1
|
Cogo RM, Pavani TFA, Mengarda ACA, Cajas RA, Teixeira TR, Fukui-Silva L, Sun YU, Liu LJ, Amarasinghe DK, Yoon MC, Santos-Filho OA, de Moraes J, Caffrey CR, G G Rando D. Pharmacophore Virtual Screening Identifies Riboflavin as an Inhibitor of the Schistosome Cathepsin B1 Protease with Antiparasitic Activity. ACS OMEGA 2024; 9:25356-25369. [PMID: 38882094 PMCID: PMC11170711 DOI: 10.1021/acsomega.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Schistosomiasis is a neglected disease of poverty that affects over 200 million people worldwide and relies on a single drug for therapy. The cathepsin B1 cysteine protease (SmCB1) of Schistosoma mansoni has been investigated as a potential target. Here, a structure-based pharmacophore virtual screening (VS) approach was used on a data set of approved drugs to identify potential antischistosomal agents targeting SmCB1. Pharmacophore (PHP) models underwent validation through receiver operating characteristics curves achieving values >0.8. The data highlighted riboflavin (RBF) as a compound of particular interest. A 1 μs molecular dynamics simulation demonstrated that RBF altered the conformation of SmCB1, causing the protease's binding site to close around RBF while maintaining the protease's overall integrity. RBF inhibited the activity of SmCB1 at low micromolar values and killed the parasite in vitro. Finally, in a murine model of S. mansoni infection, oral administration of 100 mg/kg RBF for 7 days significantly decreased worm burdens by ∼20% and had a major impact on intestinal and fecal egg burdens, which were decreased by ∼80%.
Collapse
Affiliation(s)
- Ramon M Cogo
- Universidade Federal de São Paulo-Campus Diadema, Curso de Pós-Graduação em Biologia Química da Unifesp, Rua São Nicolau 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| | - Thaís F A Pavani
- Universidade Federal de São Paulo-Campus Diadema, Curso de Pós-Graduação em Biologia Química da Unifesp, Rua São Nicolau 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| | - Ana C A Mengarda
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Rayssa A Cajas
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Thainá R Teixeira
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Lucas Fukui-Silva
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Yujie Uli Sun
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Dilini K Amarasinghe
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Michael C Yoon
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Osvaldo A Santos-Filho
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Rio de Janeiro 21941-853, Brazil
| | - Josué de Moraes
- Universidade Guarulhos, Núcleo de Pesquisa em Doenças Negligenciadas-NPDN, Praça Tereza Cristina 88, Guarulhos 09972-270, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0021, United States
| | - Daniela G G Rando
- Grupo de Pesquisas Químico-Farmacêuticas da Unifesp, Department of Pharmaceutical Sciences Rua São Nicolau, Universidade Federal de São Paulo-Campus Diadema, 210, 2o andar, Centro, Diadema, São Paulo 09972-270, Brazil
| |
Collapse
|
2
|
Ghosh S, Puranik M. Initial Excited State Dynamics of Lumichrome upon Ultraviolet Excitation. Photochem Photobiol 2022; 98:1270-1283. [PMID: 35380739 DOI: 10.1111/php.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
Lumichrome (LC) is the major photodegradation product of biologically important flavin cofactors. Since LC serves as a structural comparison to the flavins; understanding excited states of LC is fundamentally important to establish a connection with photophysics of different flavins, such as lumiflavin (LF), riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Herein, we deduce the initial excited state structural dynamics of LC using UV resonance Raman (UVRR) intensity analysis. The UVRR spectra at wavelengths across the 260 nm absorption band of LC were measured and resulting Raman excitation profiles and absorption spectrum were self consistently simulated using a time-dependent wave packet formalism to extract the initial excited state structural and solvent broadening parameters. These results are compared with those obtained for other flavins following UV excitations. We find that LC undergoes a very distinct instantaneous charge redistribution than flavins, which is attributed to the extended π-conjugation present in flavins but missing in LC. The homogeneous broadening linewidth of LC appears to be lower than that of LF, while the inhomogeneous broadening values are comparable, indicating greater solvent interaction with excited flavin on ultrafast timescale compared to LC, whereas on longer timescale these interactions are almost similar.
Collapse
Affiliation(s)
- Sudeb Ghosh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411 008, India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune-411 008, India
| |
Collapse
|
3
|
Guo H, Ma X, Lei Z, Qiu Y, Zhao J, Dick B. Photophysical properties of N-methyl and N-acetyl substituted alloxazines: a theoretical investigation. Phys Chem Chem Phys 2021; 23:13734-13744. [PMID: 34128506 DOI: 10.1039/d1cp01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structure and photophysical properties of a series of N-methyl and N-acetyl substituted alloxazines (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT) based calculations. We showed that non-radiative decays from the lowest singlet and triplet excited states of these AZs are dominant over their radiative counterparts. The fast non-radiative decays of the excited AZs can be attributed to the energy consumption (Ereorg) through structural reorganization facilitated by the intrinsic normal modes of the alloxazine framework, as well as their coupling with those of the functional groups. Substitution with functional groups may lead to further perturbation of the electronic structure of the AZ chromophore, which may enhance intersystem crossing with the ππ* states of the AZs. Due to the different bonding of N1 and N3 within the alloxazine framework, substitution may result in AZs with different photophysical properties. Specifically, functionalization at N1 may help in maintaining or even reducing Ereorg and would promote the absorption and radiative decay from the excited AZs. However, the strong coupling of the vibrational modes of acetyl at N3 with the intrinsic normal modes of the alloxazine framework would contribute significantly to Ereorg, and benefit the non-radiative decay of the excited AZs. We expect that the findings would pave the way for rational design of novel AZs with extraordinary photophysical properties.
Collapse
Affiliation(s)
- Huimin Guo
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Xiaolin Ma
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Zhiwen Lei
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Yang Qiu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, P. R. China.
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, Regensburg, 93053, Germany
| |
Collapse
|
4
|
Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. Methods Mol Biol 2021; 2280:275-295. [PMID: 33751442 DOI: 10.1007/978-1-0716-1286-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this short review chapter is to provide a brief summary of the relevance of riboflavin (Rf or vitamin B2) and its derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) for human neuromuscular bioenergetics.Therefore, as a completion of this book we would like to summarize what kind of human pathologies could derive from genetic disturbances of Rf transport, flavin cofactor synthesis and delivery to nascent apoflavoproteins, as well as by alteration of vitamin recycling during protein turnover.
Collapse
|
5
|
|
6
|
|
7
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
8
|
Frame LA, Costa E, Jackson SA. Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutr Rev 2020; 78:798-812. [DOI: 10.1093/nutrit/nuz106] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Context
The ability to measure the gut microbiome led to a surge in understanding and knowledge of its role in health and disease. The diet is a source of fuel for and influencer of composition of the microbiome.
Objective
To assess the understanding of the interactions between nutrition and the gut microbiome in healthy adults.
Data Sources
PubMed and Google Scholar searches were conducted in March and August 2018 and were limited to the following: English, 2010–2018, healthy adults, and reviews.
Data Extraction
A total of 86 articles were independently screened for duplicates and relevance, based on preidentified inclusion criteria.
Data Analysis
Research has focused on dietary fiber – microbiota fuel. The benefits of fiber center on short-chain fatty acids, which are required by colonocytes, improve absorption, and reduce intestinal transit time. Contrastingly, protein promotes microbial protein metabolism and potentially harmful by-products that can stagnate in the gut. The microbiota utilize and produce micronutrients; the bidirectional relationship between micronutrition and the gut microbiome is emerging.
Conclusions
Nutrition has profound effects on microbial composition, in turn affecting wide-ranging metabolic, hormonal, and neurological processes. There is no consensus on what defines a “healthy” gut microbiome. Future research must consider individual responses to diet.
