1
|
Yang D, Xu K, Xu X, Xu P. Revisiting prostaglandin E2: A promising therapeutic target for osteoarthritis. Clin Immunol 2024; 260:109904. [PMID: 38262526 DOI: 10.1016/j.clim.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration and persistent pain. Prostaglandin E2 (PGE2) plays a significant role in OA inflammation and pain. Recent studies have revealed the significant role of PGE2-mediated skeletal interoception in the progression of OA, providing new insights into the pathogenesis and treatment of OA. This aspect also deserves special attention in this review. Additionally, PGE2 is directly involved in pathologic processes including aberrant subchondral bone remodeling, cartilage degeneration, and synovial inflammation. Therefore, celecoxib, a commonly used drug to alleviate inflammatory pain through inhibiting PGE2, serves not only as an analgesic for OA but also as a potential disease-modifying drug. This review provides a comprehensive overview of the discovery history, synthesis and release pathways, and common physiological roles of PGE2. We discuss the roles of PGE2 and celecoxib in OA and pain from skeletal interoception and multiple perspectives. The purpose of this review is to highlight PGE2-mediated skeletal interoception and refresh our understanding of celecoxib in the pathogenesis and treatment of OA.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xin Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
2
|
Ling Z, Crane J, Hu H, Chen Y, Wan M, Ni S, Demehri S, Mohajer B, Peng X, Zou X, Cao X. Parathyroid hormone treatment partially reverses endplate remodeling and attenuates low back pain in animal models of spine degeneration. Sci Transl Med 2023; 15:eadg8982. [PMID: 37967203 DOI: 10.1126/scitranslmed.adg8982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Low back pain (LBP) is one of the most prevalent diseases affecting quality of life, with no disease-modifying therapy. During aging and spinal degeneration, the balance between the normal endplate (EP) bilayers of cartilage and bone shifts to more bone. The aged/degenerated bony EP has increased porosity because of osteoclastic remodeling activity and may be a source of LBP due to aberrant sensory innervation within the pores. We used two mouse models of spinal degeneration to show that parathyroid hormone (PTH) treatment induced osteogenesis and angiogenesis and reduced the porosity of bony EPs. PTH increased the cartilaginous volume and improved the mechanical properties of EPs, which was accompanied by a reduction of the inflammatory factors cyclooxygenase-2 and prostaglandin E2. PTH treatment furthermore partially reversed the innervation of porous EPs and reversed LBP-related behaviors. Conditional knockout of PTH 1 receptors in the nucleus pulposus (NP) did not abolish the treatment effects of PTH, suggesting that the NP is not the primary source of LBP in our mouse models. Last, we showed that aged rhesus macaques with spontaneous spinal degeneration also had decreased EP porosity and sensory innervation when treated with PTH, demonstrating a similar mechanism of PTH action on EP sclerosis between mice and macaques. In summary, our results suggest that PTH treatment could partially reverse EP restructuring during spinal regeneration and support further investigation into this potentially disease-modifying treatment strategy for LBP.
Collapse
Affiliation(s)
- Zemin Ling
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Janet Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shadpour Demehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bahram Mohajer
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 51008, P. R. China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Lv X, Gao F, Cao X. Skeletal interoception in bone homeostasis and pain. Cell Metab 2022; 34:1914-1931. [PMID: 36257317 PMCID: PMC9742337 DOI: 10.1016/j.cmet.2022.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023]
Abstract
Accumulating evidence indicates that interoception maintains proper physiological status and orchestrates metabolic homeostasis by regulating feeding behaviors, glucose balance, and lipid metabolism. Continuous skeletal remodeling consumes a tremendous amount of energy to provide skeletal scaffolding, support muscle movement, store vital minerals, and maintain a niche for hematopoiesis, which are processes that also contribute to overall metabolic balance. Although skeletal innervation has been described for centuries, recent work has shown that skeletal metabolism is tightly regulated by the nervous system and that skeletal interoception regulates bone homeostasis. Here, we provide a general discussion of interoception and its effects on the skeleton and whole-body metabolism. We also discuss skeletal interoception-mediated regulation in the context of pathological conditions and skeletal pain as well as future challenges to our understanding of these process and how they can be leveraged for more effective therapy.
