1
|
Shao Y, Xu J, Chen W, Hao M, Liu X, Zhang R, Wang Y, Dong Y. miR-135b: An emerging player in cardio-cerebrovascular diseases. J Pharm Anal 2024; 14:100997. [PMID: 39211791 PMCID: PMC11350494 DOI: 10.1016/j.jpha.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 09/04/2024] Open
Abstract
miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease. Obviously, miR-135b is an emerging player in cardio-cerebrovascular diseases and is expected to be an important target for the treatment of cardio-cerebrovascular diseases. However, the crucial role of miR-135b in cardio-cerebrovascular diseases and its underlying mechanism of action has not been reviewed. Therefore, in this review, we aimed to comprehensively summarize the role of miR-135b and the signaling pathway mediated by miR-135b in cardio-cerebrovascular diseases. Drugs targeting miR-135b for the treatment of diseases and related patents, highlighting the importance of this target and its utility as a therapeutic target for cardio-cerebrovascular diseases, have been discussed.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yinying Dong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Nie X, Cheng R, Hao P, Guo Y, Chen G, Ji L, Jia L. MicroRNA-128-3p Affects Neuronal Apoptosis and Neurobehavior in Cerebral Palsy Rats by Targeting E3 Ubiquitin-Linking Enzyme Smurf2 and Regulating YY1 Expression. Mol Neurobiol 2024:10.1007/s12035-024-04362-7. [PMID: 39102109 DOI: 10.1007/s12035-024-04362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
This study was dedicated to investigating the effects of microRNA-128-3p (miR-128-3p) on neuronal apoptosis and neurobehavior in cerebral palsy (CP) rats via the Smurf2/YY1 axis.In vivo modeling of hypoxic-ischemic (HI) CP was established in neonatal rats. Neurobehavioral tests (geotaxis reflex, cliff avoidance reaction, and grip test) were measured after HI induction. The HI-induced neurological injury was evaluated by HE staining, Nissl staining, TUNEL staining, immunohistochemical staining, and RT-qPCR. The expression of miR-128-3p, Smurf2, and YY1 was determined by RT-qPCR and western blot techniques. Moreover, primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro, cell viability was detected by CCK-8 assay, neuronal apoptosis was assessed by flow cytometry and western blot, and the underlying mechanism between miR-128-3p, Smurf2 and YY1 was verified by bioinformatics analysis, dual luciferase reporter assay, RIP, Co-IP, ubiquitination assay, western blot, and RT-qPCR.In vivo, miR-128-3p and YY1 expression was elevated, and Smurf2 expression was decreased in brain tissues of hypoxic-ischemic CP rats. Downregulation of miR-128-3p or overexpression of Smurf2 improved neurobehavioral performance, reduced neuronal apoptosis, and elevated Nestin and NGF expression in hypoxic-ischemic CP rats, and downregulation of Smurf2 reversed the effects of downregulation of miR-128-3p on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats, while overexpression of YY1 reversed the effects of Smurf2 on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats. In vitro, downregulation of miR-128-3p effectively promoted the neuronal survival, reduced the apoptosis rate, and decreased caspase3 protein expression after OGD, and overexpression of YY1 reversed the ameliorative effect of downregulation of miR-128-3p on OGD-induced neuronal injury. miR-128-3p targeted to suppress Smurf2 to lower YY1 ubiquitination degradation and decrease its expression.Inhibition of miR-128-3p improves neuronal apoptosis and neurobehavioral changes in hypoxic-ischemic CP rats by promoting Smurf2 to promote YY1 ubiquitination degradation and reduce YY1 expression.