Collapse
Affiliation(s)
- Leigh A Frame
- The George Washington School of Medicine and Health Sciences, Washington, USA
| | - Elise Costa
- The George Washington School of Medicine and Health Sciences, Washington, USA
| | - Scott A Jackson
- The George Washington School of Medicine and Health Sciences, Washington, USA
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
9
|
Darguzyte M, Drude N, Lammers T, Kiessling F. Riboflavin-Targeted Drug Delivery. Cancers (Basel) 2020; 12:cancers12020295. [PMID: 32012715 PMCID: PMC7072493 DOI: 10.3390/cancers12020295] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 12/30/2022] Open
Abstract
Active targeting can improve the retention of drugs and drug delivery systems in tumors, thereby enhancing their therapeutic efficacy. In this context, vitamin receptors that are overexpressed in many cancers are promising targets. In the last decade, attention and research were mainly centered on vitamin B9 (folate) targeting; however, the focus is slowly shifting towards vitamin B2 (riboflavin). Interestingly, while the riboflavin carrier protein was discovered in the 1960s, the three riboflavin transporters (RFVT 1-3) were only identified recently. It has been shown that riboflavin transporters and the riboflavin carrier protein are overexpressed in many tumor types, tumor stem cells, and the tumor neovasculature. Furthermore, a clinical study has demonstrated that tumor cells exhibit increased riboflavin metabolism as compared to normal cells. Moreover, riboflavin and its derivatives have been conjugated to ultrasmall iron oxide nanoparticles, polyethylene glycol polymers, dendrimers, and liposomes. These conjugates have shown a high affinity towards tumors in preclinical studies. This review article summarizes knowledge on RFVT expression in healthy and pathological tissues, discusses riboflavin internalization pathways, and provides an overview of RF-targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Natascha Drude
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; (M.D.); (N.D.); (T.L.)
- Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
10
|
Poyatos‐Racionero E, Pérez‐Esteve É, Dolores Marcos M, Barat JM, Martínez‐Máñez R, Aznar E, Bernardos A. New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems. ChemistryOpen 2019; 8:1052-1056. [PMID: 31463170 PMCID: PMC6709519 DOI: 10.1002/open.201900092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
A new delivery microdevice, based on hydrophobic oleic acid-capped mesoporous silica particles and able to payload release in the presence of surfactants, has been developed. The oleic acid functionalization confers to the system a high hydrophobic character, which avoids cargo release unless surfactant molecules are present. The performance of this oleic-acid capped microdevice in the presence of different surfactants is presented and its zero-release operation in the absence of surfactants is demonstrated.
Collapse
Affiliation(s)
- Elisa Poyatos‐Racionero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
| | - Édgar Pérez‐Esteve
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- Grupo de Investigación e Innovación Alimentaria (CUINA)Universitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
| | - M. Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de ValènciaIIS La Fe de Valencia46026ValenciaSpain
- Unidad Mixta UPV CIPF Invest Mecanismos EnfermedadUniversitat Politècnica de ValènciaCtr Invest Principe Felipe46100ValenciaSpain
| | - José M. Barat
- Grupo de Investigación e Innovación Alimentaria (CUINA)Universitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
- Departamento de Tecnología de AlimentosUniversitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de ValènciaIIS La Fe de Valencia46026ValenciaSpain
- Unidad Mixta UPV CIPF Invest Mecanismos EnfermedadUniversitat Politècnica de ValènciaCtr Invest Principe Felipe46100ValenciaSpain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de ValènciaIIS La Fe de Valencia46026ValenciaSpain
- Unidad Mixta UPV CIPF Invest Mecanismos EnfermedadUniversitat Politècnica de ValènciaCtr Invest Principe Felipe46100ValenciaSpain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
- Unidad Mixta UPV CIPF Invest Mecanismos EnfermedadUniversitat Politècnica de ValènciaCtr Invest Principe Felipe46100ValenciaSpain
| |
Collapse
|
11
|
Validated Postbiotic Screening Confirms Presence of Physiologically-Active Metabolites, Such as Short-Chain Fatty Acids, Amino Acids and Vitamins in Hylak® Forte. Probiotics Antimicrob Proteins 2018; 11:1124-1131. [DOI: 10.1007/s12602-018-9497-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Biological activity of Pt IV prodrugs triggered by riboflavin-mediated bioorthogonal photocatalysis. Sci Rep 2018; 8:17198. [PMID: 30464209 PMCID: PMC6249213 DOI: 10.1038/s41598-018-35655-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that riboflavin (Rf) functions as unconventional bioorthogonal photocatalyst for the activation of PtIV prodrugs. In this study, we show how the combination of light and Rf with two PtIV prodrugs is a feasible strategy for light-mediated pancreatic cancer cell death induction. In Capan-1 cells, which have high tolerance against photodynamic therapy, Rf-mediated activation of the cisplatin and carboplatin prodrugs cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] (1) and cis,cis,trans-[Pt(NH3)2(CBDCA)(O2CCH2CH2CO2H)2] (2, where CBDCA = cyclobutane dicarboxylate) resulted in pronounced reduction of the cell viability, including under hypoxia conditions. Such photoactivation mode occurs to a considerable extent intracellularly, as demonstrated for 1 by uptake and cell viability experiments. 195Pt NMR, DNA binding studies using circular dichroism, mass spectrometry and immunofluorescence microscopy were performed using the Rf-1 catalyst-substrate pair and indicated that cell death is associated with the efficient light-induced formation of cisplatin. Accordingly, Western blot analysis revealed signs of DNA damage and activation of cell death pathways through Rf-mediated photochemical activation. Phosphorylation of H2AX as indicator for DNA damage, was detected for Rf-1 in a strictly light-dependent fashion while in case of free cisplatin also in the dark. Photochemical induction of nuclear pH2AX foci by Rf-1 was confirmed in fluorescence microscopy again proving efficient light-induced cisplatin release from the prodrug system.
Collapse
|
13
|
Abstract
Nine compounds are classified as water-soluble vitamins, eight B vitamins and one vitamin C. The vitamins are mandatory for the function of numerous enzymes and lack of one or more of the vitamins may lead to severe medical conditions. All the vitamins are supplied by food in microgram to milligram quantities and in addition some of the vitamins are synthesized by the intestinal microbiota. In the gastrointestinal tract, the vitamins are liberated from binding proteins and for some of the vitamins modified prior to absorption. Due to their solubility in water, they all require specific carriers to be absorbed. Our current knowledge concerning each of the vitamins differs in depth and focus and is influenced by the prevalence of conditions and diseases related to lack of the individual vitamin. Because of that we have chosen to cover slightly different aspects for the individual vitamins. For each of the vitamins, we summarize the physiological role, the steps involved in the absorption, and the factors influencing the absorption. In addition, for some of the vitamins, the molecular base for absorption is described in details, while for others new aspects of relevance for human deficiency are included. © 2018 American Physiological Society. Compr Physiol 8:1291-1311, 2018.
Collapse
Affiliation(s)
- Hamid M Said
- University of California-School of Medicine, Irvine, California, USA.,VA Medical Center, Long Beach, California, USA
| | - Ebba Nexo
- Department of Clinical Medicine, Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Initial excited state structural dynamics of lumiflavin upon ultraviolet excitation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Anandam KY, Alwan OA, Subramanian VS, Srinivasan P, Kapadia R, Said HM. Effect of the proinflammatory cytokine TNF-α on intestinal riboflavin uptake: inhibition mediated via transcriptional mechanism(s). Am J Physiol Cell Physiol 2018; 315:C653-C663. [PMID: 30156861 DOI: 10.1152/ajpcell.00295.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Riboflavin (RF), is essential for normal cellular metabolism/function. Intestinal RF absorption occurs via a specific carrier-mediated process that involves the apical transporter RFVT-3 ( SLC52A3) and the basolateral RFVT-1 (SLC52A1). Previously, we characterized different cellular/molecular aspects of the intestinal RF uptake process, but nothing is known about the effect of proinflammatory cytokines on the uptake event. We addressed this issue using in vitro, ex vivo, and in vivo models. First, we determined the level of mRNA expression of the human (h)RFVT-3 and hRFVT-1 in intestinal tissue of patients with inflammatory bowel disease (IBD) and observed a markedly lower level compared with controls. In the in vitro model, exposing Caco-2 cells to tumor necrosis factor-α (TNF-α) led to a significant inhibition in RF uptake, an effect that was abrogated upon knocking down TNF receptor 1 (TNFR1). The inhibition in RF uptake was associated with a significant reduction in the expression of hRFVT-3 and -1 protein and mRNA levels, as well as in the activity of the SLC52A3 and SLC52A1 promoters. The latter effects appear to involve Sp1 and NF-κB sites in these promoters. Similarly, exposure of mouse small intestinal enteroids and wild-type mice to TNF-α led to a significant inhibition in physiological and molecular parameters of intestinal RF uptake. Collectively, these findings demonstrate that exposure of intestinal epithelial cells to TNF-α leads to inhibition in RF uptake and that this effect is mediated, at least in part, via transcriptional mechanism(s). These findings may explain the significantly low RF levels observed in patients with IBD.