Collapse
Affiliation(s)
- Xiao Lv
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Feng Gao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
5
|
Chen H, Hu B, Lv X, Zhu S, Zhen G, Wan M, Jain A, Gao B, Chai Y, Yang M, Wang X, Deng R, Wang L, Cao Y, Ni S, Liu S, Yuan W, Chen H, Dong X, Guan Y, Yang H, Cao X. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun 2019; 10:181. [PMID: 30643142 PMCID: PMC6331599 DOI: 10.1038/s41467-018-08097-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
Whether sensory nerve can sense bone density or metabolic activity to control bone homeostasis is unknown. Here we found prostaglandin E2 (PGE2) secreted by osteoblastic cells activates PGE2 receptor 4 (EP4) in sensory nerves to regulate bone formation by inhibiting sympathetic activity through the central nervous system. PGE2 secreted by osteoblasts increases when bone density decreases as demonstrated in osteoporotic animal models. Ablation of sensory nerves erodes the skeletal integrity. Specifically, knockout of the EP4 gene in the sensory nerves or cyclooxygenase-2 (COX2) in the osteoblastic cells significantly reduces bone volume in adult mice. Sympathetic tone is increased in sensory denervation models, and propranolol, a β2-adrenergic antagonist, rescues bone loss. Furthermore, injection of SW033291, a small molecule to increase PGE2 level locally, significantly boostes bone formation, whereas the effect is obstructed in EP4 knockout mice. Thus, we show that PGE2 mediates sensory nerve to control bone homeostasis and promote regeneration.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Bo Hu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiao Lv
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shouan Zhu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gehua Zhen
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Amit Jain
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Bo Gao
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yu Chai
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mi Yang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yong Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shen Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Wen Yuan
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Huajiang Chen
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xinzhong Dong
- Howard Hughes Medical Institute and The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Huilin Yang
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, P. R. China.
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Li Y, Yuan J, Wang Q, Sun L, Sha Y, Li Y, Wang L, Wang Z, Ma Y, Cao H. The collective influence of 1, 25-dihydroxyvitamin D 3 with physiological fluid shear stress on osteoblasts. Steroids 2018; 129:9-16. [PMID: 29155218 DOI: 10.1016/j.steroids.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/23/2017] [Accepted: 11/12/2017] [Indexed: 11/27/2022]
Abstract
1, 25-dihydroxyvitamin D3 (1, 25 (OH)2 D3) and mechanical stimuli in physiological environment contributes greatly to osteoporosis pathogenesis. Wide investigations have been conducted on how 1, 25-dihydroxyvitamin D3 and mechanical stimuli separately impact osteoblasts. This study reports the collective influences of 1, 25-dihydroxyvitamin D3 and flow shear stress (FSS) on biological functions of osteoblasts. 1, 25 (OH)2 D3 were prepared in various kinds of concentrations (0, 1, 10, 100 nmmol/L), while physiological fluid shear stress (12 dynes/cm2) was produced by using a parallel-plate fluid flow system. 1, 25 (OH)2 D3 affects the responses of ROBs to FSS, including the inhibition of NO release and cell proliferation as well as the promotion of PGE2 release and cell differentiation. These findings provide a possible mechanism by which 1, 25(OH)2 D3 influences osteoblasts' responses to FSS, thus most probably providing guidance for the selection of 1, 25(OH)2 D3 concentration and mechanical loading in order to produce functional bone tissues in vitro.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China.
| | - Jiafeng Yuan
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Qianwen Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lijie Sun
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yunying Sha
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yanxiang Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lizhong Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Zhonghua Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yonggang Ma
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Hui Cao
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Multiple dietary components have the potential to positively affect bone mineral density in early life and reduce loss of bone mass with aging. In addition, regular weight-bearing physical activity has a strong positive effect on bone through activation of osteocyte signaling. We will explore possible synergistic effects of dietary components and mechanical stimuli for bone health by identifying dietary components that have the potential to alter the response of osteocytes to mechanical loading. RECENT FINDINGS Several (sub)cellular aspects of osteocytes determine their signaling towards osteoblasts and osteoclasts in response to mechanical stimuli, such as the osteocyte cytoskeleton, estrogen receptor α, the vitamin D receptor, and the architecture of the lacunocanalicular system. Potential modulators of these features include 1,25-dihydroxy vitamin D3, several forms of vitamin K, and the phytoestrogen genistein. Multiple dietary components potentially affect osteocyte function and therefore may have a synergistic effect on bone health when combined with a regime of physical activity.
Collapse
Affiliation(s)
- Hubertine M E Willems
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Sherk VD, Carpenter RD, Giles ED, Higgins JA, Oljira RM, Johnson GC, Mills S, Maclean PS. Ibuprofen before Exercise Does Not Prevent Cortical Bone Adaptations to Training. Med Sci Sports Exerc 2017; 49:888-895. [PMID: 28079706 DOI: 10.1249/mss.0000000000001194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a nonsteroidal anti-inflammatory drug (NSAID) before a single bout of mechanical loading can reduce bone formation response. It is unknown whether this translates to an attenuation of bone strength and structural adaptations to exercise training. PURPOSE This study aimed to determine whether nonsteroidal anti-inflammatory drug use before exercise prevents increases in bone structure and strength in response to weight-bearing exercise. METHODS Adult female Wistar rats (n = 43) were randomized to ibuprofen (IBU) or vehicle (VEH) and exercise (EX) or sedentary (SED) groups in a 2 × 2 (drug and activity) ANCOVA design with body weight as the covariate, and data are reported as mean ± SE. IBU drops (30 mg·kg BW) or VEH (volume equivalent) were administered orally 1 h before the bout of exercise. Treadmill running occurred 5 d·wk for 60 min·d at 20 m·min with a 5° incline for 12 wk. Micro-CT, mechanical testing, and finite element modeling were used to quantify bone characteristics. RESULTS Drug-activity interactions were not significant. Exercise increased tibia cortical cross-sectional area (EX = 5.67 ± 0.10, SED = 5.37 ± 0.10 mm, P < 0.01) and structural estimates of bone strength (Imax: EX = 5.16 ± 0.18, SED = 4.70 ± 0.18 mm, P < 0.01; SecModPolar: EX = 4.01 ± 0.11, SED = 3.74 ± 0.10 mm, P < 0.01). EX had increased failure load (EX = 243 ± 9, SED = 202 ± 7 N, P < 0.05) and decreased distortion in response to a 200-N load (von Mises stress at tibia-fibula junction: EX = 48.2 ± 1.3, SED = 51.7 ± 1.2 MPa, P = 0.01). There was no effect of ibuprofen on any measurement tested. Femur results revealed similar patterns. CONCLUSION Ibuprofen before exercise did not prevent the skeletal benefits of exercise in female rats. However, exercise that engenders higher bone strains may be required to detect an effect of ibuprofen.
