1
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Pal K, Hussain T, Xie H, Li S, Yang P, Mansfield A, Lou Y, Chowdhury S, Mukhopadhyay D. Expression, correlation, and prognostic significance of different nicotinic acetylcholine receptors, programed death ligand 1, and dopamine receptor D2 in lung adenocarcinoma. Front Oncol 2022; 12:959500. [PMID: 36072788 PMCID: PMC9441878 DOI: 10.3389/fonc.2022.959500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The objective of this study is to evaluate the expression of different nicotinic acetylcholine receptors (nAChRs), programmed death ligand-1 (PD-L1), and dopamine receptor D2 (DRD2) as prognostic factors in lung cancer and any correlation among them. Since all of the above genes are typically upregulated in response to smoking, we hypothesized that a correlation might exist between DRD2, PD-L1, and nAChR expression in NSCLC patients with a smoking history and a prediction model may be developed to assess the clinical outcome. Methods We retrospectively analyzed samples from 46 patients with primary lung adenocarcinoma who underwent surgical resection at Mayo Clinic Rochester from June 2000 to October 2008. The expression of PD-L1, DRD2, CHRNA5, CHRNA7, and CHRNA9 were analyzed by quantitative PCR and correlated amongst themselves and with age, stage and grade, smoking status, overall survival (OS), and relapse-free survival (RFS). Results Only PD-L1 showed a statistically significant increase in expression in patients older than 65. All the above genes showed higher expression in stage IIIB than IIIA, but none reached statistical significance. Interestingly, we did not observe significant differences among never, former, and current smokers, but patients with pack years greater than 30 showed significantly higher expression of CHRNA9. We observed a strong positive correlation between PD-L1/DRD2, PD-L1/CHRNA5, and CHRNA5/CHRNA7 and a weak positive correlation between DRD2/CHRNA5 and DRD2/CHRNA7. Older age was independently associated with poor OS, whereas lower CHRNA7 expression was independently associated with better OS. Conclusions We observed strong positive correlations among PD-L1, DRD2, and some of the nAChRs. We investigated their prognostic significance in lung cancer patients and found CHRNA7 to be an independent prognostic factor. Overall, the results obtained from this preliminary study warrant a large cohort-based analysis that may ultimately lead to potential patient-specific stratification biomarkers predicting cancer-treatment outcomes.
Collapse
Affiliation(s)
- Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Tabish Hussain
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Hao Xie
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Shenduo Li
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Ping Yang
- Department of Quantitative Health Sciences, Mayo Clinic Scottsdale, AZ, United States
| | - Aaron Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
3
|
Dopamine Reduces SARS-CoV-2 Replication In Vitro through Downregulation of D2 Receptors and Upregulation of Type-I Interferons. Cells 2022; 11:cells11101691. [PMID: 35626728 PMCID: PMC9139638 DOI: 10.3390/cells11101691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication.
Collapse
|
4
|
Somatostatin-Dopamine Chimeric Molecules in Neuroendocrine Neoplasms. J Clin Med 2021; 10:jcm10030501. [PMID: 33535394 PMCID: PMC7867079 DOI: 10.3390/jcm10030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a widely heterogeneous family of neoplasms arising from neuroendocrine cells, which are interspersed throughout the body. Despite NENs are relatively rare, their incidence and prevalence are constantly increasing probably due to the improvement in earlier diagnosis and patients’ management. When surgery is not curative, particularly for patients with metastatic disease, several medical options are available. Somatostatin analogues (SSA) are the first-line medical therapy for well-differentiated NENs. Interestingly, the heterodimerization of somatostatin receptors (SSTs) with dopamine receptors (DRs) has been discovered in NENs. This phenomenon results in hybrid receptors with enhanced functional activity. On these bases, chimeric molecules embracing somatostatin and dopamine features have been recently developed. The aim of this review is to provide a comprehensive overview of the available preclinical and clinical data regarding chimeric somatostatin-dopamine agonists as a new class of “magic bullet” in the therapy of NENs.
Collapse
|
5
|
Abstract
The discovery of the new properties of SSRs and DRs has led to a renewed interest in agents targeting these receptors and has opened new perspectives for medical treatment of patients with pituitary and neuroendocrine tumors resistant to the “classical”, currently available analogs. Moreover, SSRs and DRs crosstalk at membrane level may trigger alternative intracellular pathways or enhance the signalling for the control of cell growth. New somatostatin analogs and hybrid molecules, which display a broader and different spectrum of activities compared to conventional analogs, seem to be a promising therapeutic alternative for the control of hormone secretion and, hopefully, to reduce tumor burden. Receptor profile characterization is crucial for the accurate selection of patients potentially responsive to a given therapy. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
- Diego Ferone
- Department of Endocrinology & Medical Sciences (DiSEM), University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Vellaisamy K, Li G, Ko CN, Zhong HJ, Fatima S, Kwan HY, Wong CY, Kwong WJ, Tan W, Leung CH, Ma DL. Cell imaging of dopamine receptor using agonist labeling iridium(iii) complex. Chem Sci 2017; 9:1119-1125. [PMID: 29675156 PMCID: PMC5885777 DOI: 10.1039/c7sc04798c] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022] Open
Abstract
A long-lived complex 13 could selectively bind to dopamine receptors (D1R/D2R) and monitor their internalization in living cells.
Dopamine receptor expression is correlated with certain types of cancers, including lung, breast and colon cancers. In this study, we report luminescent iridium(iii) complexes (11–14) as intracellular dopamine receptor (D1R/D2R) cell imaging agents. Complexes 11 and 13, which are conjugated with a dopamine receptor agonist, showed superior cell imaging characteristics, high stability and low cytotoxicity (>100 μM) in A549 lung cancer cells. siRNA knockdown and dopamine competitive assays indicated that complexes 11 and 13 could selectively bind to dopamine receptors (D1R/D2R) in A549 cells. Fluorescence lifetime microscopy demonstrated that complex 13 has a longer luminescence lifetime at the wavelength of 560–650 nm than DAPI and other chromophores in biological fluids. The long luminescence lifetime of complex 13 not only provides an opportunity for efficient dopamine receptor tracking in biological media, but also enables the temporal separation of the probe signal from the intense background signal by fluorescence lifetime microscopy for efficient analysis. Complex 13 also shows high photostability, which could allow it to be employed for long-term cellular imaging. Furthermore, complex 13 could selectively track the internalization process of dopamine receptors (D1R/D2R) in living cells. To the best of our knowledge, complex 13 is the first metal-based compound that has been used to monitor intracellular dopamine receptors in living cells.
