1
|
Jackson MJ. Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle. Free Radic Biol Med 2024; 225:494-500. [PMID: 39427746 DOI: 10.1016/j.freeradbiomed.2024.10.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of "effector" proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
2
|
Mayfield DL, Cronin NJ, Lichtwark GA. Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomech Model Mechanobiol 2023; 22:309-337. [PMID: 36335506 PMCID: PMC9958200 DOI: 10.1007/s10237-022-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, USA.
| | - Neil J Cronin
- Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Desoye G, Carter AM. Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat Rev Endocrinol 2022; 18:593-607. [PMID: 35902735 DOI: 10.1038/s41574-022-00717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Despite improvements in clinical management, pregnancies complicated by pre-existing diabetes mellitus, gestational diabetes mellitus or obesity carry substantial risks for parent and offspring. Some of the endocrine and metabolic changes in parent and fetus in diabetes mellitus and obesity lead to fetal oxygen deficit, mostly due to insulin-induced accelerated fetal metabolism. The human fetus deals with reduced oxygenation through a wide range of adaptive responses that act at various levels in the placenta as well as the fetus. These responses ensure adequate oxygen delivery to the fetus, increase the oxygen transport capacity of fetal blood and redistribute oxygen-rich blood to vital organs such as the brain and heart. The liver has a central role in adapting to reduced oxygenation by increasing its oxygen extraction and stimulating erythropoietin synthesis to increase haematocrit. The type of adaptive response depends on the onset and duration of hypoxia and the severity of the metabolic disturbance. In pregnancies characterized by diabetes mellitus or obesity, these adaptive systems come under additional strain owing to the increased maternal supply of glucose and resultant fetal hyperinsulinaemia, both of which stimulate oxidative metabolism. In the rare situation that the adaptive responses are overwhelmed, stillbirth can ensue.
Collapse
Affiliation(s)
- Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
- Center for Pregnant Women with Diabetes, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Anthony M Carter
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Brichta CE, Godwin J, Norlin S, Kling PJ. Impact and interactions between risk factors on the iron status of at-risk neonates. J Perinatol 2022; 42:1103-1109. [PMID: 35132153 DOI: 10.1038/s41372-022-01318-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/29/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Examine interactions between perinatal risk factors for congenital iron deficiency (ID) using two cohorts. STUDY DESIGN Iron status in a composite 767-member cord blood cohort and a NICU cohort of 257 infants < 33 weeks of gestation or small for gestational age (SGA). Risks for ID were examined. Cord ferritin levels < 84 µg/L defined congenital ID. Serum ferritin < 70 µg/L defined infantile ID at one-month. RESULTS 31% of the cord cohort had congenital ID; risks summative (p < 0.0015). 16% of the NICU cohort had infantile ID; risks not summative. However, 32% had ID if the ferritin threshold was 100 µg/L. Being both preterm (p < 0.0001) and SGA (p < 0.05) negatively impacted cord iron status. Maternal hypertension was a novel predictor of iron status (p = 0.023 in preterm cord; p < 0.0025 in NICU). CONCLUSION Summing risks in term and understanding compounding risks in preterm infants can improve screening and management of ID in at-risk infants.
Collapse
Affiliation(s)
- Christine E Brichta
- Pediatrics, University of Wisconsin, Madison, WI, USA.,UnityPoint Health Meriter, Madison, WI, USA
| | - Jennie Godwin
- Pediatrics, Children's Mercy and University of Kansas and formerly, Pediatrics, University of Wisconsin, Madison, WI, USA
| | | | - Pamela J Kling
- Pediatrics, University of Wisconsin, Madison, WI, USA. .,UnityPoint Health Meriter, Madison, WI, USA.
| |
Collapse
|
5
|
Ronaldson SM, Stephenson DG, Head SI. Calcium and strontium contractile activation properties of single skinned skeletal muscle fibres from elderly women 66-90 years of age. J Muscle Res Cell Motil 2022; 43:173-183. [PMID: 35987933 PMCID: PMC9708809 DOI: 10.1007/s10974-022-09628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/31/2022]
Abstract
The single freshly skinned muscle fibre technique was used to investigate Ca2+- and Sr2+-activation properties of skeletal muscle fibres from elderly women (66-90 years). Muscle biopsies were obtained from the vastus lateralis muscle. Three populations of muscle fibres were identified according to their specific Sr2+-activation properties: slow-twitch (type I), fast-twitch (type II) and hybrid (type I/II) fibres. All three fibre types were sampled from the biopsies of 66 to 72 years old women, but the muscle biopsies of women older than 80 years yielded only slow-twitch (type I) fibres. The proportion of hybrid fibres in the vastus lateralis muscle of women of circa 70 years of age (24%) was several-fold greater than in the same muscle of adults (< 10%), suggesting that muscle remodelling occurs around this age. There were no differences between the Ca2+- and Sr2+-activation properties of slow-twitch fibres from the two groups of elderly women, but there were differences compared with muscle fibres from young adults with respect to sensitivity to Ca2+, steepness of the activation curves, and characteristics of the fibre-type dependent phenomenon of spontaneous oscillatory contractions (SPOC) (or force oscillations) occurring at submaximal levels of activation. The maximal Ca2+ activated specific force from all the fibres collected from the seven old women use in the present study was significantly lower by 20% than in the same muscle of adults. Taken together these results show there are qualitative and quantitative changes in the activation properties of the contractile apparatus of muscle fibres from the vastus lateralis muscle of women with advancing age, and that these changes need to be considered when explaining observed changes in women's mobility with aging.
Collapse
Affiliation(s)
| | - D. George Stephenson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086 Australia
| | - Stewart I. Head
- School of Medicine, Western Sydney University, Sydney, 2751 Australia ,Chair of Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751 Australia
| |
Collapse
|
6
|
Minato K, Yoshimoto Y, Kurosawa T, Watanabe K, Kawashima H, Ikemoto-Uezumi M, Uezumi A. Measurement of Lateral Transmission of Force in the Extensor Digitorum Longus Muscle of Young and Old Mice. Int J Mol Sci 2021; 22:ijms222212356. [PMID: 34830237 PMCID: PMC8623005 DOI: 10.3390/ijms222212356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
The main function of skeletal muscles is to generate force. The force developed by myofiber contraction is transmitted to the tendon. There are two pathways of force transmission from myofibers to tendons: longitudinal transmission that depends on tension elicited via the myotendinous junction and lateral transmission that depends on shear elicited via the interface between the myofiber surface and surrounding connective tissue. Experiments using animal muscle and mathematical models indicated that lateral transmission is the dominant pathway in muscle force transmission. Studies using rat muscle showed that the efficiency of lateral force transmission declines with age. Here, the lateral transmission of force was measured using the extensor digitorum longus muscle from young and old mice. Dependence on longitudinal transmission increased in the old muscle, and there was a trend for lower efficiency of lateral force transmission in the old muscle compared to the young muscle. There was a noticeable increase in the connective tissue volume in the old muscle; however, there was no significant change in the expression of dystrophin, a critical molecule for the link between the myofiber cytoskeleton and extracellular matrix. This study demonstrates the measurement of lateral force transmission in mouse muscles and that alteration in force transmission property may underlie age-related muscle weakness.
Collapse
Affiliation(s)
- Keitaro Minato
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
- Department of Regenerative and Transplant Medicine, Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Tyuo-Ku, Niigata 951-8510, Japan; (K.W.); (H.K.)
| | - Yuki Yoshimoto
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
| | - Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kei Watanabe
- Department of Regenerative and Transplant Medicine, Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Tyuo-Ku, Niigata 951-8510, Japan; (K.W.); (H.K.)
| | - Hiroyuki Kawashima
- Department of Regenerative and Transplant Medicine, Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Tyuo-Ku, Niigata 951-8510, Japan; (K.W.); (H.K.)
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (K.M.); (Y.Y.); (T.K.); (M.I.-U.)
- Correspondence:
| |
Collapse
|
7
|
Altered protein O-GlcNAcylation in placentas from mothers with diabetes causes aberrant endocytosis in placental trophoblast cells. Sci Rep 2021; 11:20705. [PMID: 34667181 PMCID: PMC8526670 DOI: 10.1038/s41598-021-00045-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
Women with pre-existing diabetes have an increased risk of poor pregnancy outcomes, including disordered fetal growth, caused by changes to placental function. Here we investigate the possibility that the hexosamine biosynthetic pathway, which utilises cellular nutrients to regulate protein function via post-translationally modification with O-linked N-acetylglucosamine (GlcNAc), mediates the placental response to the maternal metabolic milieu. Mass spectrometry analysis revealed that the placental O-GlcNAcome is altered in women with type 1 (n = 6) or type 2 (n = 6) diabetes T2D (≥ twofold change in abundance in 162 and 165 GlcNAcylated proteins respectively compared to BMI-matched controls n = 11). Ingenuity pathway analysis indicated changes to clathrin-mediated endocytosis (CME) and CME-associated proteins, clathrin, Transferrin (TF), TF receptor and multiple Rabs, were identified as O-GlcNAcylation targets. Stimulating protein O-GlcNAcylation using glucosamine (2.5 mM) increased the rate of TF endocytosis by human placental cells (p = 0.02) and explants (p = 0.04). Differential GlcNAcylation of CME proteins suggests altered transfer of cargo by placentas of women with pre-gestational diabetes, which may contribute to alterations in fetal growth. The human placental O-GlcNAcome provides a resource to aid further investigation of molecular mechanisms governing placental nutrient sensing.