Collapse
Affiliation(s)
- Kasin Yadunandam Anandam
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Omar A Alwan
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Veedamali S Subramanian
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Padmanabhan Srinivasan
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Rubina Kapadia
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| | - Hamid M Said
- Department of Medicine, University of California , Irvine, California.,Department of Physiology/Biophysics, University of California , Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center , Long Beach, California
| |
Collapse
|
16
|
Thakur K, Tomar SK, Singh AK, Mandal S, Arora S. Riboflavin and health: A review of recent human research. Crit Rev Food Sci Nutr 2018; 57:3650-3660. [PMID: 27029320 DOI: 10.1080/10408398.2016.1145104] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has lately been a renewed interest in Riboflavin owing to insight into its recognition as an essential component of cellular biochemistry. The knowledge of the mechanisms and regulation of intestinal absorption of riboflavin and its health implications has significantly been expanded in recent years. The purpose of this review is to provide an overview of the importance of riboflavin, its absorption and metabolism in health and diseased conditions, its deficiency and its association with various health diseases, and metabolic disorders. Efforts have been made to review the available information in literature on the relationship between riboflavin and various clinical abnormalities. The role of riboflavin has also been dealt in the prevention of a wide array of health diseases like migraine, anemia, cancer, hyperglycemia, hypertension, diabetes mellitus, and oxidative stress directly or indirectly. The riboflavin deficiency has profound effect on iron absorption, metabolism of tryptophan, mitochondrial dysfunction, gastrointestinal tract, brain dysfunction, and metabolism of other vitamins as well as is associated with skin disorders. Toxicological and photosensitizing properties of riboflavin make it suitable for biological use, such as virus inactivation, excellent photosensitizer, and promising adjuvant in chemo radiotherapy in cancer treatment. A number of recent studies have indicated and highlighted the cellular processes and biological effects associated with riboflavin supplementation in metabolic diseases. Overall, a deeper understanding of these emerging roles of riboflavin intake is essential to design better therapies for future.
Collapse
Affiliation(s)
- Kiran Thakur
- a Dairy Microbiology Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| | - Sudhir Kumar Tomar
- a Dairy Microbiology Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| | - Ashish Kumar Singh
- b Dairy Technology Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| | - Surajit Mandal
- a Dairy Microbiology Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| | - Sumit Arora
- c Dairy Chemistry Division , ICAR-National Dairy Research Institute , Karnal , Haryana , India
| |
Collapse
|
17
|
Anandam KY, Srinivasan P, Subramanian VS, Said HM. Molecular mechanisms involved in the adaptive regulation of the colonic thiamin pyrophosphate uptake process. Am J Physiol Cell Physiol 2017; 313:C655-C663. [PMID: 28931541 DOI: 10.1152/ajpcell.00169.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A considerable amount of the thiamin generated by gut microbiota exists in the form of thiamin pyrophosphate (TPP). We have previously shown that human colonocytes possess an efficient carrier-mediated uptake process for TPP that involves the SLC44A4 system and this uptake process is adaptively regulated by prevailing extracellular TPP level. Little is known about the molecular mechanisms that mediate this adaptive regulation. We addressed this issue using human-derived colonic epithelial NCM460 cells and mouse colonoids as models. Maintaining NCM460 cells in the presence of a high level of TPP (1 mM) for short (2 days)- and long-term (9 days) periods was found to lead to a significant reduction in [3H] TPP uptake compared with cells maintained in its absence. Short-term exposure showed no changes in level of expression of SLC44A4 protein in total cell homogenate (although there was a decreased expression in the membrane fraction), mRNA, and promoter activity. However, a significant reduction in the level of expression of the SLC44A4 protein, mRNA, and promoter activity was observed upon long-term maintenance with the substrate. Similar changes in Slc44a4 mRNA expression were observed when mouse colonoids were maintained with TPP for short- and long-term periods. Expression of the transcription factors ELF3 and CREB-1 (which drive the SLC44A4 promoter) following long-term exposure was unchanged, but their binding affinity to the promoter was decreased and specific histone modifications were also observed. These studies demonstrate that, depending on the period of exposure, different mechanisms are involved in the adaptive regulation of colonic TPP uptake by extracellular substrate level.
Collapse
Affiliation(s)
- Kasin Yadunandam Anandam
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California School of Medicine , Irvine, California
| | - Padmanabhan Srinivasan
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California School of Medicine , Irvine, California
| | - Veedamali S Subramanian
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California School of Medicine , Irvine, California
| | - Hamid M Said
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California School of Medicine , Irvine, California
| |
Collapse
|
18
|
Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci 2017; 1372:53-64. [PMID: 27362360 DOI: 10.1111/nyas.13145] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/19/2023]
Abstract
There is increasing evidence that food is an important factor that influences and shapes the composition and configuration of the gut microbiota. Most studies have focused on macronutrients (fat, carbohydrate, protein) in particular and their effects on the gut microbiota. Although the microbiota can synthesize different water-soluble vitamins, the effects of vitamins synthesized within the microbiota on systemic vitamin status are unclear. Few studies exist on the shuttling of vitamins between the microbiota and intestine and the impact of luminal vitamins on the microbiota. Studying the interactions between vitamins and the microbiota may help to understand the effects of vitamins on the barrier function and immune system of the intestinal tract. Furthermore, understanding the impact of malnutrition, particularly low micronutrient supply, on microbiota development, composition, and metabolism may help in implementing new strategies to overcome the deleterious effects of malnutrition on child development. This article reviews data on the synthesis of different micronutrients and their effects on the human microbiota, and further discusses the consequences of malnutrition on microbiota composition.
Collapse
Affiliation(s)
- Hans K Biesalski
- Department of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
19
|
Blood-to-retina transport of riboflavin via RFVTs at the inner blood-retinal barrier. Drug Metab Pharmacokinet 2017; 32:92-99. [DOI: 10.1016/j.dmpk.2016.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/24/2022]
|
20
|
Gandhimathi K, Karthi S, Manimaran P, Varalakshmi P, Ashokkumar B. Riboflavin transporter-2 (rft-2) of Caenorhabditis elegans: Adaptive and developmental regulation. J Biosci 2016; 40:257-68. [PMID: 25963255 DOI: 10.1007/s12038-015-9512-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Riboflavin transporters (rft-1 and rft-2), orthologous to human riboflavin transporter-3 (hRVFT-3), are identified and characterized in Caenorhabditis elegans. However, studies pertaining to functional contribution of rft-2 in maintaining body homeostatic riboflavin levels and its regulation are very limited. In this study, the expression pattern of rft-2 at different life stages of C. elegans was studied through real-time PCR, and found to be consistent from larval to adult stages that demonstrate its involvement in maintaining the body homeostatic riboflavin levels at whole animal level all through its life. A possible regulation of rft-2 expression at mRNA levels at whole animal was studied after adaptation to low and high concentrations of riboflavin. Abundance of rft-2 transcript was upregulated in riboflavin-deficient conditions (10 nM), while it was downregulated with riboflavin-supplemented conditions (2 mM) as compared with control (10 meu M). Further, the 5'-regulatory region of the rft-2 gene was cloned, and transgenic nematodes expressing transcriptional rft-2 promoter::GFP fusion constructs were generated. The expression of rft-2 was found to be adaptively regulated in vivo when transgenic worms were maintained under different extracellular riboflavin levels, which was also mediated partly via changes in the rft-2 levels that directs towards the possible involvement of transcriptional regulatory events.
Collapse
Affiliation(s)
- Krishnan Gandhimathi
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India
| | | | | | | | | |
Collapse
|
21
|
Hussain S, Malik AH, Iyer PK. FRET-assisted selective detection of flavins via cationic conjugated polyelectrolyte under physiological conditions. J Mater Chem B 2016; 4:4439-4446. [DOI: 10.1039/c6tb01350c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cationic conjugated polyelectrolyte PMI performs ppb level detection and discrimination of flavins (RF, FMN and FAD) in aqueous media as well as in biological medium like serum.