Collapse
Affiliation(s)
- Vanessa D Sherk
- 1Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; 2Department of Mechanical Engineering, University of Colorado Denver, Denver, CO; and 3Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shingaki T, Katayama Y, Nakaoka T, Takashima T, Onoe K, Okauchi T, Hayashinaka E, Wada Y, Cui Y, Watanabe Y. Exploration of Antiemetics for Osteoporosis Therapy-Induced Nausea and Vomiting Using PET Molecular Imaging Analysis to Gastrointestinal Pharmacokinetics. Pharm Res 2016; 33:1235-48. [PMID: 26869173 DOI: 10.1007/s11095-016-1868-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/01/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE To select appropriate antiemetics relieving teriparatide-induced nausea and vomiting during osteoporosis treatment using PET molecular imaging and pharmacokinetic analysis. METHODS Rats were pretreated with subcutaneous teriparatide, followed by oral administration of antiemetics with different pharmacological effects. The pharmacokinetics of antiemetics were assessed by oral administration of 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) under free moving conditions in vivo. The effect of teriparatide on the permeability of Caco-2 cell membranes to [(18)F]FDG was assessed in vitro. The effects of antiemetics on teriparatide-induced suppression of gastrointestinal motility in vivo was assayed by positron emission tomography (PET) using orally administered [(18)F]FDG. RESULTS Teriparatide delayed the time-radioactivity profile of [(18)F]FDG in blood and significantly reduced its absorption rate constant (k a ), determined from non-compartmental analysis, to 60% of control. In contrast, co-administration of granisetron or mosapride restored the time-radioactivity profile and k a of [(18)F]FDG to control levels. Teriparatide had no effect on Caco-2 membrane permeability to [(18)F]FDG. Pharmacokinetic PET imaging data analysis quantitatively showed the pharmacological effects of teriparatide-induced suppression of upper gastrointestinal motility and its restoration by granisetron and mosapride. CONCLUSIONS Teriparatide-induced abdominal discomfort might be attributed to GI motility, and PET imaging analysis is a useful tool to for the selection of appropriate antiemetics.
Collapse
Affiliation(s)
- Tomotaka Shingaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yumiko Katayama
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takayoshi Nakaoka
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Tadayuki Takashima
- RIKEN Center for Molecular Imaging Sciences, reorganized to RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Kayo Onoe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takashi Okauchi
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Emi Hayashinaka
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yilong Cui
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
10
|
van der Meijden K, Bakker AD, van Essen HW, Heijboer AC, Schulten EAJM, Lips P, Bravenboer N. Mechanical loading and the synthesis of 1,25(OH)2D in primary human osteoblasts. J Steroid Biochem Mol Biol 2016; 156:32-9. [PMID: 26625962 DOI: 10.1016/j.jsbmb.2015.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/26/2015] [Accepted: 11/22/2015] [Indexed: 11/17/2022]
Abstract
The metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D) is synthesized from its precursor 25-hydroxyvitamin D (25(OH)D) by human osteoblasts leading to stimulation of osteoblast differentiation in an autocrine or paracrine way. Osteoblast differentiation is also stimulated by mechanical loading through activation of various responses in bone cells such as nitric oxide signaling. Whether mechanical loading affects osteoblast differentiation through an enhanced synthesis of 1,25(OH)2D by human osteoblasts is still unknown. We hypothesized that mechanical loading stimulates the synthesis of 1,25(OH)2D from 25(OH)D in primary human osteoblasts. Since the responsiveness of bone to mechanical stimuli can be altered by various endocrine factors, we also investigated whether 1,25(OH)2D or 25(OH)D affect the response of primary human osteoblasts to mechanical loading. Primary human osteoblasts were pre-incubated in medium with/without 25(OH)D3 (400 nM) or 1,25(OH)2D3 (100 nM) for 24h and subjected to mechanical loading by pulsatile fluid flow (PFF). The response of osteoblasts to PFF was quantified by measuring nitric oxide, and by PCR analysis. The effect of PFF on the synthesis of 1,25(OH)2D3 was determined by subjecting osteoblasts to PFF followed by 24h post-incubation in medium with/without 25(OH)D3 (400 nM). We showed that 1,25(OH)2D3 reduced the PFF-induced NO response in primary human osteoblasts. 25(OH)D3 did not significantly alter the NO response of primary human osteoblasts to PFF, but 25(OH)D3 increased osteocalcin and RANKL mRNA levels, similar to 1,25(OH)2D3. PFF did not increase 1,25(OH)2D3 amounts in our model, even though PFF did increase CYP27B1 mRNA levels and reduced VDR mRNA levels. CYP24 mRNA levels were not affected by PFF, but were strongly increased by both 25(OH)D3 and 1,25(OH)2D3. In conclusion, 1,25(OH)2D3 may affect the response of primary human osteoblasts to mechanical stimuli, at least with respect to NO production. Mechanical stimuli may affect local vitamin D metabolism in primary human osteoblasts. Our results suggest that 1,25(OH)2D3 and mechanical loading, both stimuli of the differentiation of osteoblasts, interact at the cellular level.