Collapse
|
8
|
Leichsenring K, Viswanathan A, Kutschke S, Siebert T, Böl M. Age-dependent mechanical and microstructural properties of the rabbit soleus muscle. Acta Biomater 2021; 134:453-465. [PMID: 34343717 DOI: 10.1016/j.actbio.2021.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
During growth there are serious changes in the skeletal muscles to compensate for the changed requirements in terms of body weight and size. In this study, the age-dependent (between 21 and 100 days) mechanical and microstructural properties of rabbit soleus muscle tissue were investigated. For this purpose, morphological properties (animal mass, soleus muscle mass, tibial length) were measured at 5 different times during aging. On the other hand, fibre orientation-dependent axial and semi-confined compression experiments were realised. In addition, the essential components (muscle fibres, extracellular matrix, remaining components), dominating the microstructure of muscle tissue, were analysed. While the mechanical results show hardly any age-dependent differences, the morphological and microstructural results show clear age-dependent differences. All morphological parameters increase significantly (animal mass by 839.2%, muscle mass 1050.6%, tibial length 233.6%). In contrast, microstructural parameters change differently. The percentage of fibres (divided into slow-twitch (ST) and fast-twitch (FT) fibres) increases significantly (137.6%), while the proportions of the extracellular matrix and the remaining components (48.2% and 46.1%) decrease. At the same time, the cross-sectional area of the fibres increases significantly (697.9%). The totality of this age-dependent information provides a deeper understanding of age-related changes in muscle structure and function and may contribute to successful development and validation of growth models in the future. STATEMENT OF SIGNIFICANCE: This article reports the first comprehensive data set on age-dependent morphological (animal mass, soleus muscle mass, tibial length), mechanical (axial and semi-confined compression), and microstructural (muscle fibres, extracellular matrix, remaining components) properties of the rabbit soleus muscle. On the one hand, the results of this study contribute to the understanding of muscle mechanics and thus to understanding of load transfer mechanisms inside the muscle tissue during growth. On the other hand, these results are relevant to the fields of constitutive formulation of age-dependent muscle tissue.
Collapse
|
9
|
Bhaskaran S, Pollock N, C. Macpherson P, Ahn B, Piekarz KM, Staunton CA, Brown JL, Qaisar R, Vasilaki A, Richardson A, McArdle A, Jackson MJ, Brooks SV, Van Remmen H. Neuron-specific deletion of CuZnSOD leads to an advanced sarcopenic phenotype in older mice. Aging Cell 2020; 19:e13225. [PMID: 32886862 PMCID: PMC7576239 DOI: 10.1111/acel.13225] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 01/21/2023] Open
Abstract
Age-associated loss of muscle mass and function (sarcopenia) has a profound effect on the quality of life in the elderly. Our previous studies show that CuZnSOD deletion in mice (Sod1-/- mice) recapitulates sarcopenia phenotypes, including elevated oxidative stress and accelerated muscle atrophy, weakness, and disruption of neuromuscular junctions (NMJs). To determine whether deletion of Sod1 initiated in neurons in adult mice is sufficient to induce muscle atrophy, we treated young (2- to 4-month-old) Sod1flox/SlickHCre mice with tamoxifen to generate i-mn-Sod1KO mice. CuZnSOD protein was 40-50% lower in neuronal tissue in i-mn-Sod1KO mice. Motor neuron number in ventral spinal cord was reduced 28% at 10 months and more than 50% in 18- to 22-month-old i-mn-Sod1KO mice. By 24 months, 22% of NMJs in i-mn-Sod1KO mice displayed a complete lack of innervation and deficits in specific force that are partially reversed by direct muscle stimulation, supporting the loss of NMJ structure and function. Muscle mass was significantly reduced by 16 months of age and further decreased at 24 months of age. Overall, our findings show that neuronal-specific deletion of CuZnSOD is sufficient to cause motor neuron loss in young mice, but that NMJ disruption, muscle atrophy, and weakness are not evident until past middle age. These results suggest that loss of innervation is critical but may not be sufficient until the muscle reaches a threshold beyond which it cannot compensate for neuronal loss or rescue additional fibers past the maximum size of the motor unit.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Natalie Pollock
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Peter C. Macpherson
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | - Bumsoo Ahn
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Katarzyna M. Piekarz
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma Center For NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Caroline A. Staunton
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Jacob L. Brown
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Rizwan Qaisar
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Aphrodite Vasilaki
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Arlan Richardson
- Oklahoma City VA Medical CenterOklahoma CityOKUSA
- Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Anne McArdle
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Malcolm J. Jackson
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseMRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)University of LiverpoolLiverpoolUK
| | - Susan V. Brooks
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | - Holly Van Remmen
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma City VA Medical CenterOklahoma CityOKUSA
| |
Collapse
|
10
|
Hill C, James RS, Cox VM, Seebacher F, Tallis J. Age-related changes in isolated mouse skeletal muscle function are dependent on sex, muscle, and contractility mode. Am J Physiol Regul Integr Comp Physiol 2020; 319:R296-R314. [DOI: 10.1152/ajpregu.00073.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study aimed to simultaneously examine the age-related, muscle-specific, sex-specific, and contractile mode-specific changes in isolated mouse skeletal muscle function and morphology across multiple ages. Measurements of mammalian muscle morphology, isometric force and stress (force/cross-sectional area), absolute and normalized (power/muscle mass) work-loop power across a range of contractile velocities, fatigue resistance, and myosin heavy chain (MHC) isoform concentration were measured in 232 isolated mouse (CD-1) soleus, extensor digitorum longus (EDL), and diaphragm from male and female animals aged 3, 10, 30, 52, and 78 wk. Aging resulted in increased body mass and increased soleus and EDL muscle mass, with atrophy only present for female EDL by 78 wk despite no change in MHC isoform concentration. Absolute force and power output increased up to 52 wk and to a higher level for males. A 23–36% loss of isometric stress exceeded the 14–27% loss of power normalized to muscle mass between 10 wk and 52 wk, although the loss of normalized power between 52 and 78 wk continued without further changes in stress ( P > 0.23). Males had lower power normalized to muscle mass than females by 78 wk, with the greatest decline observed for male soleus. Aging did not cause a shift toward slower contractile characteristics, with reduced fatigue resistance observed in male EDL and female diaphragm. Our findings show that the loss of muscle quality precedes the loss of absolute performance as CD-1 mice age, with the greatest effect seen in male soleus, and in most instances without muscle atrophy or an alteration in MHC isoforms.
Collapse
Affiliation(s)
- Cameron Hill
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Guy’s Campus, King’s College London, London, United Kingdom
| | - Rob S. James
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Val. M. Cox
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jason Tallis
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
11
|
Zhang Y, Chen JS, He Q, He X, Basava RR, Hodgson J, Sinha U, Sinha S. Microstructural analysis of skeletal muscle force generation during aging. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3295. [PMID: 31820588 PMCID: PMC8080883 DOI: 10.1002/cnm.3295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/27/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Human aging results in a progressive decline in the active force generation capability of skeletal muscle. While many factors related to the changes of morphological and structural properties in muscle fibers and the extracellular matrix (ECM) have been considered as possible reasons for causing age-related force reduction, it is still not fully understood why the decrease in force generation under eccentric contraction (lengthening) is much less than that under concentric contraction (shortening). Biomechanically, it was observed that connective tissues (endomysium) stiffen as ages, and the volume ratio of connective tissues exhibits an age-related increase. However, limited skeletal muscle models take into account the microstructural characteristics as well as the volume fraction of tissue material. This study aims to provide a numerical investigation in which the muscle fibers and the ECM are explicitly represented to allow quantitative assessment of the age-related force reduction mechanism. To this end, a fiber-level honeycomb-like microstructure is constructed and modeled by a pixel-based Reproducing Kernel Particle Method (RKPM), which allows modeling of smooth transition in biomaterial properties across material interfaces. The numerical investigation reveals that the increased stiffness of the passive materials of muscle tissue reduces the force generation capability under concentric contraction while maintains the force generation capability under eccentric contraction. The proposed RKPM microscopic model provides effective means for the cellular-scale numerical investigation of skeletal muscle physiology. NOVELTY STATEMENT: A cellular-scale honeycomb-like microstructural muscle model constructed from a histological cross-sectional image of muscle is employed to study the causal relations between age-associated microstructural changes and age-related force loss using Reproducing Kernel Particle Method (RKPM). The employed RKPM offers an effective means for modeling biological materials based on pixel points in the medical images and allow modeling of smooth transition in the material properties across interfaces. The proposed microstructure-informed muscle model enables quantitative evaluation on how cellular-scale compositions contribute to muscle functionality and explain differences in age-related force changes during concentric, isometric and eccentric contractions.