Collapse
Affiliation(s)
- Sameer Hussain
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Akhtar Hussain Malik
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Parameswar Krishnan Iyer
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Centre for Nanotechnology
| |
Collapse
|
22
|
Subramanian VS, Ghosal A, Kapadia R, Nabokina SM, Said HM. Molecular Mechanisms Mediating the Adaptive Regulation of Intestinal Riboflavin Uptake Process. PLoS One 2015; 10:e0131698. [PMID: 26121134 PMCID: PMC4484800 DOI: 10.1371/journal.pone.0131698] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
The intestinal absorption process of vitamin B2 (riboflavin, RF) is carrier-mediated, and all three known human RF transporters, i.e., hRFVT-1, -2, and -3 (products of the SLC52A1, 2 & 3 genes, respectively) are expressed in the gut. We have previously shown that the intestinal RF uptake process is adaptively regulated by substrate level, but little is known about the molecular mechanism(s) involved. Using human intestinal epithelial NCM460 cells maintained under RF deficient and over-supplemented (OS) conditions, we now show that the induction in RF uptake in RF deficiency is associated with an increase in expression of the hRFVT-2 & -3 (but not hRFVT-1) at the protein and mRNA levels. Focusing on hRFVT-3, the predominant transporter in the intestine, we also observed an increase in the level of expression of its hnRNA and activity of its promoter in the RF deficiency state. An increase in the level of expression of the nuclear factor Sp1 (which is important for activity of the SLC52A3 promoter) was observed in RF deficiency, while mutating the Sp1/GC site in the SLC52A3 promoter drastically decreased the level of induction in SLC52A3 promoter activity in RF deficiency. We also observed specific epigenetic changes in the SLC52A3 promoter in RF deficiency. Finally, an increase in hRFVT-3 protein expression at the cell surface was observed in RF deficiency. Results of these investigations show, for the first time, that transcriptional and post-transcriptional mechanisms are involved in the adaptive regulation of intestinal RF uptake by the prevailing substrate level.
Collapse
Affiliation(s)
- Veedamali S. Subramanian
- Department of Medicine, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
| | - Abhisek Ghosal
- Department of Medicine, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
| | - Rubina Kapadia
- Department of Medicine, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
| | - Svetlana M. Nabokina
- Department of Medicine, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
| | - Hamid M. Said
- Department of Medicine, University of California, Irvine, California, United States of America
- Department of Physiology/Biophysics, University of California, Irvine, California, United States of America
- VAMC, Long Beach, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Coon SD, Rajendran VM, Schwartz JH, Singh SK. Glucose-dependent insulinotropic polypeptide-mediated signaling pathways enhance apical PepT1 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2015; 308:G56-62. [PMID: 25377315 PMCID: PMC4281688 DOI: 10.1152/ajpgi.00168.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have shown recently that glucose-dependent insulinotropic polypeptide (GIP), but not glucagon-like peptide 1 (GLP-1) augments H(+) peptide cotransporter (PepT1)-mediated peptide absorption in murine jejunum. While we observed that inhibiting cAMP production decreased this augmentation of PepT1 activity by GIP, it was unclear whether PKA and/or other regulators of cAMP signaling pathway(s) were involved. This study utilized tritiated glycyl-sarcosine [(3)H-glycyl-sarcosine (Gly-Sar), a relatively nonhydrolyzable dipeptide] uptake to measure PepT1 activity in CDX2-transfected IEC-6 (IEC-6/CDX2) cells, an absorptive intestinal epithelial cell model. Similar to our earlier observations with mouse jejunum, GIP but not GLP-1 augmented Gly-Sar uptake (control vs. +GIP: 154 ± 22 vs. 454 ± 39 pmol/mg protein; P < 0.001) in IEC-6/CDX2 cells. Rp-cAMP (a PKA inhibitor) and wortmannin [phosophoinositide-3-kinase (PI3K) inhibitor] pretreatment completely blocked, whereas neither calphostin C (a potent PKC inhibitor) nor BAPTA (an intracellular Ca(2+) chelator) pretreatment affected the GIP-augmented Gly-Sar uptake in IEC-6/CDX2 cells. The downstream metabolites Epac (control vs. Epac agonist: 287 ± 22 vs. 711 ± 80 pmol/mg protein) and AKT (control vs. AKT inhibitor: 720 ± 50 vs. 75 ± 19 pmol/mg protein) were shown to be involved in GIP-augmented PepT1 activity as well. Western blot analyses revealed that both GIP and Epac agonist pretreatment enhance the PepT1 expression on the apical membranes, which is completely blocked by wortmannin in IEC-6/CDX2 cells. These observations demonstrate that both cAMP and PI3K signaling pathways augment GIP-induced peptide uptake through Epac and AKT-mediated pathways in intestinal epithelial cells, respectively. In addition, these observations also indicate that both Epac and AKT-mediated signaling pathways increase apical membrane expression of PepT1 in intestinal absorptive epithelial cells.
Collapse
Affiliation(s)
- Steven D. Coon
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Department of Medicine, Boston Veterans Affairs Healthcare System, Boston, Massachusetts; ,3Department of Medicine, Boston University Clinical & Translational Science Institute, Boston, Massachusetts; and
| | - Vazhaikkurichi M. Rajendran
- 4Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John H. Schwartz
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
| | - Satish K. Singh
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Department of Medicine, Boston Veterans Affairs Healthcare System, Boston, Massachusetts;
| |
Collapse
|
24
|
Sabui S, Ghosal A, Said HM. Identification and characterization of 5'-flanking region of the human riboflavin transporter 1 gene (SLC52A1). Gene 2014; 553:49-56. [PMID: 25284511 DOI: 10.1016/j.gene.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022]
Abstract
The human SLC52A1 gene encodes the riboflavin transporter-1 (RFVT-1), a plasma membrane protein that transports vitamin B2 (riboflavin, RF) into cells, and thus, plays a role in controlling cellular homeostasis of RF in those tissues that express the carrier protein (e.g. placenta and intestine). Currently, there is nothing known about transcriptional regulation of the SLC52A1 gene, therefore, we aimed to clone and characterize its 5'-flanking region. Using rapid amplification of the cDNA ends (5'-RACE), we identified one transcription start site (TSS). A 579 bp segment of the 5'-flanking region of this gene was cloned which exhibited robust promoter activity upon transfection in human intestinal epithelial cells. Deletion analysis revealed that the core promoter activity to be embedded in a region between -234 and -23 that lacked TATA element, was GC-rich, and harbored several putative cis-regulatory sites including KLFs, AP-2, EGRF and Sp-1. Mutating each of these sites led to a significant decrease in promoter activity (which was highest for the Sp-1 site), suggesting their possible involvement in regulating SLC52A1 transcription. Focusing on the Sp-1 site, EMSA, super-shift and ChIP analysis was performed that established the interaction of the Sp-1 transcription factor with the SLC52A1 promoter; also, co-transfection of the minimal SLC52A1 promoter with an Sp-1 containing vector in Drosophila SL-2 cells led to significant promoter activation. These results are the first to reveal the identity of the minimal SLC52A1 promoter and to establish an important role for Sp-1 in its activity.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Abhisek Ghosal
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | - Hamid M Said
- Department of Medicine and Physiology/Biophysics, University of California-Irvine, Irvine, CA 92697, USA; Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822, USA.
| |
Collapse
|
25
|
Said HM. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol 2013; 305:G601-10. [PMID: 23989008 PMCID: PMC3840235 DOI: 10.1152/ajpgi.00231.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review focuses on recent advances in our understanding of the mechanisms and regulation of water-soluble vitamin (WSV) transport in the large intestine and pancreas, two important organs of the digestive system that have only recently received their fair share of attention. WSV, a group of structurally unrelated compounds, are essential for normal cell function and development and, thus, for overall health and survival of the organism. Humans cannot synthesize WSV endogenously; rather, WSV are obtained from exogenous sources via intestinal absorption. The intestine is exposed to two sources of WSV: a dietary source and a bacterial source (i.e., WSV generated by the large intestinal microbiota). Contribution of the latter source to human nutrition/health has been a subject of debate and doubt, mostly based on the absence of specialized systems for efficient uptake of WSV in the large intestine. However, recent studies utilizing a variety of human and animal colon preparations clearly demonstrate that such systems do exist in the large intestine. This has provided strong support for the idea that the microbiota-generated WSV are of nutritional value to the host, and especially to the nutritional needs of the local colonocytes and their health. In the pancreas, WSV are essential for normal metabolic activities of all its cell types and for its exocrine and endocrine functions. Significant progress has also been made in understanding the mechanisms involved in the uptake of WSV and the effect of chronic alcohol exposure on the uptake processes.