Collapse
Affiliation(s)
- K van der Meijden
- Department of Internal Medicine/Endocrinology, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands
| | - A D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA) and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | - H W van Essen
- Department of Clinical Chemistry, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands
| | - A C Heijboer
- Department of Clinical Chemistry, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands
| | - E A J M Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - P Lips
- Department of Internal Medicine/Endocrinology, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands
| | - N Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Gohin S, Carriero A, Chenu C, Pitsillides AA, Arnett TR, Marenzana M. The anabolic action of intermittent parathyroid hormone on cortical bone depends partly on its ability to induce nitric oxide-mediated vasorelaxation in BALB/c mice. Cell Biochem Funct 2016; 34:52-62. [PMID: 26834008 PMCID: PMC4949522 DOI: 10.1002/cbf.3164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/17/2015] [Accepted: 01/01/2016] [Indexed: 11/21/2022]
Abstract
There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L‐NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1–34] (80 µg/kg/day) or L‐NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro‐CT, histomorphometry and three‐point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co‐treatment with L‐NAME blocked the action of PTH on blood flow, whereas L‐NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co‐treatment with L‐NAME restricted the PTH‐stimulated increase in cortical bone formation but had no clear‐cut effects in trabecular bone. Co‐treatment with L‐NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO‐mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- S Gohin
- Department of Bioengineering, Imperial College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK.,Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - A Carriero
- Department of Biomedical Engineering, Florida Institute of Technology, Florida, USA
| | - C Chenu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - A A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - T R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - M Marenzana
- Department of Bioengineering, Imperial College London, London, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
An Experimental and Computational Investigation of Bone Formation in Mechanically Loaded Trabecular Bone Explants. Ann Biomed Eng 2015. [DOI: 10.1007/s10439-015-1378-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Birmingham E, Kreipke TC, Dolan EB, Coughlin TR, Owens P, McNamara LM, Niebur GL, McHugh PE. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann Biomed Eng 2014; 43:1036-50. [PMID: 25281407 DOI: 10.1007/s10439-014-1135-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/20/2014] [Indexed: 11/25/2022]
Abstract
Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters.
Collapse
Affiliation(s)
- E Birmingham
- Biomechanics Research Centre (BMEC), Mechanical and Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, 2nd Floor Engineering Building, Galway, Ireland,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shirakawa J, Ezura Y, Moriya S, Kawasaki M, Yamada T, Notomi T, Nakamoto T, Hayata T, Miyawaki A, Omura K, Noda M. Migration Linked to FUCCI-Indicated Cell Cycle Is Controlled by PTH and Mechanical Stress. J Cell Physiol 2014; 229:1353-8. [DOI: 10.1002/jcp.24605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Jumpei Shirakawa
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
- Department of Oral and Maxillofacial Surgery; Tokyo Medical and Dental University; Tokyo Japan
- Global COE Program; Tokyo Medical and Dental University; Tokyo Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Shuichi Moriya
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
- Global COE Program; Tokyo Medical and Dental University; Tokyo Japan
| | - Takayuki Yamada
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
- Global COE Program; Tokyo Medical and Dental University; Tokyo Japan
| | - Takuya Notomi
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Tetsuya Nakamoto
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics; Brain Science Institute; RIKEN; Tokyo Japan
| | - Ken Omura
- Department of Oral and Maxillofacial Surgery; Tokyo Medical and Dental University; Tokyo Japan
- Global COE Program; Tokyo Medical and Dental University; Tokyo Japan
| | - Masaki Noda
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
- Global COE Program; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
15
|
Falcai MJ, Zamarioli A, Okubo R, de Paula FJA, Volpon JB. The osteogenic effects of swimming, jumping, and vibration on the protection of bone quality from disuse bone loss. Scand J Med Sci Sports 2014; 25:390-7. [PMID: 24779886 DOI: 10.1111/sms.12240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
Abstract
We assessed and compared the effects of swimming, jumping, and vibration therapies on the prevention of bone loss because of unloading. Eighty Wistar rats were randomly divided into eight groups: S, permanent hind limb-suspended rats; CON, control rats; S + Swim, unloading interrupted by swimming exercise; S + C(Swim), suspension interrupted by regular weight-bearing with the same duration as in the S + Swim protocol; S + Jump, unloading interrupted by jumping exercise; S + C(Jump), suspension interrupted for regular weight-bearing as in the S + Jump group; S + Vibr, unloading interrupted by vibration; and S + C(Vibr), suspension with interruptions for regular weight-bearing with the same protocol as that used for the S + Vibr rats. At the end of the experiment, the bone mineral density, bone strength, histomorphometric parameters, and serum levels of the bone markers were analyzed. The hind limb-suspended rats exhibited bone quality loss. In contrast, the trained rats showed a significant increase in bone mass, bone strength, bone formation, and serum levels of bone markers compared with the respective controls. Although we did not find a significant difference among the three physical exercises, the osteogenic effect of vibration was slightly lower than that of swimming and jumping. Thus, all physical exercises were efficient in preventing bone loss because of unloading and preserving bone quality.
