1
|
Wang X, Fang L, Xiao L, Zhong G, Han M, Wang B, Ren J, Zang Y. Research on the effect of LAMP1 in the development and progression of ccRCC and its potential mechanism with LC3C-mediated autophagy. Front Immunol 2024; 15:1494005. [PMID: 39669571 PMCID: PMC11634794 DOI: 10.3389/fimmu.2024.1494005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Background Lysomembrane-associated protein 1 (LAMP1), known to exhibit differential expression in various tumor types and play a crucial role in the development of tumors. Clear cell Renal Cell Carcinoma (ccRCC) is still the most common pathological type of renal carcinoma with poor prognosis. However, the expression of LAMP1 and its underlying molecular mechanism with ccRCC remain elusive. Methods Firstly, the expression of LAMP1 in ccRCC and its clinical significance were analyzed using various databases. Next, Weston Blot was performed to detect the expression of LAMP1 protein in cancer tissues and adjacent tissues from 60 pairs of clinical ccRCC patients. The correlation between LAMP1 expression and different clinical indicators as well as the relationship with patient prognosis was analyzed. Furthermore, molecular cell biology experiments were conducted to validate the effects of LAMP1 gene expression on cell proliferation, invasion and migration. Additionally, we investigated the impact of VHL, a key gene in renal cancer, and LC3C, an autophagy-related gene, on LAMP1 expression through molecular biology experiments to elucidate the potential underlying mechanism. Results Bioinformatics analysis revealed significant underexpression of LAMP1 in ccRCC (P<0.001), which correlated with poorer prognosis. In multivariate survival analysis, LAMP1 emerged as an independent prognostic marker for overall survival(OS)(P<0.05). Analysis of cancer and paracancer tissue samples from ccRCC patients demonstrated significantly lower levels of LAMP1 in tumors compared to paracancerous tissues (P<0.001), confirming its prognostic impact. Cell functionality experiment revealed that elevated LAMP1 inhibited cell proliferation, migration, and invasion. LAMP1 expression remained unchanged during autophagy modulation but decreased with LC3C knockdown and vice versa. Notably, VHL(+) cells expressed less LAMP1 than VHL(-) cells. Conclusions These findings indicate that low expression levels of LAMP1 is associated with poor prognosis in ccRCC. Therefore, LAMP1 emerges as a novel biomarker associated with the diagnosis and prognosis of renal cancer. Furthermore, we have also described the potential mechanism of action of LAMP1 in renal cancer. LAMP1 is a promising target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Xiongbao Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Liang Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guangxin Zhong
- Department of Urology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Minghao Han
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bingshen Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juchao Ren
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuanwei Zang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Johnson M, Turcotte S. Loss of SETD2 in wild-type VHL clear cell renal cell carcinoma sensitizes cells to STF-62247 and leads to DNA damage, cell cycle arrest, and cell death characteristic of pyroptosis. Mol Oncol 2024. [PMID: 39592433 DOI: 10.1002/1878-0261.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Loss of chromosome 3p and loss of heterogeneity of the von Hippel-Lindau (VHL) gene are common characteristics of clear cell renal cell carcinoma (ccRCC). Despite frequent mutations on VHL, a fraction of tumors still grows with the expression of wild-type (WT) VHL and evolve into an aggressive subtype. Additionally, mutations on chromatin-modifying genes, such as the gene coding for the histone methyltransferase SET containing domain 2 (SETD2), are essential to ccRCC evolution. We previously identified STF-62247, a small molecule first discovered as a synthetically lethal molecule for VHL-deficient cells by blocking late stages of autophagy. This study investigated how other commonly mutated genes in ccRCC could impact the response to STF-62247. We showed that SETD2 inactivation in ccRCC cells expressing WT-VHL became vulnerable to STF-62247, as indicated by decreases in cell proliferation and survival. Furthermore, activation of the DNA damage response pathway leads to the loss of M-phase inducer phosphatase 1 (CDC25A) and cell cycle arrest in S phase. Cleavage of both caspase-3 and gasdermin E suggests that STF-62247 eliminates WT-VHL ccRCC cells through pyroptosis specifically when SETD2 is inactivated.
