1
|
Olszewska AM, Zmijewski MA. Genomic and non-genomic action of vitamin D on ion channels - Targeting mitochondria. Mitochondrion 2024; 77:101891. [PMID: 38692383 DOI: 10.1016/j.mito.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.
Collapse
Affiliation(s)
- A M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland
| | - M A Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| |
Collapse
|
2
|
Kito H, Kawagishi R, Ryu T, Endo K, Kajikuri J, Giles WR, Ohya S. K Ca3.1 regulates cell cycle progression by modulating Ca 2+ signaling in murine preosteoblasts. J Pharmacol Sci 2023; 153:142-152. [PMID: 37770155 DOI: 10.1016/j.jphs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Osteoblasts synthesize and deposit essential components of the extracellular bone matrix and collagen scaffolds, leading to mineralized bone formation. Therefore, the proliferation of preosteoblasts (precursors of mature osteoblasts) helps in regulating skeletal homeostasis. This study demonstrated that the functional expression of KCa3.1, an intermediate-conductance Ca2+-activated K+ channel, is markedly upregulated in murine preosteoblastic MC3T3-E1 cells in the G0/G1 phase. The enhancement of KCa3.1 is involved in the establishment of more negative membrane potentials in MC3T3-E1 cells. This hyperpolarization can promote intracellular Ca2+ signaling because store-operated Ca2+ channels are activated. Treatment with TRAM-34, a specific KCa3.1 inhibitor, attenuated the cell cycle progression from the G0/G1 phase to the S/G2/M phases. In MC3T3-E1 cells, KCa3.1 significantly promoted the transition from the G1 phase to the S phase. KCa3.1 inhibition also caused G0 phase cell accumulation. Furthermore, TRAM-34 decreased the expression of alkaline phosphatase, bone sialoprotein, and osteocalcin, osteoblast differentiation markers in MC3T3-E1 cells, and inhibited the endochondral ossification of murine metatarsals. These results reveal novel ways by which KCa3.1 activity can strongly modulate osteoblast maturation during bone formation.
Collapse
Affiliation(s)
- Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
| | - Reiko Kawagishi
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takusei Ryu
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Endo
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
3
|
Takács R, Kovács P, Ebeid RA, Almássy J, Fodor J, Ducza L, Barrett-Jolley R, Lewis R, Matta C. Ca2+-Activated K+ Channels in Progenitor Cells of Musculoskeletal Tissues: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076796. [PMID: 37047767 PMCID: PMC10095002 DOI: 10.3390/ijms24076796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Musculoskeletal disorders represent one of the main causes of disability worldwide, and their prevalence is predicted to increase in the coming decades. Stem cell therapy may be a promising option for the treatment of some of the musculoskeletal diseases. Although significant progress has been made in musculoskeletal stem cell research, osteoarthritis, the most-common musculoskeletal disorder, still lacks curative treatment. To fine-tune stem-cell-based therapy, it is necessary to focus on the underlying biological mechanisms. Ion channels and the bioelectric signals they generate control the proliferation, differentiation, and migration of musculoskeletal progenitor cells. Calcium- and voltage-activated potassium (KCa) channels are key players in cell physiology in cells of the musculoskeletal system. This review article focused on the big conductance (BK) KCa channels. The regulatory function of BK channels requires interactions with diverse sets of proteins that have different functions in tissue-resident stem cells. In this narrative review article, we discuss the main ion channels of musculoskeletal stem cells, with a focus on calcium-dependent potassium channels, especially on the large conductance BK channel. We review their expression and function in progenitor cell proliferation, differentiation, and migration and highlight gaps in current knowledge on their involvement in musculoskeletal diseases.
Collapse
Affiliation(s)
- Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Rana Abdelsattar Ebeid
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Semmelweis University, H-1428 Budapest, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3GA, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Cui Y, Sun K, Xiao Y, Li X, Mo S, Yuan Y, Wang P, Yang L, Zhang R, Zhu X. High-salt diet accelerates bone loss accompanied by activation of ion channels related to kidney and bone tissue in ovariectomized rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114024. [PMID: 36057202 DOI: 10.1016/j.ecoenv.2022.114024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Excessive salt intake can induce a variety of diseases, such as hypertension, cardiovascular disease, kidney disease and so on,it is also one of the factors promoting bone resorption. The mechanism of osteoporosis-induced exacerbations of high salt diet is not well-defined. In this study, we used ovariectomized 6-month-old Sprague Dawley rats to construct a high bone turnover model, and then administrated with high sodium chloride diet (2.0% w/w NaCl, 8.0% w/w NaCl) for 12 weeks to observe the effect of high salt diet on bone metabolism. The results showed that high salt diet could lead to the destruction of bone microstructure, promote the excretion of urinary calcium and phosphorus and accelerate the bone turnover, as well as cause the pathologic structural abnormalities in renal tubular. At the same time, it was accompanied by the up-regulated expression of the epithelial sodium channel (ENaCα), voltage-gated chloride channels (ClC)- 3 and the down-regulated expression of Na-Cl cotransporter (NCC), sodium calcium exchanger (NCX1) in femoral tissue and renal tubules. These findings confirm that high salt diet can destroy the microstructure of bone by increasing bone resorption and affect some ion channels of bone tissue and renal tubule in ovariectomized rats.