Collapse
Affiliation(s)
- M J Falcai
- Laboratory of Bioengineering, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - A Zamarioli
- Laboratory of Bioengineering, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - R Okubo
- Laboratory of Bioengineering, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - F J A de Paula
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J B Volpon
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Computational Modelling of the Mechanics of Trabecular Bone and Marrow Using Fluid Structure Interaction Techniques. Ann Biomed Eng 2012; 41:814-26. [DOI: 10.1007/s10439-012-0714-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
17
|
Rego EB, Inubushi T, Kawazoe A, Miyauchi M, Tanaka E, Takata T, Tanne K. Effect of PGE2 induced by compressive and tensile stresses on cementoblast differentiation in vitro. Arch Oral Biol 2011; 56:1238-46. [DOI: 10.1016/j.archoralbio.2011.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
|
18
|
Rauh J, Milan F, Günther KP, Stiehler M. Bioreactor Systems for Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:263-80. [DOI: 10.1089/ten.teb.2010.0612] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juliane Rauh
- Department of Orthopedics and Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Falk Milan
- Department of Orthopedics and Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Klaus-Peter Günther
- Department of Orthopedics and Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Maik Stiehler
- Department of Orthopedics and Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
19
|
Physiologically based mathematical model of transduction of mechanobiological signals by osteocytes. Biomech Model Mechanobiol 2011; 11:83-93. [DOI: 10.1007/s10237-011-0294-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
|
20
|
Wu M, Fannin J, Rice KM, Wang B, Blough ER. Effect of aging on cellular mechanotransduction. Ageing Res Rev 2011; 10:1-15. [PMID: 19932197 DOI: 10.1016/j.arr.2009.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 12/27/2022]
Abstract
Aging is becoming a critical heath care issue and a burgeoning economic burden on society. Mechanotransduction is the ability of the cell to sense, process, and respond to mechanical stimuli and is an important regulator of physiologic function that has been found to play a role in regulating gene expression, protein synthesis, cell differentiation, tissue growth, and most recently, the pathophysiology of disease. Here we will review some of the recent findings of this field and attempt, where possible, to present changes in mechanotransduction that are associated with the aging process in several selected physiological systems, including musculoskeletal, cardiovascular, neuronal, respiratory systems and skin.
Collapse
|
21
|
Bergmann P, Body JJ, Boonen S, Boutsen Y, Devogelaer JP, Goemaere S, Kaufman J, Reginster JY, Rozenberg S. Loading and skeletal development and maintenance. J Osteoporos 2010; 2011:786752. [PMID: 21209784 PMCID: PMC3010667 DOI: 10.4061/2011/786752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/06/2010] [Indexed: 12/12/2022] Open
Abstract
Mechanical loading is a major regulator of bone mass and geometry. The osteocytes network is considered the main sensor of loads, through the shear stress generated by strain induced fluid flow in the lacuno-canalicular system. Intracellular transduction implies several kinases and phosphorylation of the estrogen receptor. Several extra-cellular mediators, among which NO and prostaglandins are transducing the signal to the effector cells. Disuse results in osteocytes apoptosis and rapid imbalanced bone resorption, leading to severe osteoporosis. Exercising during growth increases peak bone mass, and could be beneficial with regards to osteoporosis later in life, but the gain could be lost if training is abandoned. Exercise programs in adults and seniors have barely significant effects on bone mass and geometry at least at short term. There are few data on a possible additive effect of exercise and drugs in osteoporosis treatment, but disuse could decrease drugs action. Exercise programs proposed for bone health are tedious and compliance is usually low. The most practical advice for patients is to walk a minimum of 30 to 60 minutes per day. Other exercises like swimming or cycling have less effect on bone, but could reduce fracture risk indirectly by maintaining muscle mass and force.