Collapse
Affiliation(s)
- Yantao Zhang
- Department of Structural Engineering, University of California San Diego, La Jolla, California, USA
| | - Jiun-Shyan Chen
- Department of Structural Engineering, University of California San Diego, La Jolla, California, USA
| | - Qizhi He
- Department of Structural Engineering, University of California San Diego, La Jolla, California, USA
| | - Xiaolong He
- Department of Structural Engineering, University of California San Diego, La Jolla, California, USA
| | - Ramya R. Basava
- Department of Structural Engineering, University of California San Diego, La Jolla, California, USA
| | - John Hodgson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, USA
| | - Usha Sinha
- Department of Physics, San Diego State University, San Diego, California, USA
| | - Shantanu Sinha
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Hill C, James RS, Cox VM, Tallis J. The Effect of Increasing Age on the Concentric and Eccentric Contractile Properties of Isolated Mouse Soleus and Extensor Digitorum Longus Muscles. J Gerontol A Biol Sci Med Sci 2019; 73:579-587. [PMID: 29236945 DOI: 10.1093/gerona/glx243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
There is currently a limited amount of literature investigating the age-related changes in eccentric muscle function in vitro. The present study uniquely uses the work loop (WL) technique, to better replicate in vivo muscle function, in the assessment of the age- and muscle-specific changes in acute and sustained concentric and eccentric power and recovery. Whole soleus or extensor digitorum longus (EDL) muscles were isolated from 10-week and 78-week-old mice and acute and sustained concentric and eccentric WL power assessed. Despite an age-related increase in body and muscle mass, peak absolute power for both muscles was unaffected by age. Peak concentric power normalized to muscle mass declined significantly for each muscle, while peak normalized eccentric power declined only for soleus. Fatigue resistance and recovery for the soleus did not differ between age or contraction type. Older EDL was less resistant to concentric fatigue, but was better able to withstand sustained eccentric activity than young EDL. We have shown that age-related changes in muscle quality are more limited for eccentric function than concentric function. A greater bodily inertia is likely to further reduce in vivo locomotor performance in older animals.
Collapse
Affiliation(s)
- Cameron Hill
- School of Life Sciences, Coventry University, UK
| | - Rob S James
- School of Life Sciences, Coventry University, UK
| | - Val M Cox
- School of Life Sciences, Coventry University, UK
| | - Jason Tallis
- School of Life Sciences, Coventry University, UK
| |
Collapse
|
13
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 804] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
14
|
Gaboardi AJ, Kressler J, Snow TK, Balog EM. Aging impairs regulation of ryanodine receptors from extensor digitorum longus but not soleus muscles. Muscle Nerve 2018; 57:1022-1025. [PMID: 29315676 DOI: 10.1002/mus.26063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Because impaired excitation-contraction coupling and reduced sarcoplasmic reticulum (SR) Ca2+ release may contribute to the age-associated decline in skeletal muscle strength, we investigated the effect of aging on regulation of the skeletal muscle isoform of the ryanodine receptor (RyR1) by physiological channel ligands. METHODS [3 H]Ryanodine binding to membranes from 8- and 26-month-old Fischer 344 extensor digitorum longus (EDL) and soleus muscles was used to investigate the effects of age on RyR1 modulation by Ca2+ and calmodulin (CaM). RESULTS Aging reduced maximal Ca2+ -stimulated binding to EDL membranes. In 0.3 μM Ca2+ , age reduced binding and CaM increased binding to EDL membranes. In 300 μM Ca2+ , CaM reduced binding, but the age effect was not significant. Aging did not affect Ca2+ or CaM regulation of soleus RyR1. DISCUSSION In aged fast-twitch muscle, impaired RyR1 Ca2+ regulation may contribute to lower SR Ca2+ release and reduced muscle function. Muscle Nerve 57: 1022-1025, 2018.
Collapse
Affiliation(s)
- Angela J Gaboardi
- School of Applied Physiology, Georgia Institute of Technology, 281 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jochen Kressler
- Exercise and Nutritional Sciences Department, School of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Teresa K Snow
- School of Applied Physiology, Georgia Institute of Technology, 281 Ferst Drive, Atlanta, GA, 30332, USA
| | - Edward M Balog
- School of Applied Physiology, Georgia Institute of Technology, 281 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
15
|
Baker BA. Efficacy of Age-Specific High-Intensity Stretch-Shortening Contractions in Reversing Dynapenia, Sarcopenia, and Loss of Skeletal Muscle Quality. J Funct Morphol Kinesiol 2018; 3:36. [PMID: 31149646 PMCID: PMC6537613 DOI: 10.3390/jfmk3020036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the aging process, skeletal muscle performance and physiology undergoes alterations leading to decrements in functional capacity, health-span, and independence. Background: The utility and implementation of age-specific exercise is a paramount research agenda focusing on ameliorating the loss of both skeletal muscle performance and physiology; yet, to date, no consensus exists as to the most appropriate mechanical loading protocol design or overall exercise prescription that best meets this need. Thus, the purpose of this review is to highlight the most optimal type of exercise presently available and provide the most current, evidence-based findings for its efficacy. The hypothesis that high-intensity, stretch-shortening contractions (SSCs)-a form of "resistance-type exercise" training-present as the preferred exercise mode for serving as an intervention-based modality to attenuate dynapenia, sarcopenia, and decreased muscle quality with aging, even restoring the overall youthful phenotype, will be demonstrated. Conclusions: Appreciating the fundamental evidence supporting the use of high-intensity SSCs in positively impacting aging skeletal muscle's responsivity and their use as a specific and sensitive countermeasure is crucial. Moreover, from an applied perspective, SSCs may improve skeletal muscle quality and rejuvenate health-span and, ultimately, lead to augmented functional capacity, independence, and quality of life concomitant with decreased morbidity.
Collapse
Affiliation(s)
- Brent A Baker
- Health Effects Laboratory Division, Toxicology and Molecular Biology Branch, Systems Mechanophysiology and Aging Research Team, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
16
|
|
17
|
Zhang C, Gao Y. The role of transmembrane proteins on force transmission in skeletal muscle. J Biomech 2014; 47:3232-6. [PMID: 25113807 DOI: 10.1016/j.jbiomech.2014.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 06/24/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lateral transmission of force from myofibers laterally to the surrounding extracellular matrix (ECM) via the transmembrane proteins between them is impaired in old muscles. Changes in geometrical and mechanical properties of ECM of skeletal muscle do not fully explain the impaired lateral transmission with aging. The objective of this study was to determine the role of transmembrane proteins on force transmission in skeletal muscle. In this study, a 2D finite element model of single muscle fiber composed of myofiber, ECM, and the transmembrane proteins between them was developed to determine how changes in spatial density and mechanical properties of transmembrane proteins affect the force transmission in skeletal muscle. We found that force transmission and stress distribution are not affected by mechanical stiffness of the transmembrane proteins due to its non-linear stress-strain relationship. Results also showed that the muscle fiber with insufficient transmembrane proteins near the end of muscle fiber transmitted less force than that with more proteins does. Higher stress was observed in myofiber, ECM, and proteins in the muscle fiber with fewer proteins.
Collapse
Affiliation(s)
- Chi Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 220 Upson Hall, Ithaca, NY 14853, USA
| | - Yingxin Gao
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 220 Upson Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Ballak SB, Degens H, de Haan A, Jaspers RT. Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. Ageing Res Rev 2014; 14:43-55. [PMID: 24495393 DOI: 10.1016/j.arr.2014.01.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 12/25/2022]
Abstract
Human aging is associated with a progressive decline in skeletal muscle mass and force generating capacity, however the exact mechanisms underlying these changes are not fully understood. Rodents models have often been used to enhance our understanding of mechanisms of age-related changes in human skeletal muscle. However, to what extent age-related alterations in determinants of muscle force generating capacity observed in rodents resemble those in humans has not been considered thoroughly. This review compares the effect of aging on muscle force generating determinants (muscle mass, fiber size, fiber number, fiber type distribution and muscle specific tension), in men and male rodents at similar relative age. It appears that muscle aging in male F344*BN rat resembles that in men most; 32-35-month-old rats exhibit similar signs of muscle weakness to those of 70-80-yr-old men, and the decline in 36-38-month-old rats is similar to that in men aged over 80 yrs. For male C57BL/6 mice, age-related decline in muscle force generating capacity seems to occur only at higher relative age than in men. We conclude that the effects on determinants of muscle force differ between species as well as within species, but qualitatively show the same pattern as that observed in men.
Collapse
Affiliation(s)
- Sam B Ballak
- School of Healthcare Science, Cognitive Motor Function Research Group, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom; Laboratory for Myology, Move Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam 1081 BT, The Netherlands.
| | - Hans Degens
- School of Healthcare Science, Cognitive Motor Function Research Group, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Arnold de Haan
- School of Healthcare Science, Cognitive Motor Function Research Group, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom; Laboratory for Myology, Move Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam 1081 BT, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Move Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam 1081 BT, The Netherlands
| |
Collapse
|
19
|
Zhang C, Gao Y. Effects of aging on the lateral transmission of force in rat skeletal muscle. J Biomech 2014; 47:944-8. [PMID: 24507947 DOI: 10.1016/j.jbiomech.2014.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
The age-related reduction in muscle force cannot be fully explained by the loss of muscle fiber mass or degeneration of myofibers. Our previous study showed that changes in lateral transmission of force could affect the total force transmitted to the tendon. The extracellular matrix (ECM) of skeletal muscle plays an important role in lateral transmission of force. The objective of this study was to define the effects of aging on lateral transmission of force in skeletal muscles, and explore possible underlying mechanisms. In vitro contractile tests were performed on extensor digitorum longus (EDL) muscle of young and old rats with series of tenotomy and myotomy. We concluded that lateral transmission of force was impaired in the old rats, and this deficit could be partly due to increased thickness of the ECM induced by aging.