Collapse
Affiliation(s)
- Xiaoqi Nie
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Rui Cheng
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Pengfei Hao
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
- Shanxi Medical University, Taiyuan, 030607, Shanxi, China
| | - Yuhong Guo
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Gang Chen
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Lei Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Lu Jia
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
3
|
Zhou Y, He LN, Wang LN, Chen KY, Qian SD, Li XH, Zang J, Wang DM, Yu XF, Gao J. Human amniotic mesenchymal stromal cell-derived exosomes promote neuronal function by inhibiting excessive apoptosis in a hypoxia/ischemia-induced cerebral palsy model: A preclinical study. Biomed Pharmacother 2024; 173:116321. [PMID: 38394849 DOI: 10.1016/j.biopha.2024.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) is a condition resulting from perinatal brain injury and can lead to physical disabilities. Exosomes derived from human amniotic mesenchymal stromal cells (hAMSC-Exos) hold promise as potential therapeutic options. OBJECTIVE This study aimed to investigate the impact of hAMSC-Exos on neuronal cells and their role in regulating apoptosis both in vitro and in vivo. METHODS hAMSC-Exos were isolated via ultracentrifugation and characterized via transmission electron microscopy, particle size analysis, and flow cytometry. In vitro, neuronal damage was induced by lipopolysaccharide (LPS). CP rat models were established via left common carotid artery ligation. Apoptosis levels in cells and CP rats were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blotting, and TUNEL analysis. RESULTS The results demonstrated successful isolation of hAMSC-Exos via ultracentrifugation, as the isolated cells were positive for CD9 (79.7%) and CD63 (80.2%). Treatment with hAMSC-Exos significantly mitigated the reduction in cell viability induced by LPS. Flow cytometry revealed that LPS-induced damage promoted apoptosis, but this effect was attenuated by treatment with hAMSC-Exos. Additionally, the expression of caspase-3 and caspase-9 and the Bcl-2/Bax ratio indicated that excessive apoptosis could be attenuated by treatment with hAMSC-Exos. Furthermore, tail vein injection of hAMSC-Exos improved the neurobehavioral function of CP rats. Histological analysis via HE and TUNEL staining showed that apoptosis-related damage was attenuated following hAMSC-Exo treatment. CONCLUSIONS In conclusion, hAMSC-Exos effectively promote neuronal cell survival by regulating apoptosis, indicating their potential as a promising therapeutic option for CP that merits further investigation.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Lu-Na He
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Li-Na Wang
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Kai-Yun Chen
- Drug Clinical Trials Office, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China
| | - Shi-Da Qian
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China
| | - Xu-Huan Li
- Department of General Medicine, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China
| | - Jing Zang
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Dong-Ming Wang
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China
| | - Xue-Feng Yu
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, China.
| | - Jing Gao
- Department of Pediatric Rehabilitation, Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China; Affiliated Hospital of Yang Zhou University Huai'an Maternal and Child Health Care Center, Huai'an, Jiangsu 223021, China.
| |
Collapse
|
4
|
Li X, Li M, Qin X, Li Y, Wang Y, Han C, Ni S, Sun X, Dong P, Liu J. Providing holistic care to children with cerebral palsy treated with transnasal neural stem cell transplantation. Front Pediatr 2024; 11:1297563. [PMID: 38250587 PMCID: PMC10796742 DOI: 10.3389/fped.2023.1297563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Objective Holistic care is a key element in nursing care. Aiming at the heterogeneous disease of cerebral palsy, researchers focused on children with cerebral palsy who received transnasal transplantation of neural stem cells as a specific group. Based on establishing a multidisciplinary team, comprehensive care is carried out for this type of patient during the perioperative period to improve the effectiveness and safety of clinical research and increase the comfort of children. Methods Between January 2018 and June 2023, 22 children with cerebral palsy underwent three transnasal transplants of neural stem cells. Results No adverse reactions related to immune rejection were observed in the 22 children during hospitalization and follow-up. All children tolerated the treatment well, and the treatment was superior. One child developed nausea and vomiting after sedation; three had a small amount of bleeding of nasal mucosa after transplantation. Two children had a low fever (≤38.5°C), and one had a change in the type and frequency of complex partial seizures. Moreover, 3 children experienced patch shedding within 4 h of patch implantation into the nasal cavity. Conclusion The project team adopted nasal stem cell transplantation technology. Based on the characteristics of transnasal transplantation of neural stem cells in the treatment of neurological diseases in children, a comprehensive and novel holistic care plan is proposed. It is of great significance to guide caregivers of children to complete proper care, further improve the safety and effectiveness of treatment, and reduce the occurrence of complications.