Collapse
Affiliation(s)
- Kasipandi Vellaisamy
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . ;
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macau , China .
| | - Chung-Nga Ko
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . ;
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macau , China .
| | - Sarwat Fatima
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| | - Hiu-Yee Kwan
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| | - Chun-Yuen Wong
- Department of Biology and Chemistry , City University of Hong Kong , Kowloon Tong , Hong Kong , China
| | - Wai-Jing Kwong
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . ;
| | - Weihong Tan
- Department of Chemistry , Department of Physiology and Functional Genomics , Center for Research at the Bio/Nano Interface , Shands Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , USA . .,Molecular Sciences and Biomedicine Laboratory , State Key Laboratory for Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Biology , Hunan University , Changsha , China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macau , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China . ;
| |
Collapse
|
7
|
Diakatou E, Alexandraki KI, Tsolakis AV, Kontogeorgos G, Chatzellis E, Leonti A, Kaltsas GA. Somatostatin and dopamine receptor expression in neuroendocrine neoplasms: correlation of immunohistochemical findings with somatostatin receptor scintigraphy visual scores. Clin Endocrinol (Oxf) 2015; 83:420-8. [PMID: 25808161 DOI: 10.1111/cen.12775] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/05/2015] [Accepted: 03/18/2015] [Indexed: 12/16/2022]
Abstract
CONTEXT The expression of somatostatin (sstr1-5) and dopamine (DR) receptors in neuroendocrine neoplasms (NENs) facilitates diagnosis by tumour visualization with somatostatin receptor scintigraphy (SRS) and directs towards specific treatment with peptide receptor radionuclide therapy (PRRT) with radiolabelled somatostatin analogues. OBJECTIVE To investigate the co-expression of sstrs, D2R in relation to pre-operative SRSs in NENs. DESIGN Prospective two-centre study. PATIENTS AND MEASUREMENTS We analysed pre-operative SRS of 60 patients [44 with gastrointestinal (GI) NENs and 16 with lung NENs] and compared SRS results with immunohistochemical (IHC) reactivity for sstr2, sstr3, sstr5 in sample tissues from primary (n = 54) and metastatic (n = 27) lesions and IHC reactivity for D2R in 23 samples from primary GI-NENs lesions. RESULTS Sstr2 was the commonest sstr expressed (65·4%) and was co-expressed with sstr3 and sstr5 in 32·1% and 24·7% of the specimens, respectively. In 67 of 81 specimens (82·7%), there was concordance of sstr2 immunohistochemistry with SRS findings (P < 0·001). D2R was expressed in only 8 of 23 (34·8%) GI-NENs while was co-expressed with sstr2 in all cases. SRS grade, as per Krenning scale, was higher in metastatic foci, large-size (>2 cm) tumours and GI-NENs, whereas sstr2 intensity was greater in GI compared to lung NENs. SRS grade showed higher correlation with sstr2 (r = 0·6, P < 0·001) and D2R (r = 0·5, P < 0·001) IHC intensity scores than tumour size (r = 0·4, P < 0·001) and sstr3 (r = 0·4, P < 0·001) intensity score. CONCLUSIONS Sstr2 IHC expression and SRS are useful tools for the diagnosis and management of NENs because they display a high concordance. IHC expression of DR2 seems to be of potential clinical significance in GI-NENs tumours.
Collapse
Affiliation(s)
- Evanthia Diakatou
- Department of Pathology, "G. Gennimatas" Athens General Hospital, Athens, Greece
| | | | - Apostolos V Tsolakis
- Department of Medical Sciences, Section of Endocrine Oncology, Uppsala University, Uppsala, Sweden
| | - George Kontogeorgos
- Department of Pathology, "G. Gennimatas" Athens General Hospital, Athens, Greece
| | | | - Anastasia Leonti
- Department of Nuclear Medicine, Alexandra Hospital, Athens, Greece
| | | |
Collapse
|
8
|
Kanakis G, Grimelius L, Spathis A, Tringidou R, Rassidakis GZ, Öberg K, Kaltsas G, Tsolakis AV. Expression of Somatostatin Receptors 1-5 and Dopamine Receptor 2 in Lung Carcinoids: Implications for a Therapeutic Role. Neuroendocrinology 2015; 101:211-22. [PMID: 25765100 DOI: 10.1159/000381061] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The expression of somatostatin receptors (SSTRs) and dopamine receptor 2 (DR2) in neuroendocrine tumors is of clinical importance as somatostatin analogues and dopamine agonists can be used for their localization and/or treatment. The objective of this study is to examine the expression of the five SSTR subtypes and DR2 in lung carcinoids (LCs). METHODS We conducted a retrospective study of 119 LCs from 106 patients [typical carcinoids (TCs): n = 100, and atypical carcinoids (ACs): n = 19]. The expression of all five SSTR subtypes and DR2 was evaluated immunohistochemically and correlated to clinicopathological data. In a subgroup of cases, receptor expression was further analyzed using semiquantitative RT-PCR. RESULTS SSTR2A was the SSTR subtype most frequently expressed immunohistochemically (72%), followed by SSTR1 (63%), SSTR5 (40%), and SSTR3 (20%), whereas SSTR4 was negative. DR2 was expressed in 74% and co-expressed with SSTR1 in 56%, with SSTR2A in 59%, with SSTR3 in 19%, and with SSTR5 in 37% of the tumors. Receptor expression was not related to the histological subtype, tumor aggressiveness (disease extent/grading) or functionality; however, DR2 was expressed more frequently in ACs than TCs (95 vs. 70%, p = 0.017). In a subset of patients, RT-PCR findings highly suggested that the expression of SSTR2A, SSTR3, DR2, and to a lesser extent that of SSTR1 and SSTR5 is the outcome of increased gene transcription. CONCLUSIONS The high and variable immunohistochemical expression of the majority of SSTRs along with their co-expression with DR2 in LCs provides a rationale for their possible treatment with agents that target these receptors.