Collapse
Affiliation(s)
- Hamid M. Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
26
|
Yao Y, Yonezawa A, Yoshimatsu H, Omura T, Masuda S, Matsubara K. Involvement of riboflavin transporter RFVT2/Slc52a2 in hepatic homeostasis of riboflavin in mice. Eur J Pharmacol 2013; 714:281-7. [PMID: 23911957 DOI: 10.1016/j.ejphar.2013.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022]
Abstract
Riboflavin (vitamin B2) acts as an intermediary during various biochemical oxidation-reduction reactions in the liver. Hepatic riboflavin homeostasis is suggested to be maintained through its transporter(s). Riboflavin transporters, RFVT2/Slc52a2 and RFVT3/Slc52a3, have been identified in rodents. However, the role of each RFVT in the hepatic homeostasis of riboflavin has not yet been fully clarified. In this study, we assessed the contribution of each RFVT to riboflavin uptake into the liver using in vitro and in vivo studies. The uptake of riboflavin by mouse primary hepatocytes increased in a time-dependent and a concentration-dependent manner. Riboflavin transport was independent of extracellular Na(+). However, the uptake decreased slightly along with the extracellular pH increases. Real-time PCR analysis revealed that the mRNA level of Slc52a2, or coding for mouse (m)RFVT2, in the mouse liver was 10 times higher than that of Slc52a3 (coding for mRFVT3). The uptake of riboflavin at pH 7.4 by primary hepatocytes was significantly decreased by the transfection of Slc52a2-small interfering RNA (siRNA), but not Slc52a3-siRNA. Furthermore, we also confirmed the contribution of riboflavin transporters in vivo. The riboflavin concentrations in plasma, but not in the liver, were significantly decreased in mice fed on a riboflavin-deficient diet for 8 weeks. The expression of Slc52a2 mRNA was significantly upregulated by riboflavin deprivation. These results strongly suggest that mRFVT2 was involved in hepatic riboflavin homeostasis.
Collapse
Affiliation(s)
- Yoshiaki Yao
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Nutrients 2013; 5:234-52. [PMID: 23344252 PMCID: PMC3571646 DOI: 10.3390/nu5010234] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 02/06/2023] Open
Abstract
It is well established that diet influences the health of an individual and that a diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. What has been unclear until recently is the large contribution of the gut microbiota to this effect. As well as providing basic nutritional requirements, the long-term diet of an animal modifies its gut microbiota. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared to Bacteroides, while the reverse is associated with a diet that contains a low proportion of plant-based foods. Furthermore, it is becoming increasingly clear that the effect of the microbial ecology of the gut goes beyond the local gut immune system and is implicated in immune-related disorders, such as IBS, diabetes and inflamm-ageing. In this review, we investigate the evidence that a balanced diet leads to a balanced, diverse microbiota with significant consequences for healthy ageing by focusing on conditions of interest.
Collapse
Affiliation(s)
- Ian B. Jeffery
- Department of Microbiology, University College Cork, College Road, Cork, Ireland; E-Mail:
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +353-(0)21-490-1306; Fax: +353-(0)21-490-3997
| | - Paul W. O’Toole
- Department of Microbiology, University College Cork, College Road, Cork, Ireland; E-Mail:
- Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
28
|
Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. THE AMERICAN JOURNAL OF PATHOLOGY 2012. [PMID: 23201091 DOI: 10.1016/j.ajpath.2012.10.014] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial-derived lipopolysaccharides (LPS) play an essential role in the inflammatory process of inflammatory bowel disease. A defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease and other inflammatory conditions of the gut. Despite its importance in mediating intestinal inflammation, the physiological effects of LPS on the intestinal epithelial barrier remain unclear. The major aims of this study were to determine the effects of physiologically relevant concentrations of LPS (0 to 1 ng/mL) on intestinal barrier function using an in vitro (filter-grown Caco-2 monolayers) and an in vivo (mouse intestinal perfusion) intestinal epithelial model system. LPS, at physiologically relevant concentrations (0 to 1 ng/mL), in the basolateral compartment produced a time-dependent increase in Caco-2 TJ permeability without inducing cell death. Intraperitoneal injection of LPS (0.1 mg/kg), leading to clinically relevant plasma concentrations, also caused a time-dependent increase in intestinal permeability in vivo. The LPS-induced increase in intestinal TJ permeability was mediated by an increase in enterocyte membrane TLR-4 expression and a TLR-4-dependent increase in membrane colocalization of membrane-associated protein CD14. In conclusion, these studies show for the first time that LPS causes an increase in intestinal permeability via an intracellular mechanism involving TLR-4-dependent up-regulation of CD14 membrane expression.
Collapse
Affiliation(s)
- Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | |
Collapse
|
29
|
Lee ES, Corfe BM, Powers HJ. Riboflavin depletion of intestinal cells in vitro leads to impaired energy generation and enhanced oxidative stress. Eur J Nutr 2012; 52:1513-21. [PMID: 23868757 DOI: 10.1007/s00394-012-0458-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Riboflavin is an essential component of the human diet, with an established role for its derivative cofactors in oxidative metabolism. Our previous in vivo data suggest that riboflavin may act as a signalling molecule in the intestinal lumen, regulating crypt development and cell turnover. Our in vitro studies in riboflavin-depleted intestinal cells in culture indicate that riboflavin depletion impairs normal mitosis. METHODS The aim of the study was to establish an improved intestinal cell model of riboflavin depletion using the structural analogue of riboflavin, lumiflavin (7,8,10-trimethyl-isoalloxazine) and to determine effects on cell function. The study was conducted using three intestinal cell lines, Caco-2, HCT116 and HT29 cells. RESULTS Cell growth was inhibited in all three cell lines, in a lumiflavin concentration-dependent manner. Riboflavin depletion was confirmed through a significant decrease in intracellular riboflavin concentrations in Caco-2 and HT29 cell lines and a significant increase in the activation coefficient for the flavin adenine dinucleotide-dependent enzyme glutathione reductase. Riboflavin depletion led to a significant reduction in intracellular ATP concentration, and an enhanced generation of reactive oxygen species was also observed in response to riboflavin depletion, in all cell lines; effects were at least fivefold greater in Caco-2 cells than other cells. Riboflavin-depleted Caco-2 and HCT116 cells also showed an irreversible loss of proliferative potential. CONCLUSIONS A model system of intracellular riboflavin depletion in intestinal epithelial cells has been developed. Riboflavin depletion induced by lumiflavin results in oxidative stress and a disruption of energy generation, which may contribute to observed effects on cell proliferation.
Collapse
Affiliation(s)
- Eun-Sook Lee
- Human Nutrition Unit, Department of Oncology, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
30
|
Ghosal A, Said HM. Mechanism and regulation of vitamin B2 (riboflavin) uptake by mouse and human pancreatic β-cells/islets: physiological and molecular aspects. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1052-8. [PMID: 22917629 PMCID: PMC3517668 DOI: 10.1152/ajpgi.00314.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Riboflavin (RF) is essential for the normal metabolic activities of pancreatic β-cells and provides protection against oxidative stress. Very little is known about the mechanism of RF uptake by these cells and how the process is regulated. We addressed these issues using mouse-derived pancreatic β-TC-6 cells and freshly isolated primary mouse and human pancreatic islets. Our results showed (3)H-RF uptake by β-TC-6 cells is Na(+) independent, cis inhibited by RF-related compounds, trans stimulated by unlabeled RF, and saturable as a function of concentration (apparent K(m) of 0.17 ± 0.02 μM). The latter findings suggest involvement of a carrier-mediated process. Similarly, RF uptake by primary mouse and human pancreatic islets was via carrier-mediated process. RF transporters 1, 2, and 3 (RFVT-1, -3, and -2) were all expressed in mouse and human pancreatic β-cells/islets, with RFVT-1 being the predominant transporter expressed in the mouse and RFVT-3 in the human. Specific knockdown of RFVT-1 with gene-specific small interfering RNA leads to a significant inhibition in RF uptake by β-TC-6 cells. RF uptake by β-TC-6 cells was also found to be adaptively upregulated in RF deficiency via a transcriptional mechanism(s). Also, the process appears to be under the regulation of a Ca(2+)/calmodulin-mediated regulatory pathway. Results of these studies demonstrate, for the first time, the involvement of a carrier-mediated process for RF uptake by mouse and human pancreatic β-cells/islets. Furthermore, the process appears to be regulated by extracellular and intracellular factors.