Collapse
Affiliation(s)
- Yan Cui
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Kehuan Sun
- The First Affiliated Hospital of Shenzhen University,Shenzhen Second People's Hospital, Shenzhen, Guangdong 518020, PR China
| | - Yawen Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Shu Mo
- Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518000, PR China
| | - Yihan Yuan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; Cancer research Institution, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Li Yang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China; Cancer research Institution, Jinan University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong 510630, PR China.
| | - Xiaofeng Zhu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
5
|
Downregulation of IL-8 and IL-10 by the Activation of Ca2+-Activated K+ Channel KCa3.1 in THP-1-Derived M2 Macrophages. Int J Mol Sci 2022; 23:ijms23158603. [PMID: 35955737 PMCID: PMC9368915 DOI: 10.3390/ijms23158603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
THP-1-differentiated macrophages are useful for investigating the physiological significance of tumor-associated macrophages (TAMs). In the tumor microenvironment (TME), TAMs with the M2-like phenotype play a critical role in promoting cancer progression and metastasis by inhibiting the immune surveillance system. We examined the involvement of Ca2+-activated K+ channel KCa3.1 in TAMs in expressing pro-tumorigenic cytokines and angiogenic growth factors. In THP-1-derived M2 macrophages, the expression levels of IL-8 and IL-10 were significantly decreased by treatment with the selective KCa3.1 activator, SKA-121, without changes in those of VEGF and TGF-β1. Furthermore, under in vitro experimental conditions that mimic extracellular K+ levels in the TME, IL-8 and IL-10 levels were both significantly elevated, and these increases were reversed by combined treatment with SKA-121. Among several signaling pathways potentially involved in the transcriptional regulation of IL-8 and IL-10, respective treatments with ERK and JNK inhibitors significantly repressed their transcriptions, and treatment with SKA-121 significantly reduced the phosphorylated ERK, JNK, c-Jun, and CREB levels. These results strongly suggest that the KCa3.1 activator may suppress IL-10-induced tumor immune surveillance escape and IL-8-induced tumorigenicity and metastasis by inhibiting their production from TAMs through ERK-CREB and JNK-c-Jun cascades.
Collapse
|
6
|
KCa3.1 in diabetic kidney disease. Curr Opin Nephrol Hypertens 2022; 31:129-134. [PMID: 34710887 DOI: 10.1097/mnh.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is a significant health concern. Innovative strategies to prevent or limit the progression of DKD are urgently needed due to the limitation of existing treatments. KCa3.1, a potassium channel, is involved in a range of biological processes from cell survival to cell death. This review summarizes the current knowledge on the pathophysiological functions of the KCa3.1 channel, specifically its involvement in maintaining mitochondrial function. More specifically, the therapeutic potential of targeting KCa3.1 in DKD is systematically discussed in the review. RECENT FINDINGS Mitochondrial dysfunction contributes to the development and progression of DKD. Accumulating evidence indicates that KCa3.1 dysregulation plays a crucial role in mitochondrial dysfunction, in addition to driving cellular activation, proliferation and inflammation. Recent studies demonstrate that KCa3.1 deficiency improves diabetes-induced mitochondrial dysfunction in DKD, which is attributed to modulation of mitochondrial quality control through mitigating the altered mitochondrial dynamics and restoring abnormal BNIP3-mediated mitophagy. SUMMARY Based on its role in fibrosis, inflammation and mitochondrial dysfunction, pharmacological inhibition of KCa3.1 may offer a promising alternative for the treatment of DKD. Due to its safety profile in humans, the repurposing of senicapoc has the potential to expedite an urgently needed new drug in DKD.