Collapse
Affiliation(s)
- Xiaoyan Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Mengyao Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xixian Qin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ying Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Yachen Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Shiwei Ni
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Xuna Sun
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Peipei Dong
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
5
|
She HQ, Sun YF, Chen L, Xiao QX, Luo BY, Zhou HS, Zhou D, Chang QY, Xiong LL. Current analysis of hypoxic-ischemic encephalopathy research issues and future treatment modalities. Front Neurosci 2023; 17:1136500. [PMID: 37360183 PMCID: PMC10288156 DOI: 10.3389/fnins.2023.1136500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the leading cause of long-term neurological disability in neonates and adults. Through bibliometric analysis, we analyzed the current research on HIE in various countries, institutions, and authors. At the same time, we extensively summarized the animal HIE models and modeling methods. There are various opinions on the neuroprotective treatment of HIE, and the main therapy in clinical is therapeutic hypothermia, although its efficacy remains to be investigated. Therefore, in this study, we discussed the progress of neural circuits, injured brain tissue, and neural circuits-related technologies, providing new ideas for the treatment and prognosis management of HIE with the combination of neuroendocrine and neuroprotection.
Collapse
Affiliation(s)
- Hong-Qing She
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- WANG TINGHUA Translation Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu-Xia Xiao
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Bo-Yan Luo
- WANG TINGHUA Translation Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong-Su Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- WANG TINGHUA Translation Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Di Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Quan-Yuan Chang
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- WANG TINGHUA Translation Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Luo Y, Qu J, He Z, Zhang M, Zou Z, Li L, Zhang Y, Ye J. Human Umbilical Cord Mesenchymal Stem Cells Improve the Status of Hypoxic/Ischemic Cerebral Palsy Rats by Downregulating NogoA/NgR/Rho Pathway. Cell Transplant 2023; 32:9636897231210069. [PMID: 37982384 PMCID: PMC10664427 DOI: 10.1177/09636897231210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSC) have shown promising potential in ameliorating brain injury, but the mechanism is unclear. We explore the role of NogoA/NgR/Rho pathway in mediating hUCMSC to improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP (cerebral palsy) rat model in order to promote the clinical application of stem cell therapy in CP. The injury model of HT22 cells was established after 3 h hypoxia, and then co-cultured with hUCMSC. The rat model of CP was established by ligation of the left common carotid artery for 2.5 h. Subsequently, hUCMSC was administered via the tail vein once a week for a total of four times. The neurobehavioral status of CP rats was determined by behavioral experiment, and the pathological brain injury was determined by pathological staining method. The mRNA and protein expressions of NogoA, NgR, RhoA, Rac1, and CDC42 in brain tissues of rats in all groups and cell groups were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence. The CP rats exhibited obvious motor function abnormalities and pathological damage. Compared with the control group, hUCMSC transplantation could significantly improve the neurobehavioral situation and attenuate brain pathological injury in CP rats. The relative expression of NogoA, NgR, RhoA mRNA, and protein in brain tissues of rats in the CP group was significantly higher than the rats in the sham and CP+hUCMSC group. The relative expression of Rac1, CDC42 mRNA, and protein in brain tissues of rats in the CP group was significantly lower than the rats in the sham and CP+hUCMSC group. The animal experiment results were consistent with the experimental trend of hypoxic injury of HT22 cells. This study confirmed that hUCMSC can efficiently improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP rat model and HT22 cell model through downregulating the NogoA/NgR/Rho pathway.
Collapse
Affiliation(s)
- Yaoling Luo
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiayang Qu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, China
| | - Zhengyi He
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Xin C, Guan X, Wang L, Liu J. Integrative Multi-Omics Research in Cerebral Palsy: Current Progress and Future Prospects. Neurochem Res 2022; 48:1269-1279. [PMID: 36512293 DOI: 10.1007/s11064-022-03839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Cerebral palsy (CP) describes a heterogeneous group of non-progressive neurodevelopmental disorders affecting movement and posture. The etiology and diagnostic biomarkers of CP are a hot topic in clinical research. Recent advances in omics techniques, including genomics, epigenomics, transcriptomics, metabolomics and proteomics, have offered new insights to further understand the pathophysiology of CP and have allowed for identification of diagnostic biomarkers of CP. In present study, we reviewed the latest multi-omics investigations of CP and provided an in-depth summary of current research progress in CP. This review will offer the basis and recommendations for future fundamental research on the pathogenesis of CP, identification of diagnostic biomarkers, and prevention strategies for CP.