Collapse
Affiliation(s)
- Mathieu Johnson
- Department of Chemistry and Biochemistry, Université de Moncton, Canada
- Atlantic Cancer Research Institute, Moncton, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Canada
- Atlantic Cancer Research Institute, Moncton, Canada
| |
Collapse
|
3
|
Curcumin Inhibits Proliferation of Renal Cell Carcinoma in vitro and in vivo by Regulating miR-148/ADAMTS18 through Suppressing Autophagy. Chin J Integr Med 2022:10.1007/s11655-022-3690-9. [PMID: 36477451 DOI: 10.1007/s11655-022-3690-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To explore the effect of curcumin on the proliferation of renal cell carcinoma and analyze its regulation mechanism. METHODS In RCC cell lines of A498 and 786-O, the effects of curcumin (2.5, 5, 10 µ mo/L) on the proliferation were analyzed by Annexin V+PI staining. Besides, A498 was inoculated into nude mice to establish tumorigenic models, and the model mice were treated with different concentrations of curcumin (100, 200, and 400 mg/kg), once daily for 30 days. Then the tumor diameter was measured, the tumor cells were observed by hematoxylin-eosin staining, and the protein expressions of miR-148 and ADAMTS18 were detected by immunohistochemistry. In vitro, after transfection of miR-148 mimics, miR-148 inhibitor or si-ADAMTS18 in cell lines, the expression of ADAMTS18 was examined by Western blotting and the cell survival rate was analyzed using MTT. Subsequently, Western blot analysis was again used to examine the autophagy phenomenon by measuring the relative expression level of LC3-II/LC3-I; autophagy-associated genes, including those of Beclin-1 and ATG5, were also examined when miR-148 was silenced in both cell lines with curcumin treatment. RESULTS Curcumin could inhibit the proliferation of RCC in cell lines and nude mice. The expression of miR-148 and ADAMTS18 was upregulated after curcumin treatment both in vitro and in vivo (P<0.05). The cell survival rate was dramatically declined upon miR-148 or ADAMTS18 upregulated. However, si-ADAMTS18 treatment or miR-148 inhibitor reversed these results, that is, both of them promoted the cell survival rate. CONCLUSION Curcumin can inhibit the proliferation of renal cell carcinoma by regulating the miR-148/ ADAMTS18 axis through the suppression of autophagy in vitro and in vivo. There may exist a positive feedback loop between miR-148 and ADAMTS18 gene in RCC.
Collapse
|
4
|
Kowalewski A, Jaworski D, Borowczak J, Maniewski M, Szczerbowski K, Antosik P, Durślewicz J, Smolińska M, Ligmanowska J, Grzanka D, Szylberg Ł. TOLLIP Protein Expression Predicts Unfavorable Outcome in Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms232314702. [PMID: 36499030 PMCID: PMC9741407 DOI: 10.3390/ijms232314702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Resistance to systemic therapy is one of the hallmarks of renal cell carcinoma (RCC). Recently, TOLLIP has emerged as a possible driver of autophagy and chemoresistance. We explored the relationship between primary and metastatic RCC tumor characteristics, patient survival, and TOLLIP expression. The tissue microarrays cohort contained 95 cores of the primary tumor, matched metastases, and matched adjacent tissues derived from 32 RCC patients. TOLLIP expression in tumor samples was evaluated using the H-score. All examined samples showed cytoplasmic TOLLIP expression, with a median value of 100 in primary tumors, 107.5 in metastases, and 220 in the control group. The expression was significantly higher in the normal adjacent tissues compared to primary or metastatic RCC (p < 0.05). We found a positive correlation between expressions of TOLLIP in the primary tumor and its metastases (p < 0.05; k = 0.48). TOLLIP expression significantly correlates with a lower overall survival rate (p = 0.047). TOLLIP functions as a ubiquitin-LC3 adaptor in the intracellular pathway associated with autophagy. Relative TOLLIP overexpression may augment autophagy-related signaling, limiting susceptibility to therapy. The blockade of TOLLIP physiological function seems to be a promising approach to overcoming resistance to systemic therapy.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-5854200; Fax: +48-52-5854049
| | - Damian Jaworski
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Krzysztof Szczerbowski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Marta Smolińska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Joanna Ligmanowska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| |
Collapse
|
5
|