Collapse
Affiliation(s)
- Chi Zhang
- Sibley School of Mechanical and Aerospace Engineering, 220 Upson Hall, Cornell University, Ithaca, NY 14853, USA
| | - Yingxin Gao
- Sibley School of Mechanical and Aerospace Engineering, 220 Upson Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Abstract
Gestational diabetes mellitus (GDM) from all causes of diabetes is the most common medical complication of pregnancy and is increasing in incidence, particularly as type 2 diabetes continues to increase worldwide. Despite advances in perinatal care, infants of diabetic mothers (IDMs) remain at risk for a multitude of physiologic, metabolic, and congenital complications such as preterm birth, macrosomia, asphyxia, respiratory distress, hypoglycemia, hypocalcemia, hyperbilirubinemia, polycythemia and hyperviscosity, hypertrophic cardiomyopathy, and congenital anomalies, particularly of the central nervous system. Overt type 1 diabetes around conception produces marked risk of embryopathy (neural tube defects, cardiac defects, caudal regression syndrome), whereas later in gestation, severe and unstable type 1 maternal diabetes carries a higher risk of intrauterine growth restriction, asphyxia, and fetal death. IDMs born to mothers with type 2 diabetes are more commonly obese (macrosomic) with milder conditions of the common problems found in IDMs. IDMs from all causes of GDM also are predisposed to later-life risk of obesity, diabetes, and cardiovascular disease. Care of the IDM neonate needs to focus on ensuring adequate cardiorespiratory adaptation at birth, possible birth injuries, maintenance of normal glucose metabolism, and close observation for polycythemia, hyperbilirubinemia, and feeding intolerance.
Collapse
Affiliation(s)
- William W Hay
- Anschutz Medical Campus, F441, Perinatal Research Center, University of Colorado School of Medicine, 13243 East 23rd Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Edwards JN, Blackmore DG, Gilbert DF, Murphy RM, Launikonis BS. Store-operated calcium entry remains fully functional in aged mouse skeletal muscle despite a decline in STIM1 protein expression. Aging Cell 2011; 10:675-85. [PMID: 21418512 DOI: 10.1111/j.1474-9726.2011.00706.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is a robust mechanism in skeletal muscle, supported by abundant STIM1 and Orai1 in the junctional membranes. The precise role of SOCE in skeletal muscle Ca(2+) homeostasis and excitation-contraction coupling remains to be defined. Regardless, it remains important to determine whether the function and capacity of SOCE changes in aged skeletal muscle. We identified an approximate 40% decline in the expression of the integral SOCE protein, stromal interacting molecule 1 (STIM1), but no such decline in its coupling partner, Orai1, in muscle fibers from aged mice. To determine whether this changed aspects of SOCE functionality in skeletal muscle in aged mice, Ca(2+) in the cytoplasm and t-system were continuously and simultaneously imaged on a confocal microscope during sarcoplasmic reticulum Ca(2+) release and compared to experiments under identical conditions using muscle fibers from young mice. Normal activation, deactivation, Ca(2+) influx, and spatiotemporal characteristics of SOCE were found to persist in skeletal muscle from aged mice. Thus, SOCE remains a robust mechanism in aged skeletal muscle despite the decline in STIM1 protein expression, suggesting STIM1 is in excess in young skeletal muscle.
Collapse
Affiliation(s)
- Joshua N Edwards
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
22
|
Adamo DE, Khodaee M, Barringer S, Johnson PW, Martin BJ. Low mean level sustained and intermittent grip exertions: influence of age on fatigue and recovery. ERGONOMICS 2009; 52:1287-1297. [PMID: 19662553 DOI: 10.1080/00140130902984935] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The goal of this study was to quantify localised muscle fatigue resulting from low mean levels of exertion in younger (< 40 years) and older (> 50 years) adults. Fatigue, elicited in the finger flexor muscles by intermittent (10% mean maximum voluntary contraction (MVC)) and sustained (8% MVC) handgrip exercises, was quantified by a muscle twitch force response before, immediately after and during 3 h following exercise. Despite greater mean loads, recovery time was shorter following intermittent than sustained contractions, which suggests that recovery from fatigue is more sensitive to rest within the work cycle than mean work. The more pronounced effects for younger than older individuals following the sustained exertion indicate that changes in muscle fibre type composition might predispose older individuals to be more resistant to fatigue resulting from sustained contractions of low level. Performing hand exertion tasks requiring low mean force levels contributes to similar long-lasting fatigue effects regardless of gender and age. Intermittent periods of complete rest reduce muscle fatigue. Since fatigue was not perceived during recovery from the tested sustained and intermittent contractions, subjective evaluations may not be a reliable indicator of localised muscle fatigue.
Collapse
Affiliation(s)
- D E Adamo
- Institute of Gerontology, Department of Health Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
23
|
Mechanics of muscle injury induced by lengthening contraction. Ann Biomed Eng 2008; 36:1615-23. [PMID: 18686034 DOI: 10.1007/s10439-008-9547-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Skeletal muscle is composed of two primary structural components, contractile myofibrils and extracellular matrix (ECM). The myofibrils adhere to the surrounding endomysium through the basal lamina, sarcolemma and dystrophin, and dystrophin associated glycoprotein (DAG). In this study, a novel shear lag type model is developed to investigate the mechanics of injury to the single muscle fiber due to lengthening contractions. A single muscle fiber is considered as a composite system with reinforced by the contractile myofibrils. The lateral linkages between myofibril and endomysium is modeled as a zero thickness coating layer, that could be injured under high interfacial shear stress. The results shows that the degree of the muscle injury is correlated to the magnitude of the passive stretch during the contraction. Dystrophic muscles are more susceptible to contraction induced injury due to lack of DAG complex in lateral linkage.
Collapse
|
24
|
Ervasti M, Sankilampi U, Heinonen S, Punnonen K. Novel red cell indices indicating reduced availability of iron are associated with high erythropoietin concentration and low ph level in the venous cord blood of newborns. Pediatr Res 2008; 64:135-40. [PMID: 18414140 DOI: 10.1203/pdr.0b013e318179957d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is evidence that an elevated erythropoietin (EPO) concentration is associated with signs of iron deficient erythropoiesis. The aim of this study was to evaluate the iron status by means of novel cellular indices and serum iron markers and to determine whether these are associated with EPO and pH in the venous cord blood of 193 full-term newborns. There were positive correlations between EPO and the percentage of hypochromic red blood cells (%HYPOm) and reticulocytes (%HYPOr) [r = 0.45 (p < 0.001) and r = 0.56 (p < 0.001), respectively]. %HYPOm and %HYPOr also had negative correlations with pH [r = -0.53 (p = 0.001) and r = -0.46 (p = 0.001), respectively]. Newborns who had low pH (pH < or =7.15, n = 16) had significantly higher %HYPOm, %HYPOr, and serum transferrin receptor and transferrin concentrations in their cord blood than newborns with normal pH. Thus, in newborn cord blood, the higher number of red cells and reticulocytes with lower Hb content may have impaired the oxygen carrying capacity that has been a trigger for EPO production. Furthermore, signs of lower hemoglobinization of red cells are associated with low umbilical vein pH in the newborns, indicating an increased risk of birth asphyxia.
Collapse
Affiliation(s)
- Mari Ervasti
- Department of Clinical Chemistry and Hematology, Kuopio University, Eastern Finland Laboratory Centre, Kuopio, Finland.
| | | | | | | |
Collapse
|
25
|
Jiménez-Moreno R, Wang ZM, Gerring RC, Delbono O. Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 2008; 94:3178-88. [PMID: 18178643 PMCID: PMC2275691 DOI: 10.1529/biophysj.107.118786] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 12/03/2007] [Indexed: 11/18/2022] Open
Abstract
This study hypothesized that decline in sarcoplasmic reticulum (SR) Ca(2+) release and maximal SR-releasable Ca(2+) contributes to decreased specific force with aging. To test it, we recorded electrically evoked maximal isometric specific force followed by 4-chloro-m-cresol (4-CmC)-evoked maximal contracture force in single intact fibers from the mouse flexor digitorum brevis muscle. Significant differences in tetanic, but not in 4-CmC-evoked, contracture forces were recorded in fibers from aging mice as compared to younger mice. Peak intracellular Ca(2+) in response to 4-CmC did not differ significantly. SR Ca(2+) release was recorded in whole-cell patch-clamped fibers in the linescan mode of confocal microscopy using a low-affinity Ca(2+) indicator (Oregon green bapta-5N) with high-intracellular ethylene glycol-bis(alpha-aminoethyl ether)-N,N,N'N'-tetraacetic acid (20 mM). Maximal SR Ca(2+) release, but not voltage dependence, was significantly changed in fibers from old compared to young mice. Increasing the duration of fiber depolarization did not increase the maximal rate of SR Ca(2+) release in fibers from old compared to young mice. Voltage-dependent inactivation of SR Ca(2+) release did not differ significantly between fibers from young and old mice. These findings indicate that alterations in excitation-contraction coupling, but not in maximal SR-releasable Ca(2+), account for the age-dependent decline in intracellular Ca(2+) mobilization and specific force.