Collapse
|
7
|
Role of K + and Ca 2+-Permeable Channels in Osteoblast Functions. Int J Mol Sci 2021; 22:ijms221910459. [PMID: 34638799 PMCID: PMC8509041 DOI: 10.3390/ijms221910459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Bone-forming cells or osteoblasts play an important role in bone modeling and remodeling processes. Osteoblast differentiation or osteoblastogenesis is orchestrated by multiple intracellular signaling pathways (e.g., bone morphogenetic proteins (BMP) and Wnt signaling pathways) and is modulated by the extracellular environment (e.g., parathyroid hormone (PTH), vitamin D, transforming growth factor β (TGF-β), and integrins). The regulation of bone homeostasis depends on the proper differentiation and function of osteoblast lineage cells from osteogenic precursors to osteocytes. Intracellular Ca2+ signaling relies on the control of numerous processes in osteoblast lineage cells, including cell growth, differentiation, migration, and gene expression. In addition, hyperpolarization via the activation of K+ channels indirectly promotes Ca2+ signaling in osteoblast lineage cells. An improved understanding of the fundamental physiological and pathophysiological processes in bone homeostasis requires detailed investigations of osteoblast lineage cells. This review summarizes the current knowledge on the functional impacts of K+ channels and Ca2+-permeable channels, which critically regulate Ca2+ signaling in osteoblast lineage cells to maintain bone homeostasis.
Collapse
|
8
|
Crovace MC, Soares VO, Rodrigues ACM, Peitl O, Raucci LM, de Oliveira PT, Zanotto ED. Understanding the mixed alkali effect on the sinterability and in vitro performance of bioactive glasses. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Kamata S, Kimura M, Ohyama S, Yamashita S, Shibukawa Y. Large-Conductance Calcium-Activated Potassium Channels and Voltage-Dependent Sodium Channels in Human Cementoblasts. Front Physiol 2021; 12:634846. [PMID: 33959036 PMCID: PMC8093401 DOI: 10.3389/fphys.2021.634846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cementum, which is excreted by cementoblasts, provides an attachment site for collagen fibers that connect to the alveolar bone and fix the teeth into the alveolar sockets. Transmembrane ionic signaling, associated with ionic transporters, regulate various physiological processes in a wide variety of cells. However, the properties of the signals generated by plasma membrane ionic channels in cementoblasts have not yet been described in detail. We investigated the biophysical and pharmacological properties of ion channels expressed in human cementoblast (HCEM) cell lines by measuring ionic currents using conventional whole-cell patch-clamp recording. The application of depolarizing voltage steps in 10 mV increments from a holding potential (Vh) of −70 mV evoked outwardly rectifying currents at positive potentials. When intracellular K+ was substituted with an equimolar concentration of Cs+, the outward currents almost disappeared. Using tail current analysis, the contributions of both K+ and background Na+ permeabilities were estimated for the outward currents. Extracellular application of tetraethylammonium chloride (TEA) and iberiotoxin (IbTX) reduced the densities of the outward currents significantly and reversibly, whereas apamin and TRAM-34 had no effect. When the Vh was changed to −100 mV, we observed voltage-dependent inward currents in 30% of the recorded cells. These results suggest that HCEM express TEA- and IbTX-sensitive large-conductance Ca2+-activated K+ channels and voltage-dependent Na+ channels.
Collapse
Affiliation(s)
- Satomi Kamata
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan.,Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Shuichiro Yamashita
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
10
|
Beta-Titanium Alloy Covered by Ferroelectric Coating–Physicochemical Properties and Human Osteoblast-Like Cell Response. COATINGS 2021. [DOI: 10.3390/coatings11020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Beta-titanium alloys are promising materials for bone implants due to their advantageous mechanical properties. For enhancing the interaction of bone cells with this perspective material, we developed a ferroelectric barium titanate (BaTiO3) coating on a Ti39Nb alloy by hydrothermal synthesis. This coating was analyzed by scanning electron and Raman microscopy, X-ray diffraction, piezoresponse force microscopy, X-ray photoelectron spectroscopy, nanoindentation, and roughness measurement. Leaching experiments in a saline solution revealed that Ba is released from the coating. A progressive decrease of Ba concentration in the material was also found after 1, 3, and 7 days of cultivation of human osteoblast-like Saos-2 cells. On day 1, the Saos-2 cells adhered on the BaTiO3 film in higher initial numbers than on the bare alloy, but they were less spread, and their initial proliferation rate was slower. These cells also contained a lower amount of beta1-integrins and vinculin, i.e., molecules involved in cell adhesion, and produced a lower amount of collagen I. This cell behavior was attributed to a higher surface roughness of BaTiO3 film rather than to its potential cytotoxicity, because the cell viability on this film was very high, reaching almost 99%. The amount of alkaline phosphatase, an enzyme involved in bone matrix mineralization, was similar in cells on the BaTiO3-coated and uncoated alloy, and on day 7, the cells on BaTiO3 film attained a higher final cell population density. These results indicate that after some improvements, particularly in its roughness and stability, the hydrothermal ferroelectric BaTiO3 film could be promising coating for improved osseointegration of bone implants.
Collapse
|