel syndrome characterised by striatal thinning, congenital cataract and attention deficit hyperactivity disorder. Our study highlights potassium channels' role in ocular and neuronal genetics.
Collapse
Affiliation(s)
- Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maria Cristina D'Adamo
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Albandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sonia Hasan
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Maria Muccioli
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| | - Faten B Almutairi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Osama M Mustafa
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Banan Alyounes
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rosan Kenana
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jawaher Al-Zahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Eva Naim
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Faisal S Binhumaid
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fatema Almutairi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy.,Department of Physiology & Biochemistry Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- College of Optometry, The Ohio State University, Columbus, Ohio, USA.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
17
|
Chen SH, Fu SJ, Huang JJ, Tang CY. The episodic ataxia type 1 mutation I262T alters voltage-dependent gating and disrupts protein biosynthesis of human Kv1.1 potassium channels. Sci Rep 2016; 6:19378. [PMID: 26778656 PMCID: PMC4726062 DOI: 10.1038/srep19378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are essential for setting neuronal membrane excitability. Mutations in human Kv1.1 channels are linked to episodic ataxia type 1 (EA1). The EA1-associated mutation I262T was identified from a patient with atypical phenotypes. Although a previous report has characterized its suppression effect, several key questions regarding the impact of the I262T mutation on Kv1.1 as well as other members of the Kv1 subfamily remain unanswered. Herein we show that the dominant-negative effect of I262T on Kv1.1 current expression is not reversed by co-expression with Kvβ1.1 or Kvβ2 subunits. Biochemical examinations indicate that I262T displays enhanced protein degradation and impedes membrane trafficking of Kv1.1 wild-type subunits. I262T appears to be the first EA1 mutation directly associated with impaired protein stability. Further functional analyses demonstrate that I262T changes the voltage-dependent activation and Kvβ1.1-mediated inactivation, uncouples inactivation from activation gating, and decelerates the kinetics of cumulative inactivation of Kv1.1 channels. I262T also exerts similar dominant effects on the gating of Kv1.2 and Kv1.4 channels. Together our data suggest that I262T confers altered channel gating and reduced functional expression of Kv1 channels, which may account for some of the phenotypes of the EA1 patient.
Collapse
Affiliation(s)
- Szu-Han Chen
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Jia Huang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
D'Adamo MC, Hasan S, Guglielmi L, Servettini I, Cenciarini M, Catacuzzeno L, Franciolini F. New insights into the pathogenesis and therapeutics of episodic ataxia type 1. Front Cell Neurosci 2015; 9:317. [PMID: 26347608 PMCID: PMC4541215 DOI: 10.3389/fncel.2015.00317] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is a K+channelopathy characterized by a broad spectrum of symptoms. Generally, patients may experience constant myokymia and dramatic episodes of spastic contractions of the skeletal muscles of the head, arms, and legs with loss of both motor coordination and balance. During attacks additional symptoms may be reported such as vertigo, blurred vision, diplopia, nausea, headache, diaphoresis, clumsiness, stiffening of the body, dysarthric speech, and difficulty in breathing. These episodes may be precipitated by anxiety, emotional stress, fatigue, startle response or sudden postural changes. Epilepsy is overrepresented in EA1. The disease is inherited in an autosomal dominant manner, and genetic analysis of several families has led to the discovery of a number of point mutations in the voltage-dependent K+ channel gene KCNA1 (Kv1.1), on chromosome 12p13. To date KCNA1 is the only gene known to be associated with EA1. Functional studies have shown that these mutations impair Kv1.1 channel function with variable effects on channel assembly, trafficking and biophysics. Despite the solid evidence obtained on the molecular mechanisms underlying EA1, how these cause dysfunctions within the central and peripheral nervous systems circuitries remains elusive. This review summarizes the main breakthrough findings in EA1, discusses the neurophysiological mechanisms underlying the disease, current therapies, future challenges and opens a window onto the role of Kv1.1 channels in central nervous system (CNS) and peripheral nervous system (PNS) functions.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Sonia Hasan