Collapse
Affiliation(s)
- Abhisek Ghosal
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
31
|
Nabokina SM, Said HM. A high-affinity and specific carrier-mediated mechanism for uptake of thiamine pyrophosphate by human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G389-95. [PMID: 22628036 PMCID: PMC3423106 DOI: 10.1152/ajpgi.00151.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
All mammals require exogenous sources of thiamine (vitamin B1), as they lack the ability to synthesize the vitamin. These sources are dietary and bacterial (the latter is in reference to the vitamin, which is synthesized by the normal microflora of the large intestine). Bacterially generated thiamine exists in the free, as well as the pyrophosphorylated [thiamine pyrophosphate (TPP)], form. With no (or very little) phosphatase activity in the colon, we hypothesized that the bacterially generated TPP can also be taken up by colonocytes. To test this hypothesis, we examined [(3)H]TPP uptake in the human-derived, nontransformed colonic epithelial NCM460 cells and purified apical membrane vesicles isolated from the colon of human organ donors. Uptake of TPP by NCM460 cells occurred without metabolic alterations in the transported substrate and 1) was pH- and Na(+)-independent, but energy-dependent, 2) was saturable as a function of concentration (apparent K(m) = 0.157 ± 0.028 μM), 3) was highly specific for TPP and not affected by free thiamine (or its analogs) or by thiamine monophosphate and unrelated folate derivatives, 4) was adaptively regulated by extracellular substrate (TPP) level via what appears to be a transcriptionally mediated mechanism(s), and 5) appeared to be influenced by an intracellular Ca(2+)/calmodulin-mediated regulatory pathway. These findings suggest the involvement of a carrier-mediated mechanism for TPP uptake by colonic NCM460 cells, which was further confirmed by results from studies of native human colonic apical membrane vesicles. The results also suggest that the bacterially synthesized TPP in the large intestine is bioavailable and may contribute to overall body homeostasis of vitamin B1 and, especially, to the cellular nutrition of the local colonocytes.
Collapse
Affiliation(s)
- Svetlana M. Nabokina
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, and Department of Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M. Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, and Department of Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
32
|
Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells. Brain Res 2012; 1468:1-10. [PMID: 22683359 DOI: 10.1016/j.brainres.2012.05.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/04/2012] [Accepted: 05/29/2012] [Indexed: 11/23/2022]
Abstract
Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of a riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with K(m) and V(max) values of 19 ± 3 μM and 0.235 ± 0.012 pmol/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca(++)/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-riboflavin. Apical and baso-lateral uptake of [3H]-riboflavin clearly indicates that a riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to a riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. The blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration.
Collapse
|
33
|
Subramanian VS, Subramanya SB, Rapp L, Marchant JS, Ma TY, Said HM. Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: a key role for hRFT-2 in intestinal riboflavin uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:3016-21. [PMID: 21854757 DOI: 10.1016/j.bbamem.2011.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
Transport of riboflavin (RF) across both the brush border membrane (BBM) and basolateral membrane (BLM) of the polarized enterocyte occurs via specific carrier-mediated mechanisms. Although, three human riboflavin transporters (hRFTs), i.e., hRFT-1, hRFT-2 and hRFT-3 are expressed in the intestine, little is known about the cell surface domain(s) at which these specific hRFTs are expressed. Here, we used live cell confocal imaging of intestinal epithelial Caco-2 and renal MDCK cells to show that the hRFT-1 is mainly expressed at the BLM, hRFT-2 is exclusively expressed at the apical membrane, while hRFT-3 is mostly localized inside intracellular vesicular structures (with some expression at the BLM). Further the level of hRFT-2 mRNA expression in Caco-2 cells and in native human intestine is significantly higher than that of hRFT-1 and -3; hRFT-2 was also more efficient in transporting 3H-RF than hRFT-1 and -3. These findings implied an important role for hRFT-2 in intestinal RF uptake, a conclusion that was further supported by findings of hRFT-2 gene-specific siRNA knockdown investigation. These results show that members of the hRFT family are differentially expressed in polarized epithelia, and that the apically expressed hRFT-2 plays a key role in intestinal RF accumulation.
Collapse
|
34
|
Abstract
Riboflavin or vitamin B(2) is one of the constituents of energy drinks. Although this compound is known to be absorbed in the intestine and that it circulates throughout the body and is excreted in urine, the transporter(s) responsible for the process was only recently identified. Yamamoto et al. identified this transporter through functional expression of rat orthologues of a putative bacterial riboflavin transporter.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8530, Japan.
| |
Collapse
|
35
|
Abstract
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events.
Collapse
Affiliation(s)
- Hamid M Said
- School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
36
|
Moyon NS, Mitra S. Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study. J Phys Chem A 2011; 115:2456-64. [PMID: 21388154 DOI: 10.1021/jp1102687] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence solvatochromism of lumichrome (LC) was studied by steady-state and time-resolved fluorescence spectroscopy. The excited-state properties of LC do not show any correlation with solvent polarity, however, reasonably good correlation with solvent E(T)(30) parameter was observed. A quantitative estimation of contribution from different solvatochromic parameters, like solvent polarizability (π*), hydrogen bond donor (α), and hydrogen bond acceptor (β) ability of the solvent, was made using linear free energy relationship on the basis of Kamlet-Taft equation. The analysis reveals that hydrogen bond donating ability (acidity) of the solvent is the most important parameter that characterizes the excited-state behavior of lumichrome. Quantum mechanical calculations using density functional theory (DFT) were done to study the most stable structure and excited-state tautomerization process of LC toward the formation of isoalloxazines. Charge localization in the excited state and formation of hydrogen-bonded cluster through solvent hydrogen bond donation on the N10 atom of alloxazine moiety were predicted to be the key step toward this water-catalyzed tautomerization process.
Collapse
|
37
|
Tyagi A, Penzkofer A. Absorption and Emission Spectroscopic Characterization of Lumichrome in Aqueous Solutions†. Photochem Photobiol 2010; 87:524-33. [DOI: 10.1111/j.1751-1097.2010.00836.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Boudry G, David ES, Douard V, Monteiro IM, Le Huërou-Luron I, Ferraris RP. Role of intestinal transporters in neonatal nutrition: carbohydrates, proteins, lipids, minerals, and vitamins. J Pediatr Gastroenterol Nutr 2010; 51:380-401. [PMID: 20808244 DOI: 10.1097/mpg.0b013e3181eb5ad6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To support rapid growth and a high metabolic rate, infants require enormous amounts of nutrients. The small intestine must have the complete array of transporters that absorb the nutrients released from digested food. Failure of intestinal transporters to function properly often presents symptoms as "failure to thrive" because nutrients are not absorbed and as diarrhea because unabsorbed nutrients upset luminal osmolality or become substrates of intestinal bacteria. We enumerate the nutrients that constitute human milk and various infant milk formulas, explain their importance in neonatal nutrition, then describe for each nutrient the transporter(s) that absorbs it from the intestinal lumen into the enterocyte cytosol and from the cytosol to the portal blood. More than 100 membrane and cytosolic transporters are now thought to facilitate absorption of minerals and vitamins as well as products of digestion of the macronutrients carbohydrates, proteins, and lipids. We highlight research areas that should yield information needed to better understand the important role of these transporters during normal development.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut National de Recherche Agronomique, UMR1079 Système d'Elevage, Nutrition, Animale et Humaine, St-Gilles, France
| | | | | | | | | | | |
Collapse
|
39
|
Bairi P, Roy B, Nandi AK. Bicomponent Hydrogels of Lumichrome and Melamine: Photoluminescence Property and Its Dependency on pH and Temperature. J Phys Chem B 2010; 114:11454-61. [DOI: 10.1021/jp105378e] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Partha Bairi
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Bappaditya Roy
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Arun K. Nandi
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
40
|
O'Keefe SJD, Ou J, Aufreiter S, O'Connor D, Sharma S, Sepulveda J, Fukuwatari T, Shibata K, Mawhinney T. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J Nutr 2009; 139:2044-8. [PMID: 19741203 PMCID: PMC6459055 DOI: 10.3945/jn.109.104380] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/09/2009] [Accepted: 08/12/2009] [Indexed: 01/19/2023] Open
Abstract
It is estimated that most colon cancers can be attributed to dietary causes. We have hypothesized that diet influences the health of the colonic mucosa through interaction with the microbiota and that it is the milieu interior that regulates mucosal proliferation and therefore cancer risk. To validate this further, we compared colonic contents from healthy 50- to 65-y-old people from populations with high and low risk, specifically low risk Native Africans (cancer incidence <1:100,000; n = 17), high risk African Americans (risk 65:100,000; n = 17), and Caucasian Americans (risk 50:100,000; n = 18). Americans typically consume a high-animal protein and -fat diet, whereas Africans consume a staple diet of maize meal, rich in resistant starch and low in animal products. Following overnight fasting, rapid colonic evacuation was performed with 2 L polyethylene glycol. Total colonic evacuants were analyzed for SCFA, vitamins, nitrogen, and minerals. Total SCFA and butyrate were significantly higher in Native Africans than in both American groups. Colonic folate and biotin content, measured by Lactobacillus rhamnoses and Lactobacillus plantarum ATCC 8014 bioassay, respectively, exceeded normal daily dietary intakes. Compared with Africans, calcium and iron contents were significantly higher in Caucasian Americans and zinc content was significantly higher in African Americans, but nitrogen content did not differ among the 3 groups. In conclusion, the results support our hypothesis that the microbiota mediates the effect diet has on colon cancer risk by their generation of butyrate, folate, and biotin, molecules known to play a key role in the regulation of epithelial proliferation.