Collapse
Affiliation(s)
- George Kanakis
- Endocrine Unit, Department of Pathophysiology, University of Athens Medical School, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ferone D, Pivonello C, Vitale G, Zatelli MC, Colao A, Pivonello R. Molecular basis of pharmacological therapy in Cushing's disease. Endocrine 2014; 46:181-98. [PMID: 24272603 DOI: 10.1007/s12020-013-0098-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/19/2013] [Indexed: 01/16/2023]
Abstract
Cushing's disease (CD) is a severe endocrine condition caused by an adrenocorticotropin (ACTH)-producing pituitary adenoma that chronically stimulates adrenocortical cortisol production and with potentially serious complications if not or inadequately treated. Active CD may produce a fourfold increase in mortality and is associated with significant morbidities. Moreover, excess mortality risk may persist even after CD treatment. Although predictors of risk in treated CD are not fully understood, the importance of early recognition and adequate treatment is well established. Surgery with resection of a pituitary adenoma is still the first line therapy, being successful in about 60-70 % of patients; however, recurrence within 2-4 years may often occur. When surgery fails, medical treatment can reduce cortisol production and ameliorate clinical manifestations while more definitive therapy becomes effective. Compounds that target hypothalamic-pituitary axis, glucocorticoid synthesis or adrenocortical function are currently used to control the deleterious effects of chronic glucocorticoid excess. In this review we describe and analyze the molecular basis of the drugs targeting the disease at central level, suppressing ACTH secretion, as well as at peripheral level, acting as adrenal inhibitors, or glucocorticoid receptor antagonists. Understanding of the underlying molecular mechanisms in CD and of glucocorticoid biology should promote the development of new targeted and more successful therapies in the future. Indeed, most of the drugs discussed have been tested in limited clinical trials, but there is potential therapeutic benefit in compounds with better specificity for the class of receptors expressed by ACTH-secreting tumors. However, long-term follow-up with management of persistent comorbidities is needed even after successful treatment of CD.
Collapse
Affiliation(s)
- Diego Ferone
- Endocrinology, Department of Internal Medicine and Medical Specialties & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, University of Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy,
| | | | | | | | | | | |
Collapse
|
10
|
Sollini M, Erba PA, Fraternali A, Casali M, Di Paolo ML, Froio A, Frasoldati A, Versari A. PET and PET/CT with 68gallium-labeled somatostatin analogues in Non GEP-NETs Tumors. ScientificWorldJournal 2014; 2014:194123. [PMID: 24693229 PMCID: PMC3947736 DOI: 10.1155/2014/194123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/30/2013] [Indexed: 12/27/2022] Open
Abstract
Somatostatin (SST) is a 28-amino-acid cyclic neuropeptide mainly secreted by neurons and endocrine cells. A major interest for SST receptors (SSTR) as target for in vivo diagnostic and therapeutic purposes was born since a series of stable synthetic SST-analouges PET became available, being the native somatostatin non feasible for clinical use due to the very low metabolic stability. The rationale for the employment of SST-analogues to image cancer is both based on the expression of SSTR by tumor and on the high affinity of these compounds for SSTR. The primary indication of SST-analogues imaging is for neuroendocrine tumors (NETs), which usually express a high density of SSTR, so they can be effectively targeted and visualized with radiolabeled SST-analogues in vivo. Particularly, SST-analogues imaging has been widely employed in gastroenteropancreatic (GEP) NETs. Nevertheless, a variety of tumors other than NETs expresses SSTR thus SST-analogues imaging can also be used in these tumors, particularly if treatment with radiolabeled therapeutic SST-analouges PET is being considered. The aim of this paper is to provide a concise overview of the role of positron emission tomography/computed tomography (PET/CT) with (68)Ga-radiolabeled SST-analouges PET in tumors other than GEP-NETs.
Collapse
Affiliation(s)
- Martina Sollini
- Nuclear Medicine Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, University of Pisa, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, 56125 Pisa, Italy
| | - Alessandro Fraternali
- Nuclear Medicine Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Massimiliano Casali
- Nuclear Medicine Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maria Liberata Di Paolo
- Nuclear Medicine Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Armando Froio
- Nuclear Medicine Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Frasoldati
- Endocrinology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
11
|
Fischer G, Schirrmacher R, Wängler B, Wängler C. Radiolabeled Heterobivalent Peptidic Ligands: an Approach with High Future Potential for in vivo Imaging and Therapy of Malignant Diseases. ChemMedChem 2013; 8:883-90. [DOI: 10.1002/cmdc.201300081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Indexed: 12/19/2022]
|
12
|
Peptide receptor targeting in cancer: the somatostatin paradigm. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:926295. [PMID: 23476673 PMCID: PMC3582104 DOI: 10.1155/2013/926295] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/10/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023]
Abstract
Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1–5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed.
Collapse
|
13
|
G Protein-Coupled Receptors in cancer: biochemical interactions and drug design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:143-73. [PMID: 23415094 DOI: 10.1016/b978-0-12-394587-7.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) share the same topology made of seven-transmembrane segments and represent the largest family of membrane receptors. Initially associated with signal transduction in differentiated cells, GPCRs and heterotrimeric G proteins were shown to behave as proto-oncogenes whose overexpression or activating mutations confer transforming properties. The first part of this review focuses on the link between biochemical interactions of a GPCR with other receptors, such as dimerization or multiprotein complexes, and their oncogenic properties. Alteration of these interactions or deregulation of transduction cascades can promote uncontrolled cell proliferation or cell transformation that leads to tumorigenicity and malignancy. The second part concerns the design of drugs specifically targeting these complex interactions and their promise in cancer therapy.
Collapse
|
14
|
Ferone D. Italian Society of Endocrinology Career Award Lecture: from somatostatin to…somatomedin. J Endocrinol Invest 2012; 35:869-74. [PMID: 22932163 DOI: 10.3275/8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Somatostatin plays different parts in hormonal regulation through 5 specific receptors in human body. It has two interesting actions such as an antisecretory activity, mostly on the gastrointestinal system and pituitary level, and an antiproliferative action on tumor cells. Many synthetic somatostatin analogues, more stable than the natural one, have been developed and two are already used in different clinical settings, including endocrine oncology. The inhibitory action on tumor growth may result from both indirect actions, namely the suppression of growth factors and growth-promoting hormones (e.g., GH/IGF-I axis) and inhibition of angiogenesis, as well as modulation of the immune system, and direct actions, such as activation of anti-growth activities (e.g., apoptosis). Recently, the development of specific polyclonal antibodies allowed the precise identification of the 5 specific somatostatin receptors and their localization in different cell species. Somatostatin receptor subtypes belong to the G protein-coupled receptor family, share a common molecular topology, and can traffic not only in vitro within different cell types but also in vivo. A picture of the pathways and proteins involved in these processes is beginning to emerge. Moreover, the process of homo- and/or heterodimerization of G-protein coupled receptors and receptor tyrosine kinase families are crucial for implicating the fundamental properties of receptor proteins including receptor expression, trafficking, and desensitization, as well as signal transduction. Furthermore, functional consequences of such an interaction in modulation of signaling pathways linked to pathological conditions specifically in cancer are discussed.