Johnson M, Nowlan S, Sahin G, Barnett DA, Joy AP, Touaibia M, Cuperlovic-Culf M, Zofija Avizonis D, Turcotte S. Decrease of Intracellular Glutamine by STF-62247 Results in the Accumulation of Lipid Droplets in von Hippel-Lindau Deficient Cells. Front Oncol 2022; 12:841054. [PMID: 35223522 PMCID: PMC8865074 DOI: 10.3389/fonc.2022.841054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Kidney cancer is one of the top ten cancer diagnosed worldwide and its incidence has increased the last 20 years. Clear Cell Renal Cell Carcinoma (ccRCC) are characterized by mutations that inactivate the von Hippel-Lindau (VHL) tumor suppressor gene and evidence indicated alterations in metabolic pathways, particularly in glutamine metabolism. We previously identified a small molecule, STF-62247, which target VHL-deficient renal tumors by affecting late-stages of autophagy and lysosomal signaling. In this study, we investigated ccRCC metabolism in VHL-deficient and proficient cells exposed to the small molecule. Metabolomics profiling using 1H NMR demonstrated that STF-62247 increases levels of glucose, pyruvate, glycerol 3-phosphate while glutamate, asparagine, and glutathione significantly decreased. Diminution of glutamate and glutamine was further investigated using mass spectrometry, western blot analyses, enzymatic activities, and viability assays. We found that expression of SLC1A5 increases in VHL-deficient cells treated with STF-62247, possibly to stimulate glutamine uptake intracellularly to counteract the diminution of this amino acid. However, exogenous addition of glutamine was not able to rescue cell viability induced by the small molecule. Instead, our results showed that VHL-deficient cells utilize glutamine to produce fatty acid in response to STF-62247. Surprisingly, this occurs through oxidative phosphorylation in STF-treated cells while control cells use reductive carboxylation to sustain lipogenesis. We also demonstrated that STF-62247 stimulated expression of stearoyl-CoA desaturase (SCD1) and peripilin2 (PLIN2) to generate accumulation of lipid droplets in VHL-deficient cells. Moreover, the carnitine palmitoyltransferase 1A (CPT1A), which control the entry of fatty acid into mitochondria for β-oxidation, also increased in response to STF-62247. CPT1A overexpression in ccRCC is known to limit tumor growth. Together, our results demonstrated that STF-62247 modulates cellular metabolism of glutamine, an amino acid involved in the autophagy-lysosome process, to support lipogenesis, which could be implicated in the signaling driving to cell death.
Collapse
Affiliation(s)
- Mathieu Johnson
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sarah Nowlan
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Gülsüm Sahin
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | | | - Andrew P Joy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | | | | | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
6
|
Loss of E-Cadherin Leads to Druggable Vulnerabilities in Sphingolipid Metabolism and Vesicle Trafficking. Cancers (Basel) 2021; 14:cancers14010102. [PMID: 35008266 PMCID: PMC8749886 DOI: 10.3390/cancers14010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Germline loss of the CDH1 gene is the primary genetic basis for hereditary diffuse gastric cancer, a disease resulting in elevated risk of both diffuse gastric cancer and lobular breast cancer. Current preventative treatment consists of prophylactic total gastrectomy, a therapy with several associated long-term morbidities. To address the lack of targeted molecular therapies for hereditary diffuse gastric cancer, we have utilized a synthetic lethal approach to identify candidate compounds that can specifically kill CDH1-null cells. Inhibitors of sphingolipid metabolism and vesicle trafficking pathways were identified as promising candidate compounds in a cell line model of CDH1 loss, then further validated in murine-derived organoid models of hereditary diffuse gastric cancer. With further research, these findings may lead to the development of novel chemoprevention strategies for the treatment of hereditary diffuse gastric cancer. Abstract Germline inactivating variants of CDH1 are causative of hereditary diffuse gastric cancer (HDGC), a cancer syndrome characterized by an increased risk of both diffuse gastric cancer and lobular breast cancer. Because loss of function mutations are difficult to target therapeutically, we have taken a synthetic lethal approach to identify targetable vulnerabilities in CDH1-null cells. We have previously observed that CDH1-null MCF10A cells exhibit a reduced rate of endocytosis relative to wildtype MCF10A cells. To determine whether this deficiency is associated with wider vulnerabilities in vesicle trafficking, we screened isogenic MCF10A cell lines with known inhibitors of autophagy, endocytosis, and sphingolipid metabolism. Relative to wildtype MCF10A cells, CDH1−/− MCF10A cells showed significantly greater sensitivity to several drugs targeting these processes, including the autophagy inhibitor chloroquine, the endocytosis inhibitors chlorpromazine and PP1, and the sphingosine kinase 1 inhibitor PF-543. Synthetic lethality was confirmed in both gastric and mammary organoid models of CDH1 loss, derived from CD44-Cre/Cdh1fl/fl/tdTomato mice. Collectively, these results suggest that both sphingolipid metabolism and vesicle trafficking represent previously unrecognised druggable vulnerabilities in CDH1-null cells and may lead to the development of new therapies for HDGC.