Collapse
Affiliation(s)
- P. Bergmann
- Department of Nuclear Medicine, Laboratory of Clinical Chemistry and Experimental Medicine, CHU Brugmann, Université Libre de Bruxelles, 4 Pl. Van Gehuchten, 1020 Brussels, Belgium,*P. Bergmann:
| | - J. J. Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - S. Boonen
- Division of Gerontology and Geriatrics, Center for Musculoskeletal Research, Department of Experimental Medicine, Catholic Leuven University, 3000 Leuven, Belgium
| | - Y. Boutsen
- Department of Rheumatology, Mont-Godinne University Hospital, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - J. P. Devogelaer
- Rheumatology Unit, Saint-Luc University Hospital, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - S. Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - J. Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - J. Y. Reginster
- Department of Public Health Sciences, University of Liège, 4000 Liège, Belgium
| | - S. Rozenberg
- Department of Gynaecology-Obstetrics, Free University of Brussels, 1090 Brussels, Belgium
| |
Collapse
|
22
|
Bonnet N, Ferrari SL. Exercise and the skeleton: How it works and what it really does. ACTA ACUST UNITED AC 2010. [DOI: 10.1138/20100454] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte Mechanobiology and Pericellular Mechanics. Annu Rev Biomed Eng 2010; 12:369-400. [PMID: 20617941 DOI: 10.1146/annurev-bioeng-070909-105302] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Christopher R. Jacobs
- Department of Biomedical Engineering, Columbia University, New York, New York 10027;
| | - Sara Temiyasathit
- Bioengineering and Mechanical Engineering, Stanford University, Stanford, California 94305
| | - Alesha B. Castillo
- Bone and Joint Center, Department of Rehabilitation Research and Development, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
24
|
Vainionpää A, Korpelainen R, Väänänen HK, Haapalahti J, Jämsä T, Leppäluoto J. Effect of impact exercise on bone metabolism. Osteoporos Int 2009; 20:1725-33. [PMID: 19262975 DOI: 10.1007/s00198-009-0881-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
SUMMARY Regular impact exercise in premenopausal women caused positive osteogenic effects associated to low basal serum parathormone (PTH) but had no effects on bone turnover markers PINP or TRACP5b. The low serum basal PTH levels during impact exercise may be a sign of increased incorporation of calcium to bone. INTRODUCTION This study aimed to determine the long-term effects of high-impact exercise on bone turnover and calciotropic hormones. METHODS We performed a 12-month population-based, randomized, controlled exercise trial in 120 women (age 35-40 years) randomly assigned to an exercise group (EG; n = 60) or a control group (CG; n = 60). The exercise regimen consisted of supervised high-impact exercises three times per week. Daily impact loading was assessed by using an accelerometer. Bone turnover markers and calciotropic hormones were analyzed at 0, 6, and 12 months. RESULTS Twelve months of impact exercise did not reveal any treatment effects in bone turnover markers PINP or TRAPC5b, whereas serum basal PTH decreased significantly more in the EG than in the CG (-11.2 vs. -2.2 pg/mL; p = 0.03). The change in PTH was dose dependent and most clearly seen in subjects with 96 to 130 daily impacts at 2.5 to 5.3 g (e.g., running or jumping). CONCLUSIONS Regular impact exercise does not cause persistent alterations in bone turnover emphasizing necessity of continuous training to achieve bone benefits. Impact exercise training lowers the serum basal PTH levels and possibly enables greater difference between the basal PTH and transient exercise-induced PTH peaks leading to osteogenic effects.
Collapse
Affiliation(s)
- A Vainionpää
- Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
25
|
A Trabecular Bone Explant Model of Osteocyte-Osteoblast Co-Culture for Bone Mechanobiology. Cell Mol Bioeng 2009; 2:405-415. [PMID: 20827376 DOI: 10.1007/s12195-009-0075-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be interconnected with seeded osteoblasts on the bone surface. Using a low-level medium perfusion system, the viability of in situ osteocytes in bone explants was maintained for up to 4 weeks, and functional gap junction intercellular communication (GJIC) was successfully established between osteocytes and seeded primary osteoblasts. Using this novel co-culture model, the effects of dynamic deformational loading, GJIC, and prostaglandin E(2) (PGE(2)) release on functional bone adaptation were further investigated. The results showed that dynamical deformational loading can significantly increase the PGE(2) release by bone cells, bone formation, and the apparent elastic modulus of bone explants. However, the inhibition of gap junctions or the PGE(2) pathway dramatically attenuated the effects of mechanical loading. This 3D trabecular bone explant co-culture model has great potential to fill in the critical gap in knowledge regarding the role of osteocytes as a mechano-sensor and how osteocytes transmit signals to regulate osteoblasts function and skeletal integrity as reflected in its mechanical properties.