Collapse
Affiliation(s)
- D Ferone
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, University of Genoa, Italy.
| |
Collapse
|
15
|
Abstract
Somatostatin (SS) and dopamine (DA) receptors have been highlighted as two critical regulators in the negative control of hormonal secretion in a wide group of human endocrine tumors. Both families of receptors belong to the superfamily of G protein-coupled receptors and share a number of structural and functional characteristics. Because of the generally reported high expression of somatostatin receptors (SSTRs) in neuroendocrine tumors (NET), somatostatin analogs (SSA) have a pronounced role in the medical therapy for this class of tumors, especially pituitary adenomas and well-differentiated gastroenteropancreatic NET (GEP NET). Moreover, NET express not only SSTR but also frequently dopamine receptors (DRs), and DA agonists targeting the D(2) receptor (D(2)) have been demonstrated to be effective in controlling hormone secretion and cell proliferation in in vivo and in vitro studies. The treatment with SSAs combined with DA agonists has already been demonstrated efficacious in a subgroup of patients with GH-secreting pituitary adenomas and few reported cases of carcinoids. The recent availability of new selective and universal SSA and DA agonists, as well as the chimeric SS/DA compounds, may shed new light on the potential role of SSTR and D(2) as combined targets for biotherapy in NET. This review provides an overview of the latest studies evaluating the expression of SSTR and DR in NET, focusing on their co-expression and the possible clinical implications of such co-expression. Moreover, the most recent insights in SSTR and D(2) pathophysiology and the future perspectives for treatment with SSA, DA agonists, and SS/DA chimeric compounds are discussed.
Collapse
Affiliation(s)
- Federico Gatto
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Room Ee530b, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | |
Collapse
|
16
|
Diakatou E, Kaltsas G, Tzivras M, Kanakis G, Papaliodi E, Kontogeorgos G. Somatostatin and dopamine receptor profile of gastroenteropancreatic neuroendocrine tumors: an immunohistochemical study. Endocr Pathol 2011; 22:24-30. [PMID: 21287294 DOI: 10.1007/s12022-011-9149-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Somatostatin and its synthetic analogs act through five specific somatostatin receptors (sstr1-5), found on the cell membrane of various tumors, including endocrine ones. Dopamine--a known neurotransmitter--acts through five membranous dopamine receptors (D1R-D5R) which have recently been found to be expressed in endocrine tumors. We evaluated the immunohistochemical expression of the sstrs and D2R in a large series of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). A total of 22 (28.94%) well-differentiated NETs (WDNETs), 6 (7.89%) WDNETs of uncertain biology, 26 (34.21%) well-differentiated neuroendocrine carcinomas, and 22 (28.94%) poorly differentiated neuroendocrine carcinomas were studied. Overall, 76.31% of the tumors were positive for different types of sstrs with variable intensity of the membranous staining whereas 36.95% were positive for D2R alone. The sstr2A was the most frequently expressed, followed by sstr2B, sstr1, and sstr5. Co-expression of sstrs and D2R was seen in 88.23% of positive tumors. The high rates of sstr2A and sstr2B and in a lower extent of sstr5 expression are of great importance for more accurate imaging, staging and targeted therapy of the disease. The co-expression of sstrs and D2R in a significant number of the studied cases offers a potential therapeutic alternative for GEP-NETs.
Collapse
Affiliation(s)
- Evanthia Diakatou
- Department of Pathology, G. Gennimatas Athens General Hospital, 154 Mesogeion Avenue, 115 27 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
17
|
Appetecchia M, Baldelli R. Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine tumours, current aspects and new perspectives. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:19. [PMID: 20196864 PMCID: PMC2845555 DOI: 10.1186/1756-9966-29-19] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/02/2010] [Indexed: 12/21/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumours (GEP NETs) are rare tumours that present many clinical features.They secrete peptides and neuroamines that cause distinct clinical syndromes, including carcinoid syndrome. However, many are clinically silent until late presentation with mass effects.In 2000 the WHO developed a new classification which gives a better description of the characteristics and biological behaviour of the tumour.Surgical resection is the treatment of first choice for a patient with a GEP NET. In metastatic disease multiple therapeutic approaches are possible. In these cases the goal is to improve quality of life and to extent survival.GEP NETs express somatostatin receptors (SSTRs), which are bound by somatostatin (SST) or its synthetic analogues, although the subtypes and number of SSTRs expressed is very variable.Somatostatin analogues are used frequently to control hormone-related symptoms while their anti-neoplastic activity, even if it has not been widely studied and the regarding data are discordant, seems to result prevalently in tumour stabilisation.A few patients who fail to respond or cease to respond to standard SST analogues treatment seem to have a response to higher doses of these drugs.The use of higher doses of somatostatin analogues or the development of new subtype selective agonists and chimaeric somatostatin analogues, or pan-somatostatin will probably improve the clinical management of these patients.This review provides an update on the use of somatostatin analogues in the management of GEP NETs and discusses novel clinical strategies based on SSTR 2 gene transfer therapy.
Collapse
Affiliation(s)
- Marialuisa Appetecchia
- Endocrinology Unit, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, Rome 00144, Italy.