Collapse
|
41
|
Rhee HW, Choi SJ, Yoo SH, Jang YO, Park HH, Pinto RM, Cameselle JC, Sandoval FJ, Roje S, Han K, Chung DS, Suh J, Hong JI. A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins. J Am Chem Soc 2009; 131:10107-12. [PMID: 19569646 DOI: 10.1021/ja9018012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Flavins, comprising flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and riboflavin (RF, vitamin B(2)), play important roles in numerous redox reactions such as those taking place in the electron-transfer chains of mitochondria in all eukaryotes and of plastids in plants. A selective chemosensor for flavins would be useful not only in the investigation of metabolic processes but also in the diagnosis of diseases related to flavins; such a sensor is presently unavailable. Herein, we report the first bifunctional chemosensor (PTZ-DPA) for flavins. PTZ-DPA consists of bis(Zn(2+)-dipicolylamine) and phenothiazine. Bis(Zn(2+)-dipicolylamine) (referred to here as XyDPA) was found to be an excellent catalyst in the conversion of FAD into cyclic FMN (riboflavin 4',5'-cyclic phosphate, cFMN) under physiological conditions, even at pH 7.4 and 27 degrees C, with less than 1 mol % of substrate. Utilizing XyDPA's superior function as an artificial FMN cyclase and phenothiazine as an electron donor able to quench the fluorescence of an isoalloxazine ring, PTZ-DPA enabled selective fluorescent discrimination of flavins (FMN, FAD, and RF): FAD shows ON(+), FMN shows OFF(-), and RF shows NO(0) fluorescence changes upon the addition of PTZ-DPA. With this selective sensing property, PTZ-DPA is applicable to real-time fluorescent monitoring of riboflavin kinase (RF to FMN), alkaline phosphatase (FMN to RF), and FAD synthetase (FMN to FAD).
Collapse
Affiliation(s)
- Hyun-Woo Rhee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nelson CJ, Otis JP, Martin SL, Carey HV. Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiol Genomics 2009; 37:43-51. [DOI: 10.1152/physiolgenomics.90323.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A hallmark of hibernation in mammals is metabolic flexibility, which is typified by reversible bouts of metabolic depression (torpor) and the seasonal shift from predominantly carbohydrate to lipid metabolism from summer to winter. To provide new insight into the control and consequences of hibernation, we used LC/MS-based metabolomics to measure differences in small molecules in ground squirrel liver in five activity states: summer, entering torpor, late torpor, arousing from torpor, and interbout arousal. There were significant alterations both seasonally and within torpor-arousal cycles in enzyme cofactor metabolism, amino acid catabolism, and purine and pyrimidine metabolism, with observed metabolites reduced during torpor and increased upon arousal. Multiple lipids also changed, including 1-oleoyllysophosphatidylcholine, cholesterol sulfate, and sphingosine, which tended to be lowest during torpor, and hexadecanedioic acid, which accumulated during a torpor bout. The results reveal the dramatic alterations that occur in several classes of metabolites, highlighting the value of metabolomic analyses in deciphering the hibernation phenotype.
Collapse
Affiliation(s)
- Clark J. Nelson
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin
| | - Jessica P. Otis
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin
| | - Sandra L. Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Hannah V. Carey
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin
| |
Collapse
|
43
|
Sankaran NB, Sato Y, Sato F, Rajendar B, Morita K, Seino T, Nishizawa S, Teramae N. Small-Molecule Binding at an Abasic Site of DNA: Strong Binding of Lumiflavin for Improved Recognition of Thymine-Related Single Nucleotide Polymorphisms. J Phys Chem B 2009; 113:1522-9. [DOI: 10.1021/jp808576t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. B. Sankaran
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Fuyuki Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Burki Rajendar
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Kotaro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Takehiro Seino
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| | - Norio Teramae
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan, and CREST, Japan Science and Technology Agency (JST), Sendai 980-8578, Japan
| |
Collapse
|
44
|
Yamamoto S, Inoue K, Ohta KY, Fukatsu R, Maeda JY, Yoshida Y, Yuasa H. Identification and functional characterization of rat riboflavin transporter 2. J Biochem 2009; 145:437-43. [PMID: 19122205 DOI: 10.1093/jb/mvn181] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have newly identified rat riboflavin transporter 2 (rRFT2) and its human orthologue (hRFT2), and carried out detailed functional characterization of rRFT2. The mRNA of rRFT2 was highly expressed in jejunum and ileum. When transiently expressed in human embryonic kidney (HEK) 293 cells, rRFT2 could transport riboflavin efficiently. Riboflavin transport mediated by rRFT2 was Na(+)-independent but moderately pH-sensitive, being more efficient in acidic conditions than in neutral and basic conditions. Kinetic analysis indicated that rRFT2-mediated riboflavin transport was saturable with a Michaelis constant (K(m)) of 0.21 microM. Furthermore, it was specifically and strongly inhibited by lumiflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), and to a lesser extent by amiloride. Such ability to transport riboflavin in a specific manner, together with its high expression in the small intestine, indicates that RFT2 may play a role in the intestinal absorption of riboflavin.
Collapse
Affiliation(s)
- Syunsuke Yamamoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Yonezawa A, Masuda S, Katsura T, Inui KI. Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am J Physiol Cell Physiol 2008; 295:C632-41. [PMID: 18632736 DOI: 10.1152/ajpcell.00019.2008] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Absorption of riboflavin is mediated by transporter(s). However, a mammalian riboflavin transporter has yet to be identified. In the present study, the novel human and rat riboflavin transporters hRFT1 and rRFT1 were identified on the basis of our rat kidney mRNA expression database (Horiba N, Masuda S, Takeuchi A, Saito H, Okuda M, Inui K. Kidney Int 66: 29-45, 2004). hRFT1 and rRFT1 cDNAs have an open reading frame encoding 448- and 450-amino acid proteins, respectively, that exhibit 81.1% identity and 96.4% similarity to one another. In addition, an inactive splice variant of hRFT1, hRFT1sv, was also cloned. The hRFT1sv cDNA, which encodes a 167-amino acid protein, retains an intron between exons 2 and 3 of hRFT1. Real-time PCR revealed that the sum of hRFT1 and hRFT1sv mRNAs was expressed strongly in the placenta and small intestine and was detected in all tissues examined. In addition, hRFT1 and hRFT1sv were expressed in human embryonic kidney (HEK)-293 and Caco-2 cells. HEK-293 cells transfected with green fluorescent protein-tagged hRFT1 and rRFT1 exhibited a fluorescent signal in the plasma membrane. Overexpression of hRFT1 and rRFT1, but not hRFT1sv, increased the cellular accumulation of [(3)H]riboflavin. The transfection of small interfering RNA targeting both hRFT1 and hRFT1sv significantly decreased the uptake of [(3)H]riboflavin by HEK-293 and Caco-2 cells. Riboflavin transport is Na(+), potential, and pH independent. Kinetic analyses demonstrated that the Michaelis-Menten constants for the uptake by HEK-293 and Caco-2 cells were 28.1 and 63.7 nM, respectively. We propose that hRFT1 and rRFT1 are novel mammalian riboflavin transporters, which belong to a new mammalian riboflavin transporter family.