Collapse
Affiliation(s)
- Ramón Jiménez-Moreno
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
26
|
Luin E, Ruzzier F. The role of L- and T-type Ca2+ currents during the in vitro aging of murine myogenic (i28) cells in culture. Cell Calcium 2007; 41:479-89. [PMID: 17064763 DOI: 10.1016/j.ceca.2006.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 07/28/2006] [Accepted: 09/10/2006] [Indexed: 01/29/2023]
Abstract
The age-related decline in skeletal muscle strength could, in part, result from alterations in the mechanism of excitation-contraction coupling, responsible for muscle contraction. In the present work, we used the in vitro aging of murine myogenic (i28) cells as a model, to investigate whether the inefficiency of aged satellite cells to generate functional skeletal muscle fibres could be partly due to defective voltage-dependent Ca2+ currents. The whole-cell patch clamp technique was employed to measure L- and T-type Ca2+ currents in myotubes derived from the differentiation and fusion of these cells reaching replicative senescence. Our data showed that the expression and the amplitude of these currents decreased significantly during in vitro aging. Moreover, the analysis of the L-type current evoked in young and old cells by positive voltage steps, revealed no differences in the kinetics of activation, but significant alterations in the rate of inactivation. These effects of in vitro aging on voltage-dependent Ca2+ currents could also be related to their inability to fuse into myotubes. Taken together, our data support the hypothesis that age-related effects on voltage-dependent L- and T-type currents could be one of the causes of the failure of satellite cells to efficiently counteract the impairment in muscle force.
Collapse
Affiliation(s)
- Elisa Luin
- Department of Physiology and Pathology and Centre for Neuroscience BRAIN, University of Trieste, Via A. Fleming 22, I-34127 Trieste, Italy.
| | | |
Collapse
|
27
|
Abstract
The anatomic structures in the female that prevent incontinence and genital organ prolapse on increases in abdominal pressure during daily activities include sphincteric and supportive systems. In the urethra, the action of the vesical neck and urethral sphincteric mechanisms maintains urethral closure pressure above bladder pressure. Decreases in the number of striated muscle fibers of the sphincter occur with age and parity. A supportive hammock under the urethra and vesical neck provides a firm backstop against which the urethra is compressed during increases in abdominal pressure to maintain urethral closure pressures above the rapidly increasing bladder pressure. This supporting layer consists of the anterior vaginal wall and the connective tissue that attaches it to the pelvic bones through the pubovaginal portion of the levator ani muscle, and the uterosacral and cardinal ligaments comprising the tendinous arch of the pelvic fascia. At rest the levator ani maintains closure of the urogenital hiatus. They are additionally recruited to maintain hiatal closure in the face of inertial loads related to visceral accelerations as well as abdominal pressurization in daily activities involving recruitment of the abdominal wall musculature and diaphragm. Vaginal birth is associated with an increased risk of levator ani defects, as well as genital organ prolapse and urinary incontinence. Computer models indicate that vaginal birth places the levator ani under tissue stretch ratios of up to 3.3 and the pudendal nerve under strains of up to 33%, respectively. Research is needed to better identify the pathomechanics of these conditions.
Collapse
Affiliation(s)
- James A Ashton-Miller
- Department of Mechanical Engineering, Biomechanics Engineering and Institute of Gerontology, G.G. Brown 3208, University of Michigan, Ann Arbor, MI 48109-2125, USA.
| | | |
Collapse
|
28
|
Cutlip RG, Baker BA, Geronilla KB, Mercer RR, Kashon ML, Miller GR, Murlasits Z, Alway SE. Chronic exposure to stretch-shortening contractions results in skeletal muscle adaptation in young rats and maladaptation in old rats. Appl Physiol Nutr Metab 2007; 31:573-87. [PMID: 17111012 DOI: 10.1139/h06-033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of this research was to investigate skeletal muscle response to a chronic administration of stretch-shortening cycles (SSCs) in young and old rats. Dorsiflexor muscles of old (30 months, n = 5) and young (12 weeks, n = 6) rats were exposed 3 times/week for 4.5 weeks to a protocol of 80 maximal SSCs per exposure in vivo. Skeletal muscle response was characterized by isometric and dynamic performance, as well as by muscle wet mass and quantitative morphological analyses following the exposure period. The performance of the young and old groups was not statistically different at the start of the exposure. By the end of the exposure, however, a statistical difference was noted, as performance increased significantly in the young animals and decreased significantly in the old animals. Muscle wet mass of the left tibialis anterior (TA) in the treated limb was significantly greater in the youngthan in the old animals (p < 0.001), whereas there was no difference in the contra-lateral TA. No degenerative myofibers or changes in non-cellular interstitium were noted in either age group, but a significant increase was observed in the volume of the cellular interstitium in the exposed limb of the old animals (p = 0.01), which is indicative of an inflammatory response. Thus, a chronic exposure of SSCs results in significant performance increase and muscle hypertrophy in young animals, and a significant performance decrease and an increased cellular interstitial response in old animals. These findings suggest that age may impair the ability of skeletal muscle to adapt to repetitive mechanical loading, even in the absence of degeneration.
Collapse
Affiliation(s)
- Robert G Cutlip
- National Institute for Occupational Safety and Health (NIOSH), Health Effects Laboratory Division, 1095 Don Nehlen Drive, Morgantown, WV 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cutlip RG, Baker BA, Geronilla KB, Kashon ML, Wu JZ. The influence of velocity of stretch–shortening contractions on muscle performance during chronic exposure: age effects. Appl Physiol Nutr Metab 2007; 32:443-53. [PMID: 17510679 DOI: 10.1139/h07-014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aging increases injury susceptibility and impairs the ability to adapt to repetitive exposures of mechanical loading. The objective of this research was to investigate if movement velocity affects muscle response to a chronic administration of stretch–shortening cycles (SSCs) differently in young vs. old rats. Dorsiflexor muscles of old (30 months, n = 5) and young rats (12 weeks, n = 6) were exposed 3 times/week for 4.5 weeks to a protocol of 80 maximal SSCs per exposure in vivo. Skeletal muscle response was characterized by high- (500°/s) and low- (60°/s) velocity dynamic performance, which was evaluated using peak eccentric force, isometric pre-stretch force, eccentric force enhancement above the isometric pre-stretch force, negative work, and positive work. The performance of the young and old groups was not statistically different at the start of the exposure. By the end of the exposure, however, a statistical difference was noted—performance increased significantly in the young animals and decreased significantly in the old animals. The SSC velocity had a profound effect on muscle response. The young animals’ high- and low-velocity performances increased during the chronic exposure period, whereas the old animals’ performances declined. High-velocity performance increased more than low-velocity performance in young animals. In contrast, old animals suffered the most loss in high-velocity performance over the chronic exposure period. A chronic exposure of SSCs results in a significant performance increase in young animals, and a significant performance decrease in old animals. These differences are more profound during high-velocity movements. These findings suggest that age may impair the ability of skeletal muscle to adapt to repetitive mechanical loading, particularly during high-velocity movements.
Collapse
Affiliation(s)
- Robert G Cutlip
- National Institute for Occupational Safety and Health (NIOSH), Health Effects Laboratory Division, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|
30
|
Bastin J, Drakesmith H, Rees M, Sargent I, Townsend A. Localisation of proteins of iron metabolism in the human placenta and liver. Br J Haematol 2006; 134:532-43. [PMID: 16856887 DOI: 10.1111/j.1365-2141.2006.06216.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two anatomical sites that are important in human iron metabolism are the liver and placenta. Liver macrophages recycle iron from erythrocytes, and the placenta transfers iron from the mother to the fetus. The cellular distribution of proteins involved in iron transport in these two sites was studied. Transferrin receptor-1 (TfR1) and Ferroportin (FPN) expression was found on the placental syncytiotrophoblast (STB) and were polarised such that TfR1 was on the apical maternal-facing membrane and FPN was on the basal fetal-facing membrane, consistent with unidirectional iron transport from mother to fetus. Ferritin was strongly expressed in the stroma, suggesting that fetal tissue can store and accumulate iron. HFE was on some parts of the basal STB and, where present, HFE clearly colocalised with FPN but not TfR1. In the stroma, both HFE and FPN were present on CD68+ Hofbauer macrophage cells. In liver, the location of HFE is controversial. Using four mouse monoclonals and two polyclonal sera we showed that the pattern of HFE expression mirrored the distribution of CD68+ macrophage Kupffer cells. FPN was also most strongly expressed by CD68+ Kupffer cells. These findings contribute to understanding how iron is transported and stored in the human placenta and liver.