Collapse
|
7
|
REV1 Inhibition Enhances Radioresistance and Autophagy. Cancers (Basel) 2021; 13:cancers13215290. [PMID: 34771454 PMCID: PMC8582445 DOI: 10.3390/cancers13215290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Cancer resistance to therapy continues to be the biggest challenge in treating patients. Targeting the mutagenic translesion synthesis (TLS) polymerase REV1 was previously shown to sensitize cancer cells to chemotherapy. In this study, we tested the ability of REV1 inhibitors to radiation therapy and observed a lack of radiosensitization. In addition, we observed REV1 inhibition to trigger an autophagy stress response. Because reduction of REV1 triggered autophagy and failed to radiosensitize cells, we hypothesize REV1 expression dynamics might link cancer cell response to radiation treatment through the potential induction of autophagy. Abstract Cancer therapy resistance is a persistent clinical challenge. Recently, inhibition of the mutagenic translesion synthesis (TLS) protein REV1 was shown to enhance tumor cell response to chemotherapy by triggering senescence hallmarks. These observations suggest REV1’s important role in determining cancer cell response to chemotherapy. Whether REV1 inhibition would similarly sensitize cancer cells to radiation treatment is unknown. This study reports a lack of radiosensitization in response to REV1 inhibition by small molecule inhibitors in ionizing radiation-exposed cancer cells. Instead, REV1 inhibition unexpectedly triggers autophagy, which is a known biomarker of radioresistance. We report a possible role of the REV1 TLS protein in determining cancer treatment outcomes depending upon the type of DNA damage inflicted. Furthermore, we discover that REV1 inhibition directly triggers autophagy, an uncharacterized REV1 phenotype, with a significant bearing on cancer treatment regimens.
Collapse
|
8
|
Ortmann BM, Nathan JA. Genetic approaches to understand cellular responses to oxygen availability. FEBS J 2021; 289:5396-5412. [PMID: 34125486 DOI: 10.1111/febs.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Oxygen-sensing mechanisms have evolved to allow organisms to respond and adapt to oxygen availability. In metazoans, oxygen-sensing is predominantly mediated by the hypoxia inducible factors (HIFs). These transcription factors are stabilised when oxygen is limiting, activating genes involved in angiogenesis, cell growth, pH regulation and metabolism to reset cell function and adapt to the cellular environment. However, the recognition that other cellular pathways and enzymes can also respond to changes in oxygen abundance provides further complexity. Dissecting this interplay of oxygen-sensing mechanisms has been a key research goal. Here, we review how genetic approaches have contributed to our knowledge of oxygen-sensing pathways which to date have been predominantly focused on the HIF pathway. We discuss how genetic studies have advanced the field and outline the implications and limitations of such approaches for the development of therapies targeting oxygen-sensing mechanisms in human disease.