| | | |
Collapse
|
18
|
Ruscica M, Arvigo M, Gatto F, Dozio E, Feltrin D, Culler MD, Minuto F, Motta M, Ferone D, Magni P. Regulation of prostate cancer cell proliferation by somatostatin receptor activation. Mol Cell Endocrinol 2010; 315:254-62. [PMID: 19932151 DOI: 10.1016/j.mce.2009.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/05/2009] [Accepted: 11/15/2009] [Indexed: 01/24/2023]
Abstract
Although some evidence supports the antitumoral effects of somatostatin (SRIF) and related agonists, the available data in prostate cancer (PCa) model systems and clinical studies are few, conflicting and not conclusive. This study investigated the effects of lanreotide and new mono- and bi-specific SRIF agonists on proliferation, ligand-driven SRIF receptor (sst) dimerization and secretory pattern of the IGF system in LNCaP cells, a model of androgen-dependent PCa. LNCaP expressed all sst(s), but sst(4). Among them, sst(1) and sst(3) were inversely regulated by serum concentration. sst(1)/sst(2) and sst(2)/sst(5) dimers were constitutively present and further stabilized by treatment with BIM-23704 (sst(1)/sst(2)) and BIM-23244 (sst(2)/sst(5)), respectively. Dose-response studies showed that lanreotide and BIM-23244 were significantly more potent in inhibiting LNCaP cell proliferation than BIM-23120 (sst(2)) and BIM-23206 (sst(5)) alone or in combination. Treatment with BIM-23926 [corrected] (sst(1)) markedly reduced cell proliferation, whereas exposure to BIM-23704 resulted in a lower cell growth inhibition. The antiproliferative effects of BIM-23244, lanreotide and BIM-23704 were unchanged, reduced and abolished by the sst(2) antagonist BIM-23627, respectively. All SRIF analogs caused a significant induction in p27(KipI) and p21 and down-regulation of protein expression of cyclin E, as well as reduced IGF-I and IGF-II secretion. In particular, the administration of exogenous IGF-I, at variance to IGF-II, counteracted the inhibitory effect on cell proliferation of these compounds. Moreover, SRIF agonists reduced endogenous IGFBP-3 proteolysis. These results show that, in LNCaP cells, activation of sst(1) and sst(2)/sst(5) results in relevant antiproliferative/antisecretive actions.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Endocrinology, Pathophysiology and Applied Biology, Università degli Studi di Milano, via G. Balzaretti 9, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Colao A, Faggiano A, Pivonello R. Somatostatin analogues: treatment of pituitary and neuroendocrine tumors. PROGRESS IN BRAIN RESEARCH 2010; 182:281-94. [PMID: 20541670 DOI: 10.1016/s0079-6123(10)82012-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter summarizes the most recent data on the use of the somatostatin analogues (SSAs), octreotide (OCT) and lanreotide for the treatment of patients with pituitary and neuroendocrine tumors (NETs). These two analogues have a high affinity for somatostatin receptor (SSR) sub-types 2 and 5. The major indications of these compounds are GH- and TSH-secreting pituitary adenomas, secreting NETs and non-functioning NETs in progression. Pasireotide is a new analogue, with a receptor pattern different from previous analogues since it binds with high affinity to SSR types 1, 2, 3 and 5. This analogue will be available to treat patients with ACTH-secreting adenomas in a short time. A recent study has also demonstrated a beneficial effect of OCT long-acting release in patients with non-functioning NETs independently from their progression status. These data open the treatment with SSAs in all NET patients.
Collapse
Affiliation(s)
- Annamaria Colao
- Department of Molecular & Clinical Endocrinology and Oncology, Federico II University of Naples, Naples, Italy.
| | | | | |
Collapse
|
20
|
Peiser C, Andreae DA, Groneberg DA, Dinh QT, Müller B, Wahn U, Fischer A. Dopamine D2 receptor mRNA expression is increased in the jugular-nodose ganglia of rats with nitrogen dioxide-induced chronic bronchitis. Neurosci Lett 2009; 465:143-6. [PMID: 19733627 DOI: 10.1016/j.neulet.2009.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 08/23/2009] [Accepted: 09/01/2009] [Indexed: 11/20/2022]
Abstract
The bronchodilatatory effect of inhaled dopamine or dopamine D(2) receptor agonists in cases of bronchial constriction may involve the suppression of pathologically increased airway sensory nerve activity. The aim of this study is to investigate the regulation of the dopamine D(2) receptor mRNA expression in the ganglia of rats with nitrogen dioxide-induced chronic bronchitis compared with that in ganglia of healthy control animals. Rats were exposed to nitrogen dioxide (10 ppm, 20 d) and dopamine D(2) receptor mRNA levels in sensory ganglia (jugular-nodose, trigeminal, cervical dorsal root and thoracic dorsal root ganglia) were examined by quantitative real-time polymerase chain reaction and compared to control tissues. Whereas for trigeminal and dorsal root ganglia the dopamine D(2) receptor expression levels showed no difference between both animal groups, there was a significant (p<0.05) increase in the jugular-nodose ganglia with a 2.1-fold factor. The increase of dopamine D(2) receptor mRNA in jugular-nodose sensory neurons which innervate the airways may represent a neurochemical basis for the effects seen in man and animal models following topical administration of dopamine or dopamine agonists onto the respiratory epithelium.
Collapse
Affiliation(s)
- Christian Peiser
- Department of Pediatric Pneumology and Immunology, Charité-Campus Virchow, Medical University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
de Bruin C, Feelders RA, Lamberts SWJ, Hofland LJ. Somatostatin and dopamine receptors as targets for medical treatment of Cushing's Syndrome. Rev Endocr Metab Disord 2009; 10:91-102. [PMID: 18642088 DOI: 10.1007/s11154-008-9082-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
Somatostatin (SS) and dopamine (DA) receptors are widely expressed in neuroendocrine tumours that cause Cushing's Syndrome (CS). Increasing knowledge of specific subtype expression within these tumours and the ability to target these receptor subtypes with high-affinity compounds, has driven the search for new SS- or DA-based medical therapies for the various forms of CS. In Cushing's disease, corticotroph adenomas mainly express dopamine receptor subtype 2 (D(2)) and somatostatin receptor subtype 5 (sst(5)), whereas sst(2) is expressed at lower levels. Activation of these receptors can inhibit ACTH-release in primary cultured corticotroph adenomas and compounds that target either sst(5) (pasireotide, or SOM230) or D(2) (cabergoline) have shown significant efficacy in subsets of patients in recent clinical studies. Combination therapy, either by administration of both types of compounds separately or by treatment with novel somatostatin-dopamine chimeric molecules (e.g. BIM-23A760), appears to be a promising approach in this respect. In selected cases of Ectopic ACTH-producing Syndrome (EAS), the sst(2)-preferring compound octreotide is able to reduce cortisol levels effectively. A recent study showed that D(2) receptors are also significantly expressed in the majority of EAS and that cabergoline may decrease cortisol levels in subsets of these patients. In both normal adrenal tissue as well as in adrenal adenomas and carcinomas that cause CS, sst and DA receptor expression has been demonstrated. Although selected cases of adrenal CS may benefit from sst or DA-targeted treatment, its total contribution to the treatment of these patients is likely to be low as surgery is effective in most cases.
Collapse
Affiliation(s)
- C de Bruin
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Saveanu A, Jaquet P. Somatostatin-dopamine ligands in the treatment of pituitary adenomas. Rev Endocr Metab Disord 2009; 10:83-90. [PMID: 18651224 DOI: 10.1007/s11154-008-9086-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/12/2008] [Indexed: 01/18/2023]
Abstract
Somatostatin receptors (sst1-5) and dopamine receptor 2 (D2DR) are well expressed and co-localized in several human pituitary adenomas, suggesting possible functional interactions in the control of hormonal hypersecretion and tumor cell growth. The present review describes the expression and functionality of these receptors in the different classes of human pituitary adenomas. The sst2 agonists, octreotide and lanreotide, control GH hypersecretion and tumor growth in about 65% of somatotropinomas. The D2DR agonists, bromocriptine and cabergoline, control about 90% of prolactinomas. Such drugs are much less effective in the control of the others pituitary adenomas also expressing ssts and D2DR receptors. The second part summarizes the current knowledge on new chimeric compounds with sst2, sst5, and D2DR affinity. Such ligands bearing distinct ssts and DRD2 pharmacophores may synergistically produce an increased control of secretion and/or of proliferation in the different types of pituitary adenomas. The mechanisms of action of such chimeric molecules through increased binding affinities, prolonged bioavailability, ligand-induced modulation of receptors heterodimerization, are discussed.