Collapse
Affiliation(s)
- Judy Bastin
- Molecular Immunology Group, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital
| | | | | | | | | |
Collapse
|
31
|
Lesser KB, Schoel SB, Kling PJ. Elevated zinc protoporphyrin/heme ratios in umbilical cord blood after diabetic pregnancy. J Perinatol 2006; 26:671-6. [PMID: 17024142 DOI: 10.1038/sj.jp.7211600] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Offspring of diabetes patients may suffer from tissue iron deficiency. Erythrocyte zinc protoporphyrin/heme (ZnPP/H) ratios measure impaired iron status. The aim of the study was to examine whether cord ZnPP/H ratios were associated with pregnancy glycemic control. METHODS ZnPP/H was measured in cord blood from 31 pregnancies with insulin-treated diabetes (diabetes group) and compared to population normal values. Maternal glycemic control was assessed by daily glucose log, glycosylated hemoglobin and birth weight. RESULTS Median cord ZnPP/H was higher in the diabetes group than the population normal values (106 (65.2 to 146.8) microM/M vs 68.2 (37.6 to 98.8) micro/M, P < 0.0001). Ratios were directly correlated to surrogates of control (glycosylated hemoglobin, P = 0.05, and birth weight, P < 0.04). Cord ZnPP/H ratios from pregnancies with pre-existing and gestational diabetes were similar. CONCLUSION Because cord ZnPP/H was higher in large offspring of diabetic pregnancy, it might identify greater iron utilization for fetal erythropoiesis.
Collapse
Affiliation(s)
- K B Lesser
- Department of Obstetrics, The University of Arizona Health Sciences Center, Tucson, AZ, USA
| | | | | |
Collapse
|
32
|
Anderson JE. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. ACTA ACUST UNITED AC 2006; 209:2276-92. [PMID: 16731804 DOI: 10.1242/jeb.02088] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Satellite cells are companions to voluntary muscle fibres, and are named for their intimate positional or ;satellite' relationship, as if revolving around fibres, like a satellite moon around the earth. Studies on the nature of at least some satellite cells, including their capabilities for self-renewal and for giving rise to multiple lineages in a stem cell-like function, are exploring the molecular basis of phenotypes described by markers of specialized function and gene expression in normal development, neuromuscular disease and aging. In adult skeletal muscle, the self-renewing capacity of satellite cells contributes to muscle growth, adaptation and regeneration. Muscle remodeling, such as demonstrated by changes in myofibre cross-sectional area and length, nerve and tendon junctions, and fibre-type distribution, occur in the absence of injury and provide broad functional and structural diversity among skeletal muscles. Those contributions to plasticity involve the satellite cell in at least five distinct roles, here described using metaphors for behaviour or the investigator's perspective. Satellite cells are the 'currency' of muscle; have a 'conveyance' role in adaptation by domains of cytoplasm along a myofibre; serve researchers, through a marker role, as 'clues' to various activities of muscle; are 'connectors' that physically, and through signalling and cell-fibre communications, bridge myofibres to the intra- and extra-muscular environment; and are equipped as metabolic and genetic filters or 'colanders' that can rectify or modulate particular signals. While all these roles are still under exploration, each contributes to the plasticity of skeletal muscle and thence to the overall biology and function of an organism. The use of metaphor for describing these roles helps to clarify and scrutinize the definitions that form the basis of our understanding of satellite cell biology: the metaphors provide the construct for various approaches to detect or test the nature of satellite cell functions in skeletal muscle plasticity.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0W3, Canada.
| |
Collapse
|
33
|
Moran AL, Warren GL, Lowe DA. Soleus and EDL muscle contractility across the lifespan of female C57BL/6 mice. Exp Gerontol 2005; 40:966-75. [PMID: 16243468 DOI: 10.1016/j.exger.2005.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 11/16/2022]
Abstract
All previous aging research on the contractility of rodent skeletal muscle has been conducted on male rodents. Because males and females age differently, we undertook this study to determine if and when age-related decrements in skeletal muscle contractility occur in female mice. Soleus and extensor digitorum longus (EDL) muscles from female C57BL/6 mice aged approximately 4, 8, 16, 24 and 28 mo were assessed in vitro for contractility and subsequently contractile protein content. EDL muscle was resistant to age-related changes in force generation but displayed characteristics of becoming more slow-twitch like. Maximal isometric tetanic force (Po) generated by soleus muscle declined with age. Soleus muscle size and contractile protein contents were not affected by age and thus could not explain the age-related force decrements. Soleus muscle specific Po declined with age being approximately 26% lower in muscles of 16-28 mo-old mice indicating that a deterioration in soleus muscle quality of female mice occurred beginning around the age of ovarian failure. Thus this study provides essential, comprehensive baseline data for future studies on age-related muscle dysfunction in the female mouse.
Collapse
Affiliation(s)
- Amy L Moran
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
34
|
Georgieff MK, Innis SM. Controversial nutrients that potentially affect preterm neurodevelopment: essential fatty acids and iron. Pediatr Res 2005; 57:99R-103R. [PMID: 15817493 DOI: 10.1203/01.pdr.0000160542.69840.0f] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Pfisterer C, Faber R, Horn LC. Chorioamnionitis-induced changes of fetal extramedullar hematopoiesis in the second trimester of gestation. Is diagnosis from fetal autopsy possible? Virchows Arch 2004; 446:150-6. [PMID: 15583932 DOI: 10.1007/s00428-004-1151-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022]
Abstract
Chorioamnionitis, as the most frequent cause of second trimester abortions, is commonly diagnosed by histomorphological examination of placental tissue. We determined whether chorioamnionitis induces a fetal extramedullary hematopoietic response and estimated whether chorioamnionitis can be diagnosed from fetal liver alone. Clinical data and morphological and histological findings of 39 second trimester abortions, caused by chorioamnionitis, were compared with 32 age-matched control cases. Using hematoxylin and eosin staining, naphtol-ASD-chloracetate esterase and "Berliner Blau" reaction, total hematopoiesis, erythropoiesis, myelopoiesis and intracytoplasmatic iron of fetal liver were examined. In the study group, total hematopoiesis was increased compared with the controls (94.9% versus 84.4%). The same was seen in erythropoiesis (69.2% versus 56.2%, P>0.05). Chorioamnionitis resulted in a significant increase of fetal myelopoiesis with clustering of leukocytes in 56.4% (P=0.001). Neutrophiles were located predominantly intrasinusoidal and periportal (74.4%), while an isolated periportal location was often observed in controls (50.0%). Isolated perivenous iron storing was more often seen with chorioamnionitis (28.3% versus 3.1%) and correlated with the increasing severity of chorioamnionitis. It can be stated that infectious diseases, such as chorioamnionitis, increase fetal intrahepatic myelopoiesis as one defense mechanism. The morphology of fetal intrahepatic hematopoiesis and iron storing might also be helpful in the diagnosis of chorioamnionitis, especially when the placenta is not available for examination.
Collapse
Affiliation(s)
- Cora Pfisterer
- Department of Obstetrics and Gynecology, University Hospital of Leipzig, Philipp-Rosenthal-Strasse 55, 04103 , Leipzig, Germany.
| | | | | |
Collapse
|
36
|
Sugiura M, Kanda K. Progress of Age-Related Changes in Properties of Motor Units in the Gastrocnemius Muscle of Rats. J Neurophysiol 2004; 92:1357-65. [PMID: 15084644 DOI: 10.1152/jn.00947.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanical properties of individual motor units in the medial gastrocnemius muscle, as well as the whole muscle properties and innervating motor nucleus, were investigated in dietary-restricted, male Fischer 344/DuCrj rats at ages of 4, 7, 12, 21/22, 27, 31, and 36 mo. The tetanic tension of the type S units continuously increased until the age of 36 mo. Those of type FF and FR units declined from 21/22 to 27 mo of age but did not change further while the whole muscle tension decreased greatly. The atrophy of muscle fibers, the decline in motoneuron number and axonal conduction velocity, and the decrease in the posttetanic potentiation of twitch contraction of motor units seemed to start after 21/22 mo of age and were accelerated with advancing age. Prolongation of twitch contraction time was evident for only type S and FR units in 36-mo-old rats. The fatigue index was greatly increased for type FF units in 36-mo-old rats. These findings indicated that the progress of changes in various properties occurring in the senescent muscle was different in terms of their time course and degree and also dependent on the types of motor unit. The atrophy and decrease in specific tension of muscle fibers affected the decline in tension output of motor units. This was effectively compensated for by the capture of denervated muscle fibers over time.
Collapse
Affiliation(s)
- Miho Sugiura
- The Vocational School of Acupuncture and Judo Therapy, 5 Samoncho, Shinjuku-ku, Tokyo 160-0017, Japan
| | | |
Collapse
|
37
|
Lowe DA, Warren GL, Snow LM, Thompson LV, Thomas DD. Muscle activity and aging affect myosin structural distribution and force generation in rat fibers. J Appl Physiol (1985) 2004; 96:498-506. [PMID: 14514706 DOI: 10.1152/japplphysiol.00842.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether increased muscle activity could reverse myosin structural alterations that occur in aged rat muscle and whether those alterations could be induced in young rat muscle by decreased activity. Semimembranosus muscle activity was increased by electrical stimulation (200-ms trains, 154 Hz, 5 V) through a nerve cuff on the tibial branch of the ischiatic nerve. The protocol consisted of 5 sets of 6-10 maximal isometric contractions performed twice per week for 4 or 8-10 wk. Decreased muscle activity was induced by denervation of the semimembranosus muscle for 2 or 4 wk. Semimembranosus fibers were then studied for Ca2+-activated force generation. Fibers were also spin labeled on the myosin catalytic domain and studied using electron paramagnetic resonance (EPR) spectroscopy to assess myosin structural distribution. Increased muscle activity for 4 and 8-10 wk in ∼32-mo-old rats resulted in -16 and +4% changes in specific tension, respectively ( P < 0.01). EPR spectra showed that the fraction of myosin heads in the strong-binding structural state during contraction was reduced at 4 wk (0.241 ± 0.020 vs. 0.269 ± 0.018, P = 0.046) but returned to normal by 8-10 wk ( P = 0.67). Decreased muscle activity for 2 and 4 wk in ∼9-mo-old rats resulted in 23 and 34% reductions, respectively, in specific tension; EPR spectra showed 16 and 35% decreases in strong-binding myosin ( P < 0.01). These data support the hypothesis that changes in muscle activity affect muscle strength, at least in part through alterations in myosin structure and function.