Collapse
|
26
|
Jungreuthmayer C, Donahue SW, Jaasma MJ, Al-Munajjed AA, Zanghellini J, Kelly DJ, O'Brien FJ. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors. Tissue Eng Part A 2009; 15:1141-9. [PMID: 18831686 DOI: 10.1089/ten.tea.2008.0204] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increasing demand for bone grafts, combined with their limited availability and potential risks, has led to much new research in bone tissue engineering. Current strategies of bone tissue engineering commonly use cell-seeded scaffolds and flow perfusion bioreactors to stimulate the cells to produce bone tissue suitable for implantation into the patient's body. The aim of this study was to quantify and compare the wall shear stresses in two bone tissue engineering scaffold types (collagen-glycosaminoglycan (CG) and calcium phosphate) exposed to fluid flow in a perfusion bioreactor. Based on micro-computed tomography images, three-dimensional numerical computational fluid dynamics (CFD) models of the two scaffold types were developed to calculate the wall shear stresses within the scaffolds. For a given flow rate (normalized according to the cross-sectional area of the scaffolds), shear stress was 2.8 times as high in the CG as in the calcium-phosphate scaffold. This is due to the differences in scaffold geometry, particularly the pore size (CG pore size approximately 96 microm, calcium phosphate pore size approximately 350 microm). The numerically obtained results were compared with those from an analytical method that researchers use widely experimentalists to determine perfusion flow rates in bioreactors. Our CFD simulations revealed that the cells in both scaffold types were exposed to a wide range of wall shear stresses throughout the scaffolds and that the analytical method predicted shear stresses 12% to 21% greater than those predicted using the CFD method. This study demonstrated that the wall shear stresses in calcium phosphate scaffolds (745.2 mPa) are approximately 40 times as high as in CG scaffolds (19.4 mPa) when flow rates are applied that have been experimentally used to stimulate the release of prostaglandin E(2). These findings indicate the importance of using accurate computational models to estimate shear stress and determine experimental conditions in perfusion bioreactors for tissue engineering.
Collapse
|
27
|
Zhang YL, Frangos JA, Chachisvilis M. Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 2009; 296:C1391-9. [PMID: 19369447 DOI: 10.1152/ajpcell.00549.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular mechanisms by which bone cells transduce mechanical stimuli into intracellular biochemical responses have yet to be established. There is evidence that mechanical stimulation acts synergistically with parathyroid hormone PTH(1-34) in mediating bone growth. Using picosecond time-resolved fluorescence microscopy and G protein-coupled receptor conformation-sensitive fluorescence resonance energy transfer (FRET), we investigated conformational transitions in parathyroid hormone type 1 receptor (PTH1R). 1) A genetically engineered PTH1R sensor containing an intramolecular FRET pair was constructed that enabled detection of conformational activity of PTH1R in single cells. 2) The nature of ligand-dependent conformational change of PTH1R depends on the type of ligand: stimulation with the PTH(1-34) leads to conformational transitions characterized by decrease in FRET efficiency while NH(2)-terminal truncated ligand PTH(3-34) stimulates conformational transitions characterized by higher FRET efficiencies. 3) Stimulation of murine preosteoblastic cells (MC3T3-E1) with fluid shear stress (FSS) leads to significant changes in conformational equilibrium of the PTH1R in MC3T3-E1 cells, suggesting that mechanical perturbation of the plasma membrane leads to ligand-independent response of the PTH1R. Conformational transitions induced by mechanical stress were characterized by an increase in FRET efficiency, similar to those induced by the NH(2)-terminal truncated ligand PTH(3-34). The response to the FSS stimulation was inhibited in the presence of PTH(1-34) in the flow medium. These results indicate that the FSS can modulate the action of the PTH(1-34) ligand. 4) Plasma membrane fluidization using benzyl alcohol or cholesterol extraction also leads to conformational transitions characterized by increased FRET levels. We therefore suggest that PTH1R is involved in mediating primary mechanochemical signal transduction in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Yan-Liang Zhang
- La Jolla Bioengineering Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
28
|
Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 2009; 17:473-81. [PMID: 18974013 DOI: 10.1016/j.joca.2008.09.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/12/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVES In osteoarthritis (OA), mechanical factors play a key role, not only in cartilage degradation, but also in subchondral bone sclerosis. The aim of this study was to develop on original compression model for studying the effect of mechanical stress on osteoblasts. MATERIALS AND METHODS We investigate the effects of compression on primary calvaria osteoblasts isolated from newborn mice and cultured for 28 days in monolayer. At the end of this period, osteoblasts were embedded in a newly synthesized extracellular matrix which formed a three-dimensional membrane. This membrane was then submitted to compression in Biopress Flexercell plates (1-1.7 MPa compressions at 1 Hz frequency) during 1-8h. The expression of 20 genes was investigated by real time reverse transcriptase polymerase chain reaction. Interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and prostaglandin (PG)E(2) were assayed in the culture medium by specific immunoassays. RESULTS The compression highly increased IL-6 and cyclooxygenase (COX)-2 mRNA levels in osteoblasts. In parallel, increased amount of IL-6 and PGE(2) was found in the supernatant of loaded osteoblasts. This stimulation reached a maximum after 4h of 10% compression. MMP-2, MMP-3, and MMP-13 mRNA levels were also increased by compressive stress, while 15-hydroxyprostaglandin-dehydrogenase and osteoprotegerin (OPG) start to decrease at hour 4. COX-1, microsomial PG E synthase-1 (mPGES1), mPGES2 and cytosolic PGES and receptor activator of nuclear factor ligand (RANKL) were unmodified. Finally, we observed that alpha 5 beta 1 integrin, intracellular Ca(++), nuclear factor-kappaB and extracellular signal-regulated kinase 1/2 pathways were involved in the compression-induced IL-6 and PGE(2) production. IL-6 neutralizing antibodies and piroxicam inhibited the decrease OPG expression, but did not modify RANKL mRNA level, indicating that IL-6 and PGE(2) induce a decrease of the OPG/RANKL ratio. CONCLUSION This work demonstrates that IL-6 is mechano-sensitive cytokine and probably a key factor in the biomechanical control of bone remodeling in OA.