Collapse
Affiliation(s)
- Alexandru Saveanu
- CRN2M UMR 6231, Centre National de la Recherche Scientifique, Universite de la Mediterranee, Faculté de Médecine Nord, Marseille, France.
| | | |
Collapse
|
23
|
Bodei L, Ferone D, Grana CM, Cremonesi M, Signore A, Dierckx RA, Paganelli G. Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest 2009; 32:360-9. [PMID: 19636207 DOI: 10.1007/bf03345728] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuroendocrine tumors (NETs) are relatively rare tumors, mainly originating from the digestive system, able to produce bioactive amines and hormones. NETs tend to be slow growing and are often diagnosed when metastatic. The localization of a NETs and the assessment of the extent of disease are crucial for management. Commonly used diagnostic techniques include morphological imaging (ultrasound, computerized tomography, magnetic resonance), and functional imaging (somatostatin receptor scintigraphy, positron emission tomography techniques). Treatment is multidisciplinary and should be individualized according to the tumor type, burden, and symptoms. Therapeutic tools include surgery, interventional radiology, and medical treatments such as somatostatin analogues, interferon, chemotherapy, new targeted drugs and peptide receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogues. NETs usually over-express somatostatin receptors, thus enabling the therapeutic use of somatostatin analogues, one of the basic tools, able to reduce signs and symptoms of hormone hypersecretion, improve quality of life, and slow tumor growth. PRRT with somatostatin analogues 90Y-DOTATOC and 177Lu-DOTATATE has been explored in NETs for more than a decade. Present knowledge and clinical studies indicate that it is possible to deliver high-absorbed doses to tumors expressing sst2 receptors, with partial and complete objective responses in up to 30% of patients. Side effects, involving the kidney and the bone marrow, are mild if adequate renal protection is used. Moreover, a consistent survival benefit is reported. As NETs may also express cholecystokinin 2, bombesin, neuropeptide Y or vasoactive intestinal peptide receptors even simultaneously, the potential availability and biological stability of radio-analogues will improve the multireceptor targeting of NETs.
Collapse
Affiliation(s)
- L Bodei
- Division of Nuclear Medicine, European Institute of Oncology, Via Ripamonti, 435 - 20141 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Volante M, Rosas R, Allìa E, Granata R, Baragli A, Muccioli G, Papotti M. Somatostatin, cortistatin and their receptors in tumours. Mol Cell Endocrinol 2008; 286:219-29. [PMID: 18248880 DOI: 10.1016/j.mce.2007.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/30/2007] [Accepted: 12/01/2007] [Indexed: 01/13/2023]
Abstract
Somatostatin (SS) and its synthetic analogs have a role in the treatment of neuroendocrine tumours both in terms of symptoms control and antiproliferative activities. These effects are mediated by five SS receptors, widely expressed in both human neuroendocrine and non-neuroendocrine tumours, which were demonstrated to be diagnostically and therapeutically valuable targets. Cortistatin (CST), a brain cortex peptide, partially homologous to SS and having similar functions is also expressed in peripheral tissues and tumours. CST binds all SS receptors, and, differently from SS, also the ghrelin receptor GHSR1a and the CST specific receptor MrgX2. The expression profile of CST is mostly restricted to neuroendocrine tumours (gastrointestinal, pancreas, lung, parathyroid, thyroid, adrenal). In these tumours, CST probably acts via the SS or ghrelin receptor, the MrgX2 receptor being absent. Thus, in comparison to SS analogs, CST synthetic analogs may represent additional diagnostic/therapeutic tools in those tumours expressing the receptors for SS, for ghrelin or for both peptides.
Collapse
Affiliation(s)
- M Volante
- Department of Clinical & Biological Sciences, University of Turin at San Luigi Hospital, Orbassano, University of Turin, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Pyronnet S, Bousquet C, Najib S, Azar R, Laklai H, Susini C. Antitumor effects of somatostatin. Mol Cell Endocrinol 2008; 286:230-7. [PMID: 18359151 DOI: 10.1016/j.mce.2008.02.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/15/2008] [Accepted: 02/02/2008] [Indexed: 02/07/2023]
Abstract
Since its discovery three decades ago as an inhibitor of GH release from the pituitary gland, somatostatin has attracted much attention because of its functional role in the regulation of a wide variety of physiological functions in the brain, pituitary, pancreas, gastrointestinal tract, adrenals, thyroid, kidney and immune system. In addition to its negative role in the control of endocrine and exocrine secretions, somatostatin and analogs also exert inhibitory effects on the proliferation and survival of normal and tumor cells. Over the past 15 years, studies have begun to reveal some of the molecular mechanisms underlying the antitumor activity of somatostatin. This review covers the present knowledge in the antitumor effect of somatostatin and analogs and discusses the perspectives of novel clinical strategies based on somatostatin receptor sst2 gene transfer therapy.
Collapse
Affiliation(s)
- Stéphane Pyronnet
- INSERM U858, Institut de Médecine Moléculaire de Rangueil, Dpt Cancer/E16, CHU Rangueil, Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
26
|
Saveanu A, Jaquet P, Brue T, Barlier A. Relevance of coexpression of somatostatin and dopamine D2 receptors in pituitary adenomas. Mol Cell Endocrinol 2008; 286:206-13. [PMID: 18241980 DOI: 10.1016/j.mce.2007.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 02/06/2023]
Abstract
Dopamine and somatostatin are both involved in the negative control of normal pituitary cells. Dopamine subtype 2 receptor (D2DR) and somatostatin receptor (sst) agonists, mainly directed to sst2, are used in the treatment of pituitary adenomas. Nevertheless, a majority of corticotroph and gonadotroph adenomas and a third of somatotroph adenomas are still not sufficiently controlled by these treatments. D2DR and sst1, 2, 3 and 5 are present in most pituitary adenomas. These receptors may interact by heterodimerization as shown for sst1-sst5, sst5-D2DR, sst2-sst3 and sst2-D2DR suggesting possible additive effects. D2DR and sst2 agonist cotreatment showed limited additivity on GH secretion in acromegaly. Moreover, new chimeric compounds with sst2, D2DR and sst5 affinity have shown an increased control of secretion and/or proliferation of different types of pituitary adenomas in cell culture. Together with the multi-sst ligand drugs recently developed, these dopamine-somatostatin ligands represent a new opportunity in the combinatory treatment of pituitary adenomas.