Collapse
Affiliation(s)
- Dawn A Lowe
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
38
|
Siddappa AJM, Rao RB, Wobken JD, Casperson K, Leibold EA, Connor JR, Georgieff MK. Iron deficiency alters iron regulatory protein and iron transport protein expression in the perinatal rat brain. Pediatr Res 2003; 53:800-7. [PMID: 12621119 DOI: 10.1203/01.pdr.0000058922.67035.d5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Iron plays an important role in numerous vital enzyme systems in the perinatal brain. The membrane proteins that mediate iron transport [transferrin receptor (TfR) and divalent metal transporter 1 (DMT-1)] and the iron regulatory proteins (IRP-1 and IRP-2) that stabilize their mRNAs undergo regional developmental changes in the iron-sufficient rat brain between postnatal day (P) 5 and 15. Perinatal iron deficiency (ID) affects developing brain regions nonhomogeneously, suggesting potential differences in regional iron transporter and regulatory protein expression. The objective of the study was to determine the effect of perinatal ID on regional expression of IRP-1, IRP-2, TfR, and DMT-1 in the developing rat brain. Gestationally iron-deficient Sprague Dawley rat pups were compared with iron-sufficient control pups at P10. Serial 12-mu coronal sections of fixed frozen brain from pups on P10 were assessed by light microscopy for IRP-1, IRP-2, DMT-1, and TfR localization. ID did not change the percentage of cells with positive staining for the four proteins in the choroid epithelium, ependyma, vascular endothelium, or neurons of the striatum. ID increased the percentage of neurons expressing the four proteins in the hippocampus and the cerebral cortex. Increased numbers of TfR- and DMT-1-positive cells were always associated with increased IRP-positive cells. The P10 rat responds to perinatal ID by selectively increasing the number of neurons expressing IRP-regulated transporters in brain regions that are rapidly developing, without any change at transport surfaces or in regions that are quiescent. Brain iron distribution during ID seems to be locally rather than globally regulated.
Collapse
Affiliation(s)
- Asha Jyothi M Siddappa
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Thelen DG. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng 2003; 125:70-7. [PMID: 12661198 DOI: 10.1115/1.1531112] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The generation of muscle-actuated simulations that accurately represent the movement of old adults requires a model that accounts for changes in muscle properties that occur with aging. An objective of this study was to adjust the parameters of Hill-type musculo-tendon models to reflect nominal age-related changes in muscle mechanics that have been reported in the literature. A second objective was to determine whether using the parametric adjustments resulted in simulated dynamic ankle torque behavior similar to that seen in healthy old adults. The primary parameter adjustment involved decreasing maximum isometric muscle forces to account for the loss of muscle mass and specific strength with age. A review of the literature suggested the need for other modest adjustments that account for prolonged muscular deactivation, a reduction in maximum contraction velocity, greater passive muscle stiffness and increased normalized force capacity during lengthening contractions. With age-related changes incorporated, a musculo-tendon model was used to simulate isometric and isokinetic contractions of ankle plantarflexor and dorsiflexor muscles. The model predicted that ankle plantarflexion power output during 120 deg/s shortening contractions would be over 40% lower in old adults compared to healthy young adults. These power losses with age exceed the 30% loss in isometric strength assumed in the model but are comparable to 39-44% reductions in ankle power outputs measured in healthy old adults of approximately 70 years of age. Thus, accounting for age-related changes in muscle properties, other than decreased maximum isometric force, may be particularly important when simulating movements that require substantial power development.
Collapse
Affiliation(s)
- Darryl G Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1572, USA
| |
Collapse
|
40
|
Krishnathasan D, Vandervoort AA. Ankle plantar flexion strength in resistance and endurance trained middle-aged adults. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 2002; 27:479-90. [PMID: 12429895 DOI: 10.1139/h02-026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Maximum concentric (CONC) and eccentric (ECC) strength of the ankle plantar flexor muscles were compared between middle-aged adults who regularly participated in resistance exercise training versus those who participated in weight-bearing endurance exercise. A total of 40 men and women with a mean age of 48.9 years (SD = 5.3) were tested for CONC and ECC plantar flexor (PF) strength, using an isokinetic device at 3 velocities: 30, 90 and 180 degrees/s. Mean strength values for the groups of men and women involved in resistance exercise were consistently higher than those involved in the endurance training for the CONC tests, where values ranged from 35% to 46% (avg. 41%, p < .01), but less between-group difference was observed for the ECC loading condition: 4% to 30% (avg. 18%). Thus ECC/CONC ratios, which rose with increasing velocity, were consistently higher for the endurance group vs. resistance-trained. Finally, since concentric PF torque values were found to be quite low for the middle-aged women who did only endurance training, this movement may require preventive strengthening exercises.
Collapse
Affiliation(s)
- Dhivo Krishnathasan
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
41
|
Plant DR, Lynch GS. Excitation-contraction coupling and sarcoplasmic reticulum function in mechanically skinned fibres from fast skeletal muscles of aged mice. J Physiol 2002; 543:169-76. [PMID: 12181289 PMCID: PMC2290492 DOI: 10.1113/jphysiol.2002.022418] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ageing is generally associated with a decline in skeletal muscle mass and strength, and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. Alterations in Ca2+ handling are thought to contribute to these age-related changes in muscle contractility, yet the effects of ageing on sarcoplasmic reticulum (SR) Ca2+ handling and the Ca2+ transport system remain unresolved. We used mechanically skinned single fibres from the fast twitch extensor digitorum longus (EDL) muscles from young (4-month-old) and old (27- to 28-month-old) mice to test the hypothesis that the age-related changes in skeletal muscle contractility, especially the slower rate of contraction, are due to changes intrinsic to the muscle fibres. There were no age-related differences in the peak height of depolarization-induced contractile response (DICR) or the number of DICRs elicited before rundown (DICR < 50 % of initial). The time taken to reach peak DICR (TPDICR) was approximately12 % slower in single muscle fibres from old compared with young mice (P < 0.05). The rate of relaxation following DICR was not different in young and old mice. Examination of SR function demonstrated that SR Ca2+ reloading in Ca2+ -depleted skinned fibres was not different in young and old mice, nor was there any age-related difference in Ca2+ leak from the SR. However, low [caffeine] contracture in fibres from old mice was only half of that observed in fibres from young mice (P < 0.05), indicating a lower sensitivity of the SR Ca2+ release channel (CRC) to caffeine. We found no difference in maximum Ca2+ -activated force (P(o)) or specific force (sP(o); P(o) corrected for cross-sectional area) in EDL muscle fibres from young and old mice. Impaired excitation-contraction (E-C) coupling and a decrease in SR CRC function are mechanisms which are likely to contribute to the overall slowing of muscle contraction with age.
Collapse
Affiliation(s)
- David R Plant
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
42
|
Lowe DA, Thomas DD, Thompson LV. Force generation, but not myosin ATPase activity, declines with age in rat muscle fibers. Am J Physiol Cell Physiol 2002; 283:C187-92. [PMID: 12055087 DOI: 10.1152/ajpcell.00008.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that age-associated decline in muscle function is related to a change in myosin ATPase activity. Single, glycerinated semimembranosus fibers from young (8-12 mo) and aged (32-37 mo) Fischer 344 x Brown Norway male rats were analyzed simultaneously for force and myosin ATPase activity over a range of Ca2+ concentrations. Maximal force generation was ~20% lower in fibers from aged animals (P = 0.02), but myosin ATPase activity was not different between fibers from young and aged rats: 686 +/- 46 (n = 30) and 697 +/- 46 microM/s (n = 33) (P = 0.89). The apparent rate constant for the dissociation of strong-binding myosin from actin was calculated to be ~30% greater in fibers from aged animals (P = 0.03), indicating that the lower force produced by fibers from aged animals is due to a greater flux of myosin heads from the strong-binding state to the weak-binding state during contraction. This is in agreement with our previous electron paramagnetic resonance experiments that showed a reduced fraction of myosin heads in the strong-binding state during a maximal isometric contraction in fibers from older rats.