Collapse
Affiliation(s)
- Brian M Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| |
Collapse
|
9
|
Xing J, Li Y, Zhao H. Knockdown of CLN5 inhibits the tumorigenic properties of glioblastoma cells via the Akt/mTOR signaling pathway. Oncol Lett 2021; 21:387. [PMID: 33777210 PMCID: PMC7988714 DOI: 10.3892/ol.2021.12648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are highly malignant tumors with a rapid progression and poor prognosis. The present study investigated the cellular effects of CLN5-knockdown in the glioblastoma (GBM) U251 and U87MG cell lines. The Cell Counting Kit-8 and colony formation assays indicated that CLN5-knockdown inhibited the proliferation of GBM cells. Additionally, the results of the Transwell and scratch assays revealed that CLN5-knockdown significantly inhibited migration and invasion, and the flow cytometry analysis confirmed that apoptosis was promoted. Knockdown of CLN5 downregulated the expression levels of MMP-2, Bcl-2, cyclin D1, CDK4 and CDK6, and upregulated the expression levels of Bax and activated caspase-9. Additionally, it blocked GBM cells in the G1-phase and induced early apoptosis. Knockdown of CLN5 inhibited the activation of the Akt and mTOR signaling pathways in GBM by decreasing the levels of phosphorylated (p)-Akt and p-mTOR. The present data suggested that downregulation of CLN5 may be a potential treatment option for GBM. Knockdown of CLN5 inhibited the development of GBM via the inhibition of the Akt and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jiexia Xing
- Department of Neurology, Shandong University of Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Ying Li
- Department of Critical Medicine, The Third People's Hospital of Heze, Heze, Shandong 274000, P.R. China
| | - Huilan Zhao
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
10
|
Bouhamdani N, Comeau D, Coholan A, Cormier K, Turcotte S. Targeting lysosome function causes selective cytotoxicity in VHL-inactivated renal cell carcinomas. Carcinogenesis 2020; 41:828-840. [PMID: 31556451 DOI: 10.1093/carcin/bgz161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
The inactivation of the tumor suppressor gene, von Hippel-Lindau (VHL), has been identified as the earliest event in renal cell carcinoma (RCC) development. The loss of heterogeneity by chromosome 3p deletion followed by inactivating mutations on the second VHL copy are events present in close to 90% of patients. Our study illustrates a lysosomal vulnerability in VHL-inactivated RCC in vitro. By investigating the mechanism of action of the previously identified STF-62247, a small bioactive compound known for its selective cytotoxic properties towards VHL-defective models, we present the promising approach of targeting truncal-driven VHL inactivation through lysosome disruption. Furthermore, by analyzing the open platform for exploring cancer genomic data (cbioportal), we uncover the high alteration frequency of essential lysosomal and autophagic genes in sequenced biopsies from clear cell RCC patient primary tumors. By investigating lysosome physiology, we also identify VHL-inactivated cells' inability to maintain their lysosomes at the perinuclear localization in response to STF-62247-induced stress and accumulate cytoplasmic inclusion bodies in response to an inefficient lysosomal degradative capacity. Finally, by testing other known lysosomal-disrupting agents (LDAs), we show that these are selectively cytotoxic to cells lacking VHL functions. Our study builds a strong platform that could specifically link genetic clonal ccRCC evolution to lysosomal and trafficking vulnerabilities.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Dominique Comeau
- Department of Biology, Université de Moncton, Moncton, New-Brunswick, Canada
| | - Alexandre Coholan
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Kevin Cormier
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| | - Sandra Turcotte
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New-Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New-Brunswick, Canada
| |
Collapse
|
11
|
Jones TM, Carew JS, Nawrocki ST. Therapeutic Targeting of Autophagy for Renal Cell Carcinoma Therapy. Cancers (Basel) 2020; 12:E1185. [PMID: 32392870 PMCID: PMC7281213 DOI: 10.3390/cancers12051185] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
Kidney cancer is the 7th most prevalent form of cancer in the United States with the vast majority of cases being classified as renal cell carcinoma (RCC). Multiple targeted therapies have been developed to treat RCC, but efficacy and resistance remain a challenge. In recent years, the modulation of autophagy has been shown to augment the cytotoxicity of approved RCC therapeutics and overcome drug resistance. Inhibition of autophagy blocks a key nutrient recycling process that cancer cells utilize for cell survival following periods of stress including chemotherapeutic treatment. Classic autophagy inhibitors such as chloroquine and hydroxychloroquine have been introduced into phase I/II clinical trials, while more experimental compounds are moving forward in preclinical development. Here we examine the current state and future directions of targeting autophagy to improve the efficacy of RCC therapeutics.
