1
|
Tocci P, Roman C, Sestito R, Caprara V, Sacconi A, Molineris I, Tonon G, Blandino G, Bagnato A. The endothelin-1-driven tumor-stroma feed-forward loops in high-grade serous ovarian cancer. Clin Sci (Lond) 2024; 138:851-862. [PMID: 38884602 PMCID: PMC11230866 DOI: 10.1042/cs20240346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The high-grade serous ovarian cancer (HG-SOC) tumor microenvironment (TME) is constellated by cellular elements and a network of soluble constituents that contribute to tumor progression. In the multitude of the secreted molecules, the endothelin-1 (ET-1) has emerged to be implicated in the tumor/TME interplay; however, the molecular mechanisms induced by the ET-1-driven feed-forward loops (FFL) and associated with the HG-SOC metastatic potential need to be further investigated. The tracking of the patient-derived (PD) HG-SOC cell transcriptome by RNA-seq identified the vascular endothelial growth factor (VEGF) gene and its associated signature among those mostly up-regulated by ET-1 and down-modulated by the dual ET-1R antagonist macitentan. Within the ligand-receptor pairs concurrently expressed in PD-HG-SOC cells, endothelial cells and activated fibroblasts, we discovered two intertwined FFL, the ET-1/ET-1R and VEGF/VEGF receptors, concurrently activated by ET-1 and shutting-down by macitentan, or by the anti-VEGF antibody bevacizumab. In parallel, we observed that ET-1 fine-tuned the tumoral and stromal secretome toward a pro-invasive pattern. Into the fray of the HG-SOC/TME double and triple co-cultures, the secretion of ET-1 and VEGF, that share a common co-regulation, was inhibited upon the administration of macitentan. Functionally, macitentan, mimicking the effect of bevacizumab, interfered with the HG-SOC/TME FFL-driven communication that fuels the HG-SOC invasive behavior. The identification of ET-1 and VEGF FFL as tumor and TME actionable vulnerabilities, reveals how ET-1R blockade, targeting the HG-SOC cells and the TME simultaneously, may represent an effective therapeutic option for HG-SOC patients.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Turin, Italy
| | - Giovanni Tonon
- Center for Omics Sciences (COSR) and Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
2
|
Zhou Y, Chen Z, Guo Z, Gao G, Duan Y, Wang H, Sun L, Huang W, Zhuo Y. Blood metabolites mediate the causal relationship between circulating CX3CL1 levels and prostate cancer: A 2-step Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38433. [PMID: 38847691 PMCID: PMC11155528 DOI: 10.1097/md.0000000000038433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Chemokines influence the progression of prostate cancer (PCa) through multiple mechanisms. However, the effect of C-X3-C chemokine ligand 1 (CX3CL1) on PCa risk remains controversial. Our study aimed to investigate whether circulating CX3CL1 is causally associated with PCa and to identify metabolites that have mediating effects using the 2-step bidirectional Mendelian randomization (MR) analysis process. Inverse variance weighting (IVW) results were used as the primary observations, while additional sensitivity analyses were conducted. For each standard deviation increase exhibited by the circulating CX3CL1 levels, the risk of PCa was reduced by 0.4% (IVW: OR = 0.996, [95% CI = 0.994-0.998], P < .001), and blood alliin levels increased by 19% (IVW: OR = 1.185, [95% CI = 1.01-1.54], P = .003). For each standard deviation increase in the blood alliin levels, the risk of PCa was reduced by 0.1% (IVW: OR = 0.999, [95% CI = 0.997-0.999], P = .03). Therefore, the protective effect of circulating CX3CL1 on PCa may be mediated by blood alliin levels (mediated proportion = 6.7%). The results supported the notion that high levels of circulating CX3CL1 indicate a lower PCa risk and the idea that the food-derived antioxidant alliin may mediate this association. We emphasize that the use of CX3CL1 as a protective factor against PCa may provide new strategies for PCa prevention and care in the future.
Collapse
Affiliation(s)
- Yinshu Zhou
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zexiong Guo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guie Gao
- Surgery Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiping Duan
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Haoyu Wang
- International School, Jinan University, Guangzhou, China
| | - Luping Sun
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wanwei Huang
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yumin Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
4
|
Atiya HI, Gorecki G, Garcia GL, Frisbie LG, Baruwal R, Coffman L. Stromal-Modulated Epithelial-to-Mesenchymal Transition in Cancer Cells. Biomolecules 2023; 13:1604. [PMID: 38002286 PMCID: PMC10669774 DOI: 10.3390/biom13111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The ability of cancer cells to detach from the primary site and metastasize is the main cause of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the first event of the metastatic cascade, resulting in the loss of cell-cell adhesion and the acquisition of motile and stem-like phenotypes. A critical modulator of EMT in cancer cells is the stromal tumor microenvironment (TME), which can promote the acquisition of a mesenchymal phenotype through direct interaction with cancer cells or changes to the broader microenvironment. In this review, we will explore the role of stromal cells in modulating cancer cell EMT, with particular emphasis on the function of mesenchymal stromal/stem cells (MSCs) through the activation of EMT-inducing pathways, extra cellular matrix (ECM) remodeling, immune cell alteration, and metabolic rewiring.
Collapse
Affiliation(s)
- Huda I. Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Grace Gorecki
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Geyon L. Garcia
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonard G. Frisbie
- Department of Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Roja Baruwal
- Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women’s Research Institute, Pittsburgh, PA15213, USA
| |
Collapse
|