Collapse
Affiliation(s)
- Dawn A Lowe
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
43
|
Siddappa AJM, Rao RB, Wobken JD, Leibold EA, Connor JR, Georgieff MK. Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain. J Neurosci Res 2002; 68:761-75. [PMID: 12111837 DOI: 10.1002/jnr.10246] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The perinatal brain requires a tightly regulated iron transport system. Iron regulatory proteins (IRPs) 1 and 2 are cytosolic proteins that regulate the stability of mRNA for the two major cellular iron transporters, transferrin receptor (TfR) and divalent metal transporter-1 (DMT-1). We studied the localization of IRPs, their change in expression during perinatal development, and their relationship to TfR and DMT-1 in rat brain between postnatal days (PND) 5 and 15. Twelve-micron frozen coronal sections of fixed brain tissue were obtained from iron-sufficient Sprague-Dawley rat pups on PND 5, 10, and 15, and were visualized at 20 to 1,000x light microscopy for diaminobenzidine activity after incubation with specific primary IRP-1, IRP-2, DMT-1, and TfR antibodies and a universal biotinylated secondary and tertiary antibody system. IRP and transport protein expression increased in parallel over time. IRP1, IRP2, and DMT-1 were partially expressed in the choroid plexus epithelial cells at PND 5 and 10, and fully expressed at PND 15. The cerebral blood vessels and ependymal cells strongly expressed IRP1, IRP2, and DMT-1 as early as PND 5. Substantive TfR staining was not seen in the choroid plexus or ependyma until PND 15. Glial and neuronal expression of IRP1, IRP2, DMT-1, and TfR in cortex, hippocampal subareas and striatum increased over time, but showed variability in cell number and intensity of expression based on brain region, cell type, and age. These developmental changes in IRP and transporter expression suggest potentially different time periods of brain structure vulnerability to iron deficiency or iron overload.
Collapse
Affiliation(s)
- Asha Jyothi M Siddappa
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wang ZM, Messi ML, Delbono O. Sustained overexpression of IGF-1 prevents age-dependent decrease in charge movement and intracellular Ca(2+) in mouse skeletal muscle. Biophys J 2002; 82:1338-44. [PMID: 11867450 PMCID: PMC1301936 DOI: 10.1016/s0006-3495(02)75489-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this work we tested the hypothesis that transgenic sustained overexpression of IGF-1 prevents age-dependent decreases in charge movement and intracellular Ca(2+) in skeletal muscle fibers. To this end, short flexor digitorum brevis (FDB) muscle fibers from 5-7- and 21-24-month-old FVB (wild-type) and S1S2 (IGF-1 transgenic) mice were studied. Fibers were voltage-clamped in the whole-cell configuration of the patch-clamp technique according to described procedures (Wang, Z. M., M. L. Messi, and O. Delbono. 1999. Biophys. J. 77:2709-2716). Charge movement and intracellular Ca(2+) concentration were recorded simultaneously. The maximum charge movement (Q(max)) recorded in young wild-type and transgenic mice was (mean +/- SEM, in nC microF(-1)): 52 +/- 2.1 (n = 46) and 54 +/- 1.9 (n = 38) (non-significant, ns), respectively, whereas in old wild-type and old transgenic mice the values were 36 +/- 2.1 (n = 32) and 49 +/- 2.3 (n = 35), respectively (p < 0.01). The peak intracellular calcium [Ca(2+)](i) recorded in young wild-type and transgenic mice was (in muM): 14.5 +/- 0.9 and 16 +/- 2.1 (ns), whereas in old wild-type and transgenic mice the values were 9.9 +/- 0.1 and 14 +/- 1.1 (p < 0.01), respectively. No significant changes in the voltage distribution or steepness of the Q-V or [Ca(2+)]-V relationship were found. These data support the concept that overexpression of IGF-1 in skeletal muscle prevents age-dependent reduction in charge movement and peak [Ca(2+)](i).
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Physiology and Pharmacology, Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
45
|
|
46
|
Akesson A, Berglund M, Schütz A, Bjellerup P, Bremme K, Vahter M. Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health 2002; 92:284-7. [PMID: 11818307 PMCID: PMC1447058 DOI: 10.2105/ajph.92.2.284] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the impact of iron status on cadmium dose among pregnant women. METHODS Iron status and cadmium concentration in blood, urine, and placenta were determined among women followed for 2 years from early pregnancy. RESULTS Blood cadmium and urinary cadmium were correlated with iron status throughout the study period. Urinary cadmium increased longitudinally among women with exhausted iron stores during their pregnancy. The increase in urinary cadmium with age was more pronounced in multiparous than in nulliparous women. CONCLUSIONS Iron deficiency during pregnancy leads to increased cadmium absorption and body burden. Multiparous women exhibit additional increases with increasing age.
Collapse
Affiliation(s)
- Agneta Akesson
- Institute of Environmental Medicine, Division of Metals and Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Loss of cells from the motor system occurs during the normal aging process, leading to reduction in the complement of motor neurons and muscle fibers. The latter age-related decrease in muscle mass has been termed "sarcopenia" and is often combined with the detrimental effects of a sedentary lifestyle in older adults, leading to a significant reduction in reserve capacity of the neuromuscular system, which is the primary subject of this review. Clear evidence of this aging effect is seen when voluntary or stimulated muscle strength is compared across the adult lifespan, with a steady decline of approximately 1-2% per year occurring after the sixth decade. Interestingly, when compared with isometric contractions, the effect of aging is more pronounced for concentric movements and less for eccentric movements (i.e., muscle shortening versus lengthening). This phenomenon appears to be linked to the stiffer muscle structures and prolonged myosin crossbridge cycles of aged muscles. It is encouraging that the capability of physiological adaptations in the motor pathways remains into very old age--when an appropriate exercise stimulus is given--and long-term prevention strategies are advocated to avoid excessive physical impairments and activity restrictions in this age group.
Collapse
Affiliation(s)
- Anthony A Vandervoort
- School of Physical Therapy, University of Western Ontario, Room 1400, Elborn College, 1201 Western Road, London, Ontario N6G 1H1, Canada.
| |
Collapse
|
48
|
Hatakenaka M, Ueda M, Ishigami K, Otsuka M, Masuda K. Effects of aging on muscle T2 relaxation time: difference between fast- and slow-twitch muscles. Invest Radiol 2001; 36:692-8. [PMID: 11753139 DOI: 10.1097/00004424-200112000-00003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES To determine whether the T2 relaxation time of skeletal muscle is affected by aging and to compare the effects of aging between fast- and slow-twitch muscles in a human study. To investigate the mechanisms of age-related changes in T2 relaxation time in an animal (mouse) study. METHODS T2 relaxation times of the soleus (slow-twitch, rich in type I fiber) and gastrocnemius (fast-twitch, rich in type II fiber) muscles were examined in 59 healthy human subjects, 22 to 76 years of age, by clinical magnetic resonance imaging. In mice, T2 relaxation times, fat ratios, and extracellular space ratios (extracellular space/intracellular plus extracellular space) of the spinalis (fast-twitch, rich in type II fiber) muscles were also examined (group of 7 old mice, 24-26 months; group of 7 young mice, 8-10 weeks). RESULTS In the human study, the T2 relaxation time of the gastrocnemius muscle increased significantly with aging (r = 0.53, P < 0.01) while that of the soleus muscle did not. In the animal study, the T2 relaxation time of the spinalis muscle was significantly longer (P < 0.05) and the extracellular space ratio of the spinalis muscle significantly wider (P < 0.01) in old than in young mice. No significant difference in fat ratio was observed between old and young mice. A significant, positive correlation was seen between the extracellular space ratio and T2 relaxation time (r = 0.84, P < 0.01). CONCLUSIONS The T2 relaxation time of fast-twitch muscle increases with aging, due mainly to increased extracellular space, reflecting age-related type II fiber atrophy.
Collapse
Affiliation(s)
- M Hatakenaka
- Department of Radiology, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan 874-0838.
| | | | | | | | | |
Collapse
|
49
|
Pousson M, Lepers R, Van Hoecke J. Changes in isokinetic torque and muscular activity of elbow flexors muscles with age. Exp Gerontol 2001; 36:1687-98. [PMID: 11672989 DOI: 10.1016/s0531-5565(01)00143-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study examined the influence of aging on torque-angular velocity relationships for elbow flexion and the corresponding muscular activity levels in order to target the mechanisms involved in the eccentric muscle action in older adults. Maximal constant angular torque (CAT) at 90 degrees was measured at different angular velocities for concentric (CON; 60, 120, 180, 240 degrees s(-1)), isometric (ISO) and eccentric (ECC; -60, -120 degrees s(-1)) elbow flexor muscle actions in older (OG; 6 females and 4 males, 64-82 years) and young adult subjects (YG; 6 females, 6 males, 19-24 years) on an isokinetic dynamometer. Myoelectrical activity was quantified on biceps and triceps muscles, using the root mean square (RMS) procedure over a range of 30 degrees motion (75-105 degrees ). Absolute CAT was significantly greater (p<0.04) for YG in comparison with OG for all types of actions (CON, ECC, ISO). The only effect of gender concerned absolute strength values (p=0.00007). However, the OG showed higher (p<0.001) relative CAT values (expressed as percentage of CON 60 degrees s(-1) value) during ECC muscle action than the YG. Nevertheless, RMS values for elbow flexors were significantly (p<0.03) lower in the OG than in the YG. The antagonist (triceps) co-activation was similar for both groups. The relative ECC force preservation with aging seems to be independent of a muscular activation phenomenon.
Collapse
Affiliation(s)
- M Pousson
- Groupe Analyse du Mouvement, UFR STAPS, BP 27877, Université de Bourgogne, 21078 Dijon Cedex, France.
| | | | | |
Collapse
|
50
|
Plant DR, Lynch GS. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats. Clin Exp Pharmacol Physiol 2001; 28:779-81. [PMID: 11553038 DOI: 10.1046/j.1440-1681.2001.03521.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.
Collapse
Affiliation(s)
- D R Plant
- Department of Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|