1
|
Choi Y, Lee O, Ryu K, Roh J. Luteinizing Hormone Surge-Induced Krüppel-like Factor 4 Inhibits Cyp17A1 Expression in Preovulatory Granulosa Cells. Biomedicines 2023; 12:71. [PMID: 38255178 PMCID: PMC10813437 DOI: 10.3390/biomedicines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Previous in vivo and in vitro studies have demonstrated a dramatic up-regulation of Krüppel-like factor 4 (Klf4) in rat preovulatory granulosa cells (GCs) after LH/hCG treatment and its role in regulating Cyp19A1 expression during the luteal shift in steroidogenesis. In this study, we examined whether Klf4 also mediates the LH-induced repression of Cyp17A1 expression in primary rat preovulatory GCs. In response to LH treatment of GCs in vitro, Cyp17A1 expression declined to less than half of its initial value by 1 h, remaining low for 24 h of culture. Overexpression of Klf4 decreased basal and Sf1-induced Cyp17A1 expressions and increased progesterone secretion. Reduction of endogenous Klf4 by siRNA elevated basal Cyp17A1 expression but did not affect LH-stimulated progesterone production. Overexpression of Klf4 also significantly attenuated Sf1-induced Cyp17A1 promoter activity. On the other hand, mutation of the conserved Sp1/Klf binding motif in the promoter revealed that this motif is not required for Klf4-mediated repression. Taken together, these data indicate that the Cyp17A1 gene may be one of the downstream targets of Klf4, which is induced by LH in preovulatory GCs. This information may help in identifying potential targets for preventing the molecular changes occurring in hyperandrogenic disorders.
Collapse
Affiliation(s)
- Yuri Choi
- Laboratory of Reproductive Endocrinology, Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; (Y.C.); (O.L.)
| | - Okto Lee
- Laboratory of Reproductive Endocrinology, Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; (Y.C.); (O.L.)
| | - Kiyoung Ryu
- Department of Obstetrics & Gynecology, College of Medicine, Hanyang University, Guri-si 11923, Republic of Korea;
| | - Jaesook Roh
- Laboratory of Reproductive Endocrinology, Department of Anatomy & Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea; (Y.C.); (O.L.)
| |
Collapse
|
2
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
3
|
Jia Y, Liu L, Gong S, Li H, Zhang X, Zhang R, Wang A, Jin Y, Lin P. Hand2os1 Regulates the Secretion of Progesterone in Mice Corpus Luteum. Vet Sci 2022; 9:vetsci9080404. [PMID: 36006319 PMCID: PMC9415164 DOI: 10.3390/vetsci9080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The corpus luteum plays a key role in pregnancy maintenance and estrous cycle regulation by secreting progesterone. Hand2os1 is an lncRNA located upstream of Hand2, with which a bidirectional promoter is shared and is involved in the regulation of cardiac development and embryo implantation in mice. The aim of this study was to investigate the expression and regulation of Hand2os1 in the ovaries. Here, we used RNAscope to detect differential expression of Hand2os1 in the ovaries of cycling and pregnant mice. Hand2os1 was specifically detected in luteal cells during the proestrus and estrus phases, showing its highest expression in the corpus luteum at estrus. Additionally, Hand2os1 was strongly expressed in the corpus luteum on day 4 of pregnancy, but the positive signal progressively disappeared after day 8, was detected again on day 18, and gradually decreased after delivery. Hand2os1 significantly promoted the synthesis of progesterone and the expression of StAR and Cyp11a1. The decreased progesterone levels caused by Hand2os1 interference were rescued by the overexpression of StAR. Our findings suggest that Hand2os1 may regulate the secretion of progesterone in the mouse corpus luteum by affecting the key rate-limiting enzyme StAR, which may have an impact on the maintenance of pregnancy.
Collapse
Affiliation(s)
- Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Lu Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Suhua Gong
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Haijing Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Xinyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Ruixue Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.J.); (P.L.)