Collapse
Affiliation(s)
- A Saveanu
- Laboratory Interactions Cellulaires Neuroendocriniennes, UMR 6544 CNRS, Institut Fédératif Jean Roche, Faculté de Médecine Nord, Université de la Méditerranée, Marseille, France.
| | | | | | | |
Collapse
|
27
|
Cervia D, Bagnoli P. An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 2007; 116:322-41. [PMID: 17719647 DOI: 10.1016/j.pharmthera.2007.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/20/2022]
Abstract
The peptide somatostatin (SRIF) has important physiological effects, mostly inhibitory, which have formed the basis for the clinical use of SRIF compounds. SRIF binding to its 5 guanine nucleotide-binding proteins-coupled receptors leads to the modulation of multiple transduction pathways. However, our current understanding of signaling exerted by receptors endogenously expressed in different cells/tissues reflects a rather complicated picture. On the other hand, the complexity of SRIF receptor signaling in pathologies, including pituitary and nervous system diseases, may be studied not only as alternative intervention points for the modulation of SRIF function but also to exploit new chemical space for drug-like molecules.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, largo dell'Università snc, blocco D, 01100 Viterbo, Italy.
| | | |
Collapse
|
28
|
Campa D, Zienolddiny S, Lind H, Ryberg D, Skaug V, Canzian F, Haugen A. Polymorphisms of dopamine receptor/transporter genes and risk of non-small cell lung cancer. Lung Cancer 2007; 56:17-23. [PMID: 17175058 DOI: 10.1016/j.lungcan.2006.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/06/2006] [Accepted: 11/10/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND The dopaminergic pathway may be of interest in assessing risk of non-small cell lung cancer (NSCLC). Dopamine receptors are expressed in alveolar epithelial cells and human lung tumours, and dopamine inhibits both cell proliferation in vitro and growth of lung tumour xenografts in nude mice. Moreover, dopamine selectively inhibits the vascular permeability and angiogenic activity of vascular endothelial growth factor (VPF/VEGF). The bioavailability of dopamine is regulated by dopamine receptors D2 (DRD2), D4 (DRD4) and dopamine transporter 1 (DAT1/SLC6A3) genes. METHODS We have analysed 10 single nucleotide polymorphisms in DRD2, DRD4 and DAT1/SLC6A3 genes in relation to lung cancer risk in a case-control study of smoking subjects. The study subjects were 413 healthy individuals from general population and 335 NSCLC cases. Both cases and controls were Caucasians of Norwegian origin. RESULTS We demonstrate that DRD2 polymorphisms -141Cdel, 3208G>T, TaqIB; DRD4 -521C>T and DAT1/SLC6A3 -1476T>G are associated with a two- to five-fold increased NSCLC risk. The variant alleles of DRD2 1412A>G and 960C>G had protective effects. CONCLUSION The dopamine receptor/transport gene polymorphisms are associated with the risk of NSCLC among smokers. The data show that the polymorphisms resulting in lower dopamine bioavailability were associated with increased risk of NSCLC.
Collapse
Affiliation(s)
- Daniele Campa
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Ferone D, Saveanu A, Culler MD, Arvigo M, Rebora A, Gatto F, Minuto F, Jaquet P. Novel chimeric somatostatin analogs: facts and perspectives. Eur J Endocrinol 2007; 156 Suppl 1:S23-S28. [PMID: 17413184 DOI: 10.1530/eje.1.02356] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopamine and somatostatin receptor agonists inhibit hormone secretion by normal pituitary cells and pituitary adenomas. Indeed, initially several dopaminergic drugs, and lately somatostatin analogs, have been developed for the treatment of pituitary adenomas. Recently, it has been demonstrated that subtypes of somatostatin and dopamine receptors may form homo- and hetero-dimers at the membrane level, as part of their normal trafficking and function. Interestingly, a specific ligand for a given receptor may influence the activity of an apparently unrelated receptor, and the association between the two different receptors could be induced by addition of either dopamine or somatostatin. The new properties of these families of G-protein coupled receptors (GPCRs) offer a potential explanation for the apparent conflicting results observed both in vivo and in vitro in human cell systems treated with the presently available analogs. Moreover, this observation not only increases the possibilities of modulating the activities of these receptors, but also raises new questions on the role of associations of specific receptors in the control of cell functions. In fact, results from preclinical studies have shown that receptor activation may not only trigger different intracellular signaling pathways, but also induce a distinct response depending upon the specific cell type. Recently, a number of new interesting compounds (subtype selective analogs and antagonists, as well as bi-specific and hybrid somatostatin/dopamine compounds) have been developed. The effects of these new molecules have been explored in few animal and human cell lines and primary cultures from human tumors, revealing a heterogeneous, but broader, profile of activities. Further studies are certainly needed to fully elucidate the complex interplay between the GPCRs and consequent biological effects, to identify suitable therapies for controlling hormonal secretion of pituitary tumors. However, these recent observations form the basis for the application of new interesting strategies for the treatment of not only pituitary tumors but also other human malignancies.
Collapse
|
30
|
Ferone D, Pivonello R, Resmini E, Boschetti M, Rebora A, Albertelli M, Albanese V, Colao A, Culler MD, Minuto F. Preclinical and clinical experiences with the role of dopamine receptors in the treatment of pituitary adenomas. Eur J Endocrinol 2007; 156 Suppl 1:S37-S43. [PMID: 17413187 DOI: 10.1530/eje.1.02351] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary tumors can cause symptoms of mass effect and hormonal hypersecretion that can be reversed with surgical resection or debulking of the adenoma, radiotherapy, or medical treatment. Medical treatment is the primary choice for prolactinomas because dopamine agonists are very effective in the treatment of these tumors, with rates of control (tumor size reduction and hormone suppression) as high as 80-90% for microprolactinomas and 60-75% for macroprolactinomas. The function of dopamine receptors in other histotypes of pituitary adenoma is still debated. However, new insights into receptor physiology and the introduction of new clinically available, as well as experimental, compounds have reopened a potential role of dopaminergic drugs in the medical treatment of pituitary tumors. The differences between the effectiveness and the resistance to different dopaminergic agents, the new challenging results from clinical and experimental studies, as well as the future of dopamine agonists in the therapy of pituitary tumors are discussed.