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Luca Guglielmi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Ilenio Servettini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Marta Cenciarini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| |
Collapse
|
19
|
Sforna L, D'Adamo MC, Servettini I, Guglielmi L, Pessia M, Franciolini F, Catacuzzeno L. Expression and function of a CP339,818-sensitive K⁺ current in a subpopulation of putative nociceptive neurons from adult mouse trigeminal ganglia. J Neurophysiol 2015; 113:2653-65. [PMID: 25652918 PMCID: PMC4416569 DOI: 10.1152/jn.00379.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/02/2015] [Indexed: 01/15/2023] Open
Abstract
Trigeminal ganglion (TG) neurons are functionally and morphologically heterogeneous, and the molecular basis of this heterogeneity is still not fully understood. Here we describe experiments showing that a subpopulation of neurons expresses a delayed-rectifying K(+) current (IDRK) with a characteristically high (nanomolar) sensitivity to the dihydroquinoline CP339,818 (CP). Although submicromolar CP has previously been shown to selectively block Kv1.3 and Kv1.4 channels, the CP-sensitive IDRK found in TG neurons could not be associated with either of these two K(+) channels. It could neither be associated with Kv2.1 channels homomeric or heteromerically associated with the Kv9.2, Kv9.3, or Kv6.4 subunits, whose block by CP, tested using two-electrode voltage-clamp recordings from Xenopus oocytes, resulted in the low micromolar range, nor to the Kv7 subfamily, given the lack of blocking efficacy of 3 μM XE991. Within the group of multiple-firing neurons considered in this study, the CP-sensitive IDRK was preferentially expressed in a subpopulation showing several nociceptive markers, such as small membrane capacitance, sensitivity to capsaicin, and slow afterhyperpolarization (AHP); in these neurons the CP-sensitive IDRK controls the membrane resting potential, the firing frequency, and the AHP duration. A biophysical study of the CP-sensitive IDRK indicated the presence of two kinetically distinct components: a fast deactivating component having a relatively depolarized steady-state inactivation (IDRKf) and a slow deactivating component with a more hyperpolarized V1/2 for steady-state inactivation (IDRKs).
Collapse
Affiliation(s)
- Luigi Sforna
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá di Perugia, Perugia, Italy; and
| | - Maria Cristina D'Adamo
- Dipartimento di Medicina Sperimentale, Facoltá di Medicina e Chirurgia, Universitá di Perugia, Perugia, Italy
| | - Ilenio Servettini
- Dipartimento di Medicina Sperimentale, Facoltá di Medicina e Chirurgia, Universitá di Perugia, Perugia, Italy
| | - Luca Guglielmi
- Dipartimento di Medicina Sperimentale, Facoltá di Medicina e Chirurgia, Universitá di Perugia, Perugia, Italy
| | - Mauro Pessia
- Dipartimento di Medicina Sperimentale, Facoltá di Medicina e Chirurgia, Universitá di Perugia, Perugia, Italy
| | - Fabio Franciolini
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá di Perugia, Perugia, Italy; and
| | - Luigi Catacuzzeno
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá di Perugia, Perugia, Italy; and
| |
Collapse
|
20
|
D'Adamo MC, Gallenmüller C, Servettini I, Hartl E, Tucker SJ, Arning L, Biskup S, Grottesi A, Guglielmi L, Imbrici P, Bernasconi P, Di Giovanni G, Franciolini F, Catacuzzeno L, Pessia M, Klopstock T. Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene. Front Physiol 2015; 5:525. [PMID: 25642194 PMCID: PMC4295438 DOI: 10.3389/fphys.2014.00525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/20/2014] [Indexed: 11/13/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant K(+) channelopathy which manifests with short attacks of cerebellar ataxia and dysarthria, and may also show interictal myokymia. Episodes can be triggered by emotional or physical stress, startle response, sudden postural change or fever. Here we describe a 31-year-old man displaying markedly atypical symptoms, including long-lasting attacks of jerking muscle contractions associated with hyperthermia, severe migraine, and a relatively short-sleep phenotype. A single nucleotide change in KCNA1 (c.555C>G) was identified that changes a highly conserved residue (p.C185W) in the first transmembrane segment of the voltage-gated K(+) channel Kv1.1. The patient is heterozygous and the mutation was inherited from his asymptomatic mother. Next generation sequencing revealed no variations in the CACNA1A, CACNB4, KCNC3, KCNJ10, PRRT2 or SCN8A genes of either the patient or mother, except for a benign variant in SLC1A3. Functional analysis of the p.C185W mutation in KCNA1 demonstrated a deleterious dominant-negative phenotype where the remaining current displayed slower activation kinetics, subtle changes in voltage-dependence and faster recovery from slow inactivation. Structural modeling also predicts the C185W mutation to be functionally deleterious. This description of novel clinical features, associated with a Kv1.1 mutation highlights a possibly unrecognized relationship between K(+) channel dysfunction, hyperthermia and migraine in EA1, and suggests that thorough assessments for these symptoms should be carefully considered for all patients affected by EA1.