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Y.J.); (L.L.); (S.G.); (H.L.); (X.Z.); (R.Z.); (A.W.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.J.); (P.L.)
| |
Collapse
|
4
|
Sawant L, Ostler JB, Jones C. A Pioneer Transcription Factor and Type I Nuclear Hormone Receptors Synergistically Activate the Bovine Herpesvirus 1 Infected Cell Protein 0 (ICP0) Early Promoter. J Virol 2021; 95:e0076821. [PMID: 34319779 PMCID: PMC8475507 DOI: 10.1128/jvi.00768-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Following bovine herpesvirus 1 (BoHV-1) acute infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia are an important site for latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Expression of two key viral transcriptional regulatory proteins, BoHV-1 infected cell protein 0 (bICP0) and bICP4, are regulated by sequences within the immediate early promoter (IEtu1). A separate early promoter also drives bICP0 expression, presumably to ensure sufficient levels of this important transcriptional regulatory protein. Productive infection and bICP0 early promoter activity are cooperatively transactivated by Krüppel-like factor 4 (KLF4) and a type I nuclear hormone receptor (NHR), androgen receptor, glucocorticoid receptor, or progesterone receptor. The bICP0 early promoter contains three separate transcriptional enhancers that mediate cooperative transactivation. In contrast to the IEtu1 promoter, the bICP0 early promoter lacks consensus type I NHR binding sites. Consequently, we hypothesized that KLF4 and Sp1 binding sites are essential for type I NHR and KLF4 to transactivate the bICP0 promoter. Mutating KLF4 and Sp1 binding sites in each enhancer domain significantly reduced transactivation by KLF4 and a type I NHR. Chromatin immunoprecipitation (ChIP) studies demonstrated that occupancy of bICP0 early promoter sequences by KLF4 and type I NHR is significantly reduced when KLF4 and/or Sp1 binding sites are mutated. These studies suggest that cooperative transactivation of the bICP0 E promoter by type I NHRs and a stress-induced pioneer transcription factor (KLF4) promote viral replication and spread in neurons or nonneural cells in reproductive tissue. IMPORTANCE Understanding how stressful stimuli and changes in the cellular milieu mediate viral replication and gene expression in the natural host is important for developing therapeutic strategies that impair virus transmission and disease. For example, bovine herpesvirus 1 (BoHV-1) reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone, which mimics the effects of stress. Furthermore, BoHV-1 infection increases the incidence of abortion in pregnant cows, suggesting that sex hormones stimulate viral growth in certain tissues. Previous studies revealed that type I nuclear hormone receptors (NHRs) (androgen, glucocorticoid, or progesterone) and a pioneer transcription factor, Krüppel-like factor 4 (KLF4), cooperatively transactivate the BoHV-1 infected cell protein 0 (bICP0) early promoter. Transactivation was mediated by Sp1 and/or KLF4 consensus binding sites within the three transcriptional enhancers. These studies underscore the complexity by which BoHV-1 exploits type I NHR fluctuations to enhance viral gene expression, replication, and transmission in the natural host.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Jeffery B. Ostler
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
5
|
Taqi MO, Saeed-Zidane M, Gebremedhn S, Salilew-Wondim D, Tholen E, Neuhoff C, Hoelker M, Schellander K, Tesfaye D. NRF2-mediated signaling is a master regulator of transcription factors in bovine granulosa cells under oxidative stress condition. Cell Tissue Res 2021; 385:769-783. [PMID: 34008050 PMCID: PMC8526460 DOI: 10.1007/s00441-021-03445-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/01/2021] [Indexed: 11/30/2022]
Abstract
Transcription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Mohamed Omar Taqi
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany.,Central Laboratory for Agricultural Climate, Agricultural Research Center, Giza, Egypt
| | - Mohammed Saeed-Zidane
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany.,Institute of Animal Breeding and Husbandry, Animal Breeding and Genetics Group, University of Kiel, Kiel, Germany
| | - Samuel Gebremedhn
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany.,Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory (ARBL), Colorado State University, Fort Collins, CO, USA
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany.,Teaching and Research Station Frankenforst, University of Bonn, Koenigswinter, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany. .,Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory (ARBL), Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Correlation Networks Provide New Insights into the Architecture of Testicular Steroid Pathways in Pigs. Genes (Basel) 2021; 12:genes12040551. [PMID: 33918852 PMCID: PMC8069258 DOI: 10.3390/genes12040551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Steroid metabolism is a fundamental process in the porcine testis to provide testosterone but also estrogens and androstenone, which are essential for the physiology of the boar. This study concerns boars at an early stage of puberty. Using a RT-qPCR approach, we showed that the transcriptional activities of several genes providing key enzymes involved in this metabolism (such as CYP11A1) are correlated. Surprisingly, HSD17B3, a key gene for testosterone production, was absent from this group. An additional weighted gene co-expression network analysis was performed on two large sets of mRNA-seq to identify co-expression modules. Of these modules, two containing either CYP11A1 or HSD17B3 were further analyzed. This comprehensive correlation meta-analysis identified a group of 85 genes with CYP11A1 as hub gene, but did not allow the characterization of a robust correlation network around HSD17B3. As the CYP11A1-group includes most of the genes involved in steroid synthesis pathways (including LHCGR encoding for the LH receptor), it may control the synthesis of most of the testicular steroids. The independent expression of HSD17B3 probably allows part of the production of testosterone to escape this control. This CYP11A1-group contained also INSL3 and AGT genes encoding a peptide hormone and an angiotensin peptide precursor, respectively.