Collapse
|
31
|
O'Toole D, Saveanu A, Couvelard A, Gunz G, Enjalbert A, Jaquet P, Ruszniewski P, Barlier A. The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies. Eur J Endocrinol 2006; 155:849-57. [PMID: 17132755 DOI: 10.1530/eje.1.02307] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Somatostatin (sst) are present in the majority of gastro-entero-pancreatic (GEP) tumours. Effects of somatostatin receptor (sst) analogues are partial and of limited duration. Cell lines derived from GEP express dopaminergic receptors D(2). New chimeric analogues simultaneously recognising sst(2) and sst(5) or sst(2) and D(2) have additive effects in inhibition of GH and prolactin secretion in pituitary adenomas. Our aim was to quantify the expression of sst and D(2) mRNA in human GEP tumours. DESIGN AND METHODS mRNA expression of sst(1), sst(2), sst(3) and sst(5) as well as D(2), was analysed using real-time PCR (TaqMan probe) in a series of 35 patients with GEP tumours (pancreas (n = 19) and intestinal (n = 16)). Levels of expression were compared with a group of 13 somatotroph adenomas. RESULTS All GEP tumours express sst(1), sst(2) and D(2). Expression of sst(3) and sst(5) was observed in 89 and 76% of tumours respectively with highly variable levels. sst(2) mRNA expression was higher in nonfunctional tumours (P < 0.009) and sst5 was higher in pancreatic than in intestinal tumours (P < 0.02). Whereas sst(2) levels were similar between GEP and somatotroph tumours, levels of sst(5) and D(2) were higher in the former (394.9 +/- 156.1 x 10(-2) vs 69.7 +/- 19.5 x 10(-2) copy/copy beta-Gus (P < 0.0036) and 519.6 +/- 121.2 x 10(-2) vs 50.0 +/- 21.6 x 10(-2) copy/copy beta-Gus (P < 0.0001) respectively). In small tumours ( < 30 mm), sst(2) density appeared as a crucial parameter in somatostatin receptor scintigraphy results, whereas in big tumours, a consistent bias in SRS results was introduced by the size. In pancreatic GEP, high-level sst(3) expression was found in tumours with more active angiogenesis (higher microvessel density and vascular endothelial growth factor expression (P < 0.03)). CONCLUSIONS GEP tumours co-express sst(2) and D(2) in 100% of cases and sst(5) in 89% thus supporting the testing of bi-specific agonists (sst(2)/sst(5) or sst(2)/D(2)) in these tumours.
Collapse
Affiliation(s)
- Dermot O'Toole
- Service of Gastroentérologie-Pancréatologie, Pôle de Maladies de l'Appareil Digestif, Hôpital Beaujon, Clichy, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Casnici C, Lattuada D, Crotta K, Mastrotto C, Franco P, Culler MD, Marelli O. Effects of chimeric somatostatin–dopamine molecules on human peripheral blood lymphocytes activation. J Neuroimmunol 2006; 179:9-17. [PMID: 16904194 DOI: 10.1016/j.jneuroim.2006.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/26/2006] [Accepted: 06/26/2006] [Indexed: 11/28/2022]
Abstract
BIM 23A761, selective for somatostatin receptors subtypes 2, 5 and the dopamine receptor subtype 2, and BIM 23A757 with affinity for SSTR2 and DAR2 were studied on human PBL proliferation and activation. BIM 23A761 was significantly more potent than specific SSTR and DAR2 agonists in suppressing lymphocyte proliferation induced by mitogen or alloantigen, while BIM 23A757 was more potent than specific SSTR2 and DAR2 agonists in suppressing antigen induced proliferation only. Both molecules displayed enhanced potency in suppressing IFNgamma and IL-6 secretion compared with the SSTR and DAR2 analogs, while only BIM 23A761 was able to inhibit IL-2 secretion and its effect is more potent than the control analogs. Furthermore BIM 23A761 inhibit cell progression into the S phase and then into the G2/M, while BIM 23A757 inhibited bromodeoxyuridine incorporation only during the S phase. Both chimeric molecules resulted significantly more effective than the respective controls.
Collapse
Affiliation(s)
- C Casnici
- Department of Pharmacology, School of Medicine, University of Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Ferone D, Boschetti M, Resmini E, Giusti M, Albanese V, Goglia U, Albertelli M, Vera L, Bianchi F, Minuto F. Neuroendocrine-Immune Interactions: The Role of Cortistatin/Somatostatin System. Ann N Y Acad Sci 2006; 1069:129-44. [PMID: 16855140 DOI: 10.1196/annals.1351.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hormones and neuropeptides may influence the activities of lymphoid organs and cells via endocrine and local autocrine/paracrine pathways. A paradigm of the interactions between the neuroendocrine and immune system is sophisticatedly represented in the thymus. Indeed, receptors for these molecules are heterogeneously expressed in all subsets of thymic cells, and the communications are tuned by feedback circuitries. Herein, we focus on somatostatin (SS), a ubiquitous peptide that regulates several physiological cell processes and acts via five specific receptor (SSR) subtypes (sst(1-5)). Neuronal and accessory cells, so-called neuroendocrine cells, and immune cells, heterogeneously express SSRs. The functional characterization of SSRs in vivo by nuclear medicine techniques opened a complex scenario on the significance of SS/SSR pathway in immune system and related diseases. Several studies have established that SSR scintigraphy may benefit patients with chronic inflammatory and granulomatous diseases, as well as lymphoproliferative diseases. The results are sufficiently promising to warrant larger studies aimed at defining the exact role of these techniques. The development of SS analogs with antisecretory and antiproliferative effects has radically changed the management of neuroendocrine tumors. Moreover, very important recent findings, emerging from in vitro studies on SSR physiology in immune cells, will certainly expand the potential applications of SS analogs for in vivo diagnostic and therapeutic options. Indeed, the anti-inflammatory and analgesic effects of these drugs remain incompletely understood, but may prove useful in a number of autoimmune diseases. Because SS expression is absent in different immune tissues where SSRs are present, the existence of another ligand was hypothesized. In fact, it has been recently demonstrated that human lymphoid tissues and immune cells may express cortistatin (CST). CST is known to bind SSRs and shares many pharmacological and functional properties with SS. However, CST has also properties distinct from SS, and the higher expression of CST in immune cells supports the hypothesis that CST rather than SS may act as a potential endogenous ligand for SSRs in the human immune system.
Collapse
Affiliation(s)
- Diego Ferone
- Department of Endocrinological and Metabolic Sciences, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|