Collapse
Affiliation(s)
- Atsushi Yonezawa
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
46
|
Duthie SJ, Mavrommatis Y, Rucklidge G, Reid M, Duncan G, Moyer MP, Pirie LP, Bestwick CS. The response of human colonocytes to folate deficiency in vitro: functional and proteomic analyses. J Proteome Res 2008; 7:3254-66. [PMID: 18597513 DOI: 10.1021/pr700751y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Low folate intake is associated with colon cancer. We combined a proteomics and biochemical approach to identify proteins and pathways affected by folate deficiency in human colonocytes. Folate differentially altered activity and expression of proteins involved in proliferation [e.g., PCNA], DNA repair [e.g., XRCC5, MSH2], apoptosis [e.g., BAG family chaperone protein, DIABLO and porin], cytoskeletal organization [e.g., actin, ezrin, elfin], and expression of proteins implicated in malignant transformation [COMT, Nit2].
Collapse
|
47
|
Said ZM, Subramanian VS, Vaziri ND, Said HM. Pyridoxine uptake by colonocytes: a specific and regulated carrier-mediated process. Am J Physiol Cell Physiol 2008; 294:C1192-7. [PMID: 18353902 DOI: 10.1152/ajpcell.00015.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The water-soluble vitamin B6 (pyridoxine) is important for normal cellular functions, growth, and development. The vitamin is obtained from two exogenous sources: a dietary source, which is absorbed in the small intestine, and a bacterial source, where the vitamin is synthesized in significant quantities by the normal microflora of the large intestine. Evidence exists to suggest the bioavailability of the latter source of the vitamin, but nothing is known about the mechanism involved and its regulation. In this study, we addressed these issues using young adult mouse colonic epithelial (YAMC) cells and human colonic apical membrane vesicles (AMV) as models and using [3H]pyridoxine as the uptake substrate. The results showed the initial rate of [3H]pyridoxine uptake by YAMC cells to be 1) energy- and temperature- (but not Na-) dependent and to occur without metabolic alteration in the transported substrate; 2) saturable as a function of concentration with an apparent Km and Vmax of 2.1 +/- 0.5 muM and 53.4 +/- 4.3 pmol.mg protein(-1).3 min(-1), respectively; 3) cis-inhibited by unlabeled pyridoxine and its structural analogs, but not by the unrelated compounds theophylline, penicillamine, and isoniazid; 4) trans-stimulated by unlabeled pyridoxine; 5) amiloride sensitive; and 6) regulated by extracellular and intracellular factors. Uptake of pyridoxine by native human colonic AMV was also found to involve a carrier-mediated process. These studies demonstrate, for the first time, the functional existence of a specific and regulatable carrier-mediated process for pyridoxine uptake by mammalian colonocytes.
Collapse
Affiliation(s)
- Zainab M Said
- Department of Medicine and Physiology, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
48
|
D'Souza VM, Bareford LM, Ray A, Swaan PW. Cytoskeletal scaffolds regulate riboflavin endocytosis and recycling in placental trophoblasts. J Nutr Biochem 2006; 17:821-9. [PMID: 16563724 DOI: 10.1016/j.jnutbio.2006.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/19/2006] [Accepted: 01/21/2006] [Indexed: 12/25/2022]
Abstract
Microfilaments and microtubules (MT) play a vital role in cellular endocytic processes. The present study evaluates the role of these cytoskeletal elements in the apical internalization and postendocytic fate of riboflavin (RF) in placental trophoblasts (BeWo cells). Biochemical modification of the actin and microtubule network by (1) okadaic acid (OA), which disrupts MT-based vesicular trafficking; (2) cytochalasin D and latrunculin B, which promote actin depolymerization; and (3) 2,3-butanedione monoxime (BDM), which inhibits myosin-actin interaction, was confirmed by immunofluorescence microscopy using actin- and tubulin-specific antibodies. Furthermore, involvement of the molecular motors dynein and kinesin was assessed in the presence of (1) sodium orthovanadate, which inhibits dynein-ATPase activity and (2) adenosine 5'-(beta,gamma-imido)triphosphate tetralithium salt hydrate, a non-hydrolyzable ATP analog, which results in defective kinesin-driven processes. RF internalization consequent to cytoskeletal alterations was compared with that of a clathrin-dependent endocytic marker ([125I]-transferrin [TF]), a caveolae-mediated endocytic substrate ([3H]-folic acid [FA]), and a fluid-phase endocytic marker ([125I]-horse radish peroxidase [HRP]). Apical recycling and bidirectional transport of RF and TF was measured following cytoskeletal alterations. Results indicate that uptake of RF, TF, FA and HRP are markedly reduced (approximately 30-65%) in the presence OA and BDM, suggesting differential sensitivities to modification of kinesin-driven microtubules. However, actin depolymerization negatively affected HRP endocytosis alone, while RF, FA and TF internalization remained unchanged. Disturbances in protein phosphorylation cascades also influenced apical recycling while net ligand transport across monolayers remained unaffected. In conclusion, apical RF trafficking in placental cells is tightly regulated by microtubules and supported by accessory actin involvement.
Collapse
Affiliation(s)
- Vanessa M D'Souza
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
49
|
Hariharan S, Janoria KG, Gunda S, Zhu X, Pal D, Mitra AK. Identification and functional expression of a carrier-mediated riboflavin transport system on rabbit corneal epithelium. Curr Eye Res 2006; 31:811-24. [PMID: 17050273 DOI: 10.1080/02713680600899655] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the functional expression of a carrier-mediated transport mechanism for riboflavin (vitamin B2) across cultured rabbit primary corneal epithelial cells (rPCECs) and intact rabbit cornea. The secondary objective was to understand the physiological significance behind the presence of such a transport system for riboflavin on the apical side of the corneal epithelium. METHODS rPCECs and freshly excised rabbit corneas were selected as in vitro and ex vivo models, respectively. Transport and uptake characteristics of [3H]riboflavin were determined at various time points, concentrations, temperatures, and pH. Substrate specificity, energy, and ion dependence studies were carried out to characterize the translocation mechanism. Rabbit tear analysis was done with liquid chromatography/tandem mass spectrometry (LC-MS/MS) to understand the physiological relevance of this transporter. RESULTS The uptake process in rPCECs was found to be concentration dependent and saturable at higher concentrations. The process was also independent of pH, Na+, and Cl- but dependent on energy and temperature. Unlabeled riboflavin and its structural analogues caused significant inhibition, whereas unrelated vitamins did not interfere with the process. Transport of [3H]riboflavin across rabbit cornea was also saturable at higher concentration and energy dependent but Na+ independent. Substrate specificity studies across intact rabbit cornea produced results similar to the uptake studies in cultured rPCECs. LC-MS/MS analysis of rabbit tears showed the presence of riboflavin. CONCLUSIONS Results suggest the presence of a specialized, high-affinity transport mechanism for riboflavin that is expressed on the apical side of rabbit corneal epithelium and may in turn be responsible for influx of riboflavin from tears to cornea.
Collapse
Affiliation(s)
- Sudharshan Hariharan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64112-2499, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The molecular biology revolution has led to a significant improvement in our understanding of biological and physiological processes. Such expansion of knowledge has also covered the field of intestinal absorption of water-soluble vitamins and is the subject of this review. RECENT FINDINGS Impressive progress has been made in the understanding of the mechanisms and regulation of transport of water-soluble vitamins at the cellular and molecular levels. In addition, the 5' regulatory regions of the genes that encode a number of the involved transporters have been cloned and characterized in vitro and in vivo in transgenic mice, thus providing important information about transcriptional regulation of these events. Furthermore, confocal imaging of live intestinal epithelial cells has led to significant progress in understanding the mechanisms involved in intracellular trafficking and membrane targeting of the carrier proteins and how clinical mutations lead to interference with transport. Finally, the identification in the large intestine of efficient and specialized carrier-mediated systems that are capable of absorbing a number of the bacterially synthesized vitamins (thiamin, folate, biotin, riboflavin, pantothenic acid) has raised the possibility that this source of vitamins may play a role in regulating (fine tuning) the normal body homeostasis of these vitamins, and especially the vitamin level in the local colonocytes. SUMMARY Water-soluble vitamin absorption involves regulated and specific mechanisms. Interference with the function of these mechanisms may lead to deficiency. The large intestine is capable of absorbing water-soluble vitamins that are synthesized by the normal microflora.
Collapse
Affiliation(s)
- Hamid M Said
- University of California-School of Medicine, Irvine, California, USA.
| | | |
Collapse
|