Collapse
Affiliation(s)
| | | | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (T.M.J.); (J.S.C.)
| |
Collapse
|
12
|
Chen C, Chen S, Hu X, Wang J, Wen T, Fu J, Li H. Effects of autophagy-associated genes on the prognosis for lung adenocarcinoma. Transl Cancer Res 2020; 9:1947-1959. [PMID: 35117541 PMCID: PMC8798140 DOI: 10.21037/tcr.2020.02.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/04/2020] [Indexed: 12/29/2022]
Abstract
Background Several studies show that autophagy plays an important part in the biological processes of lung adenocarcinoma. Therefore, this work aimed to establish one scoring system on the basis of the expression profiles of differentially expressed autophagy-related genes (DEARGs) in patients with lung adenocarcinoma. Methods The Cancer Genome Atlas (TCGA) was applied to retrieve lung adenocarcinoma data. The overall survival (OS)-associated DEARGs were selected for the DEARG scoring scale. Moreover, the online database Kaplan-Meier Plotter (www.Kmplot.com) was employed to verify the accuracy of our results. Results The expression patterns of DEARG were detected in lung adenocarcinoma as well as normal lung tissues. A gene set related to autophagy was identified, along with 9 genes that showed marked significance in predicting the lung adenocarcinoma prognosis. According to the cox regression results, DEARGs (including ITGB4, BIRC5, ERO1A, and NLRC4) were applied to calculate the DEARGs risk score. Patients with lower DEARGs risk scores were associated with better OS. Moreover, based on analysis with the receiver operating characteristic (ROC) curve, DEARGs accurately distinguished the healthy tissues from lung adenocarcinoma tissues [area under the curve (AUC) value of >0.6]. Conclusions A scoring system is constructed based on the primary DEARGs, which accurately predicts the outcomes of lung adenocarcinoma.
Collapse
Affiliation(s)
- Chongxiang Chen
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Siliang Chen
- Department of Hematology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiaochun Hu
- Department of Hematology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jiaojiao Wang
- Department of Tuberculosis, Fuzhou Pulmonary Hospital of Fujian, Teaching Hospital of Fujian Medical University, Fuzhou 350008, China
| | - Tianmeng Wen
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Fu
- Department of Ultrasound and Electrocardiogram, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Huan Li
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
13
|
Kinzler MN, Zielke S, Kardo S, Meyer N, Kögel D, van Wijk SJL, Fulda S. STF-62247 and pimozide induce autophagy and autophagic cell death in mouse embryonic fibroblasts. Sci Rep 2020; 10:687. [PMID: 31959760 PMCID: PMC6971264 DOI: 10.1038/s41598-019-56990-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
Induction of autophagy can have beneficial effects in several human diseases, e.g. cancer and neurodegenerative diseases (ND). Here, we therefore evaluated the potential of two novel autophagy-inducing compounds, i.e. STF-62247 and pimozide, to stimulate autophagy as well as autophagic cell death (ACD) using mouse embryonic fibroblasts (MEFs) as a cellular model. Importantly, both STF-62247 and pimozide triggered several hallmarks of autophagy in MEFs, i.e. enhanced levels of LC3B-II protein, its accumulation at distinct cytosolic sites and increase of the autophagic flux. Intriguingly, autophagy induction by STF-62247 and pimozide resulted in cell death that was significantly reduced in ATG5- or ATG7-deficient MEFs. Consistent with ACD induction, pharmacological inhibitors of apoptosis, necroptosis or ferroptosis failed to protect MEFs from STF-62247- or pimozide-triggered cell death. Interestingly, at subtoxic concentrations, pimozide stimulated fragmentation of the mitochondrial network, degradation of mitochondrial proteins (i.e. mitofusin-2 and cytochrome c oxidase IV (COXIV)) as well as a decrease of the mitochondrial mass, indicative of autophagic degradation of mitochondria by pimozide. In conclusion, this study provides novel insights into the induction of selective autophagy as well as ACD by STF-62247 and pimozide in MEFs.
Collapse
Affiliation(s)
- Maximilian N Kinzler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Svenja Zielke
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
| | - Simon Kardo
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
| | - Nina Meyer
- Experimental Neurosurgery, Goethe-University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Goethe-University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
- German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| |
Collapse
|