Collapse
Affiliation(s)
- Maria C D'Adamo
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia Perugia, Italy ; Section of Neurophysiology and Biophysics, Istituto Euro-Mediterraneo di Scienza e Tecnologia Palermo, Italy
| | - Constanze Gallenmüller
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Germany ; German Network for Mitochondrial Disorders (mitoNET) Ludwigshafen, Germany ; DZNE - German Center for Neurodegenerative Diseases Munich, Germany
| | - Ilenio Servettini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia Perugia, Italy
| | - Elisabeth Hartl
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Germany
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford Oxford, UK
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum Bochum, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics (CeGaT) GmbH Tübingen Tübingen, Germany
| | - Alessandro Grottesi
- Department of Supercomputing Applications and Innovation, CINECA (Consorzio Inter-Universitario per il Calcolo Automatico) Rome, Italy
| | - Luca Guglielmi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia Perugia, Italy
| | - Paola Imbrici
- Department of Pharmacy, University of Bari Bari, Italy
| | - Pia Bernasconi
- Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute "Carlo Besta" Milan, Italy
| | - Giuseppe Di Giovanni
- Section of Neurophysiology and Biophysics, Istituto Euro-Mediterraneo di Scienza e Tecnologia Palermo, Italy ; Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta Msida, Malta
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia Perugia, Italy
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, School of Medicine, University of Perugia Perugia, Italy ; Section of Neurophysiology and Biophysics, Istituto Euro-Mediterraneo di Scienza e Tecnologia Palermo, Italy
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Germany ; German Network for Mitochondrial Disorders (mitoNET) Ludwigshafen, Germany ; DZNE - German Center for Neurodegenerative Diseases Munich, Germany ; German Center for Vertigo and Balance Disorders Munich, Germany
| |
Collapse
|
21
|
D’Adamo MC, Di Giovanni G, Pessia M. Animal Models of Episodic Ataxia Type 1 (EA1). Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Imbrici P, Camerino DC, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet 2013; 4:76. [PMID: 23675382 PMCID: PMC3646240 DOI: 10.3389/fgene.2013.00076] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Moreover, point mutations in calcium, sodium, and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium, and potassium channels in BPD, schizophrenia, and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.
Collapse
Affiliation(s)
- Paola Imbrici
- Section of Pharmacology, Department of Pharmacy - Drug Science, University of Bari Bari, Italy
| | | | | |
Collapse
|
23
|
Mayhew IG, Jolly RD, Burnham D, Ridler AL, Poff GJ, Blair HT. Familial episodic ataxia in lambs. N Z Vet J 2013; 61:107-10. [DOI: 10.1080/00480169.2012.717501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Brunetti O, Imbrici P, Botti FM, Pettorossi VE, D'Adamo MC, Valentino M, Zammit C, Mora M, Gibertini S, Di Giovanni G, Muscat R, Pessia M. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature. Neurobiol Dis 2012; 47:310-21. [PMID: 22609489 PMCID: PMC3402927 DOI: 10.1016/j.nbd.2012.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/18/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023] Open
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K+ channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1V408A/+). Here, we investigated the neuromuscular transmission of Kv1.1V408A/+ ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve–muscle from Kv1.1+/+ and Kv1.1V408A/+ mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca2 + signals that occurred abnormally only in preparations dissected from Kv1.1V408A/+ mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca2 + homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K+ channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during fatigue or ischemic insult.