Collapse
|
7
|
The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS One 2020; 15:e0240935. [PMID: 33119641 PMCID: PMC7595290 DOI: 10.1371/journal.pone.0240935] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sockeye salmon (Oncorhynchus nerka) is a commercially and culturally important species to the people that live along the northern Pacific Ocean coast. There are two main sockeye salmon ecotypes—the ocean-going (anadromous) ecotype and the fresh-water ecotype known as kokanee. The goal of this study was to better understand the population structure of sockeye salmon and identify possible genomic differences among populations and between the two ecotypes. In pursuit of this goal, we generated the first reference sockeye salmon genome assembly and an RNA-seq transcriptome data set to better annotate features of the assembly. Resequenced whole-genomes of 140 sockeye salmon and kokanee were analyzed to understand population structure and identify genomic differences between ecotypes. Three distinct geographic and genetic groups were identified from analyses of the resequencing data. Nucleotide variants in an immunoglobulin heavy chain variable gene cluster on chromosome 26 were found to differentiate the northwestern group from the southern and upper Columbia River groups. Several candidate genes were found to be associated with the kokanee ecotype. Many of these genes were related to ammonia tolerance or vision. Finally, the sex chromosomes of this species were better characterized, and an alternative sex-determination mechanism was identified in a subset of upper Columbia River kokanee.
Collapse
|
8
|
Choi H, Roh J. LH-induced Transcriptional Regulation of Klf4 Expression in Granulosa Cells Occurs via the cAMP/PKA Pathway and Requires a Putative Sp1 Binding Site. Int J Mol Sci 2020; 21:ijms21197385. [PMID: 33036290 PMCID: PMC7582263 DOI: 10.3390/ijms21197385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Krüppel-like factor 4 (Klf4) plays an important role in the transition from proliferation to differentiation in a wide variety of cells. Previous studies demonstrated its critical role in the luteal transition of preovulatory granulosa cells (GCs). This study used cultured rat preovulatory GCs to investigate the mechanism by which luteinizing hormone (LH) regulates Klf4 gene expression. Klf4 mRNA and protein were rapidly and transiently induced by LH treatment, reaching peak levels after 45 min and declining to basal levels by 3 h. Pretreatment with the protein synthesis inhibitor cycloheximide had no effect on LH-stimulated Klf4 expression, indicating that Klf4 is an immediate early gene in response to LH. To investigate the signaling pathway involved in LH-induced Klf4 regulation, the protein kinase A (PKA) and protein kinase C (PKC) pathways were evaluated. A-kinase agonists, but not a C-kinase agonist, mimicked LH in inducing Klf4 transcription. In addition, specific inhibitors of A-kinase abolished the stimulatory effect of LH on Klf4 expression. Truncation of a Klf4 expression construct to −715 bp (pKlf4-715/luc) had no effect on transcriptional activity, whereas deletion to −402 bp (pKlf4-402/luc) dramatically reduced it. ChIP analysis revealed in vivo binding of endogenous Sp1 to the −715/−500 bp region and maximal transcriptional responsiveness to LH required the Sp1 binding element at −698/−688 bp, which is highly conserved in mice, rats, and humans. These findings demonstrate that Klf4 is activated by LH via the cAMP/PKA pathway and a putative Sp1 binding element at −698/−688 bp is indispensable for activation and suggest that Klf4 could be a target for strategies for treating luteal phase insufficiency induced by an aberrant response to the LH surge.
Collapse
|