Collapse
Affiliation(s)
- Chengqi Xin
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, 116011, Dalian City, Liaoning Province, P.R. China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech Park, 116023, Dalian City, Liaoning Province, P.R. China.
| |
Collapse
|
8
|
Cell-Based and Gene-Based Therapy Approaches in Neuro-orthopedic Disorders: a Literature Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
An Emerging Role for Epigenetics in Cerebral Palsy. J Pers Med 2021; 11:jpm11111187. [PMID: 34834539 PMCID: PMC8625874 DOI: 10.3390/jpm11111187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
Cerebral palsy is a set of common, severe, motor disabilities categorized by a static, nondegenerative encephalopathy arising in the developing brain and associated with deficits in movement, posture, and activity. Spastic CP, which is the most common type, involves high muscle tone and is associated with altered muscle function including poor muscle growth and contracture, increased extracellular matrix deposition, microanatomic disruption, musculoskeletal deformities, weakness, and difficult movement control. These muscle-related manifestations of CP are major causes of progressive debilitation and frequently require intensive surgical and therapeutic intervention to control. Current clinical approaches involve sophisticated consideration of biomechanics, radiologic assessments, and movement analyses, but outcomes remain difficult to predict. There is a need for more precise and personalized approaches involving omics technologies, data science, and advanced analytics. An improved understanding of muscle involvement in spastic CP is needed. Unfortunately, the fundamental mechanisms and molecular pathways contributing to altered muscle function in spastic CP are only partially understood. In this review, we outline evidence supporting the emerging hypothesis that epigenetic phenomena play significant roles in musculoskeletal manifestations of CP.
Collapse
|
10
|
Ghafouri-Fard S, Moghadam MHB, Shoorei H, Bahroudi Z, Taheri M, Taheriazam A. The impact of non-coding RNAs on normal stem cells. Biomed Pharmacother 2021; 142:112050. [PMID: 34426251 DOI: 10.1016/j.biopha.2021.112050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Self-renewal and differentiation into diverse cells are two main characteristics of stem cells. These cells have important roles in development and homeostasis of different tissues and are supposed to facilitate tissue regeneration. Function of stem cells is regulated by dynamic interactions between external signaling, epigenetic factors, and molecules that regulate expression of genes. Among the highly appreciated regulators of function of stem cells are long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). Impact of miR-342-5p, miR-145, miR-1297, miR-204-5p, miR-132, miR-128-3p, hsa-miR-302, miR-26b-5p and miR-10a are among miRNAs that regulate function of stem cells. Among lncRNAs, AK141205, ANCR, MEG3, Pnky, H19, TINCR, HULC, EPB41L4A-AS1 and SNHG7 have important roles in the regulation of stem cells. In the current paper, we aimed at reviewing the importance of miRNAs and lncRNAs in differentiation of stem cells both in normal and diseased conditions. For this purpose, we searched PubMed/Medline and google scholar databases using "stem cell" AND "lncRNA", or "long non-coding RNA", or "microRNA" or "miRNA".
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Wang J, Zhou Y, Yang Y, Gao X, Liu Z, Hong G, Yao L, Yin J, Gu X, Li K. S100B gene polymorphisms are associated with the S100B level and Alzheimer's disease risk by altering the miRNA binding capacity. Aging (Albany NY) 2021; 13:13954-13967. [PMID: 33982673 PMCID: PMC8202836 DOI: 10.18632/aging.203005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022]
Abstract
To examine the role of S100B in genetic susceptibility to Alzheimer’s disease (AD), we conducted a case-control study to analyze four polymorphism loci (rs2839364, rs1051169, rs2300403, and rs9722) of the S100B gene and AD risk. We found an independent increased risk of AD in ApoE ε4(-) subjects carrying the rs9722 AA-genotype (OR = 2.622, 95% CI = 1.399–4.915, P = 0.003). Further investigation revealed the serum S100B levels to be lower in rs9722 GG carriers than in rs9722 AA carriers (P = 0.003). We identified three miRNAs (miR-340-3p, miR-593-3p, miR-6827-3p) in which the seed match region covered locus rs9722. Luciferase assays indicated that the rs9722 G allele has a higher binding affinity to miR-6827-3p than the rs9722 A allele, leading to a significantly decreased fluorescence intensity. Subsequent western blot analysis showed that the S100B protein level of SH-SY5Y cells, which carry the rs9722 G allele, decreased significantly following miR-6827-3p stimulation (P = 0.009). The present study suggests that the rs9722 polymorphism may upregulate the expression of S100B by altering the miRNA binding capacity and may thus increase the AD risk. This finding would be of great help for the early diagnosis of AD.
Collapse
Affiliation(s)
- Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yulan Zhou
- Clinical Medicine Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yixia Yang
- Clinical Medicine Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guanhao Hong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Keshen Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China.,Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
12
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|