Collapse
Affiliation(s)
- Orazio Brunetti
- Section of Human Physiology, University of Perugia School of Medicine, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ishida S, Sakamoto Y, Nishio T, Baulac S, Kuwamura M, Ohno Y, Takizawa A, Kaneko S, Serikawa T, Mashimo T. Kcna1-mutant rats dominantly display myokymia, neuromyotonia and spontaneous epileptic seizures. Brain Res 2011; 1435:154-66. [PMID: 22206926 DOI: 10.1016/j.brainres.2011.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 11/30/2022]
Abstract
Mutations in the KCNA1 gene, which encodes for the α subunit of the voltage-gated potassium channel Kv1.1, cause episodic ataxia type 1 (EA1). EA1 is a dominant human neurological disorder characterized by variable phenotypes of brief episodes of ataxia, myokymia, neuromyotonia, and associated epilepsy. Animal models for EA1 include Kcna1-deficient mice, which recessively display severe seizures and die prematurely, and V408A-knock-in mice, which dominantly exhibit stress-induced loss of motor coordination. In the present study, we have identified an N-ethyl-N-nitrosourea-mutagenized rat, named autosomal dominant myokymia and seizures (ADMS), with a missense mutation (S309T) in the voltage-sensor domain, S4, of the Kcna1 gene. ADMS rats dominantly exhibited myokymia, neuromyotonia and generalized tonic-clonic seizures. They also showed cold stress-induced tremor, neuromyotonia, and motor incoordination. Expression studies of homomeric and heteromeric Kv1.1 channels in HEK cells and Xenopus oocytes, showed that, although S309T channels are transferred to the cell membrane surface, they remained non-functional in terms of their biophysical properties, suggesting a dominant-negative effect of the S309T mutation on potassium channel function. ADMS rats provide a new model, distinct from previously reported mouse models, for studying the diverse functions of Kv1.1 in vivo, as well as for understanding the pathology of EA1.
Collapse
Affiliation(s)
- Saeko Ishida
- Institute of Laboratory animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gazquez I, Lopez-Escamez JA. Genetics of recurrent vertigo and vestibular disorders. Curr Genomics 2011; 12:443-50. [PMID: 22379397 PMCID: PMC3178912 DOI: 10.2174/138920211797248600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022] Open
Abstract
We present recent advances in the genetics of recurrent vertigo, including familial episodic ataxias, migraneous vertigo, bilateral vestibular hypofunction and Meniere's disease.Although several vestibular disorders are more common within families, the genetics of vestibulopathies is largely not known. Genetic loci and clinical features of familial episodic ataxias have been defined in linkage disequilibrium studies with mutations in neuronal genes KCNA1 and CACNA1A. Migrainous vertigo is a clinical disorder with a high comorbidity within families much more common in females with overlapping features with episodic ataxia and migraine. Bilateral vestibular hypofunction is a heterogeneous clinical group defined by episodes of vertigo leading to progressive loss of vestibular function which also can include migraine. Meniere's disease is a clinical syndrome characterized by spontaneous episodes of recurrent vertigo, sensorineural hearing loss, tinnitus and aural fullness and familial Meniere's disease in around 10-20% of cases. An international collaborative effort to define the clinical phenotype and recruiting patients with migrainous vertigo and Meniere's disease is ongoing for genome-wide association studies.
Collapse
Affiliation(s)
- Irene Gazquez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
- Department of Otolaryngology, Hospital de Poniente, El Ejido, Almería, Spain
| |
Collapse
|