Collapse
Affiliation(s)
- C Sanchez
- Bone and Cartilage Metabolism Research Unit, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Gardner MJ, van der Meulen MCH, Carson J, Zelken J, Ricciardi BF, Wright TM, Lane JM, Bostrom MP. Role of parathyroid hormone in the mechanosensitivity of fracture healing. J Orthop Res 2007; 25:1474-80. [PMID: 17568439 PMCID: PMC2948234 DOI: 10.1002/jor.20427] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanical environment at a fracture site can influence the course of healing. Intermittent parathyroid hormone (PTH) has been shown to accelerate fracture healing. Intact bone models show that mechanical loading and PTH have a synergistic beneficial effect on osteogenesis. We hypothesized that PTH and mechanical loading would have a similar synergistic effect on fracture healing. Eighty mice underwent surgical osteotomy and intramedullary nailing of the tibia. The mice were divided into four groups: one underwent daily loading, one received daily subcutaneous PTH injections (30 microg/kg/day), one received both loading and PTH, and a control group received sham loading and vehicle injection. Daily loading was applied to the ends of the tibia with an external loading device for 2 weeks. Fracture healing was assessed by microcomputed tomography, histology, and biomechanical testing. The group with both loading and PTH had increased osteoblast and osteoclast activity and was the only group with a significantly larger callus mineral density and bone volume fraction. The PTH only group had significantly more osteoid in the callus compared to the control group, indicating enhanced early osteoblast activity. This group also had a significantly higher bone mineral content and total bone volume compared to controls. The group that received loading as the only intervention had significantly greater osteoclast activity versus controls. The contribution of loading and PTH administration to the fracture healing cascade indicates a synergistic effect. This finding may be of potential clinical utility when weight bearing is utilized to stimulate lower extremity fracture healing.
Collapse
Affiliation(s)
- Michael J Gardner
- Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Devlin MJ, Lieberman DE. Variation in estradiol level affects cortical bone growth in response to mechanical loading in sheep. ACTA ACUST UNITED AC 2007; 210:602-13. [PMID: 17267646 DOI: 10.1242/jeb.02675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although mechanical loading can stimulate cortical bone growth, little is known about how individual physiology affects this response. This study demonstrates that in vivo variation in estradiol (E2) level alters osteoblast sensitivity to exercise-induced strains, affecting cortical bone responses to mechanical loading. Subadult sheep were divided into treatment groups that varied in terms of circulating E2 levels and loading (exercised and sedentary). After 45 days, periosteal cortical bone growth rates and cross-sectional properties were measured at the midshafts of hindlimb bones and compared with strain data. The results indicate significant interactions between E2 and strain. Cortical bone growth in exercised animals with elevated E2 levels was 27% greater in the femur, 6% greater in the tibia, and 14% greater in the metatarsal than in exercised animals with lower E2 levels, or sedentary animals regardless of E2 dose (P<0.05). There was also a trend toward greater resistance to deformation in the tibia, but not the metatarsal, in the exercised, high-E2 group compared to the other treatment groups. These results demonstrate that E2 plays a role in mediating skeletal responses to strain, such that physiological variation in E2 levels among individuals may lead to differential growth responses to similar mechanical loading regimes. Efforts to model the relationship between environmental strain and bone morphology should include the effects of physiological variation in hormone levels.
Collapse
Affiliation(s)
- Maureen J Devlin
- Department of Anthropology, Peabody Museum, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
32
|
Lossdörfer S, Götz W, Jäger A. Parathyroid hormone modifies human periodontal ligament cell proliferation and survival in vitro. J Periodontal Res 2007; 41:519-26. [PMID: 17076776 DOI: 10.1111/j.1600-0765.2006.00899.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament (PDL) cells show traits that are typical of osteoblasts, such as osteoblastic marker gene expression and the ability to respond to parathyroid hormone (PTH) stimulation in an osteoblast-like manner with respect to differentiation and local factor production. In the present study, we hypothesized that human PDL cells might respond to PTH stimulation with changes in proliferation and cell survival and thereby provide another mechanism by which PTH might affect the reparative potential of PDL cells. We speculated that the maturation state of the cells and the mode of PTH(1-34) administration would have an impact on the cellular response. MATERIAL AND METHODS PDL cells were challenged with PTH(1-34) intermittently or continuously at different maturation states. Cell number, 5-bromo-2-deoxyuridine (BrdU) incorporation, DNA fragmentation, nitric oxide production and the duration of the PTH(1-34) effect were determined. RESULTS Intermittent PTH(1-34) treatment of preconfluent cells caused a significant increase in proliferation and DNA fragmentation, whereas in more mature cells, proliferation was less enhanced while apoptosis was more pronounced than in immature cells. Continuous PTH(1-34) exposure did not alter proliferation in any maturation state but increased DNA fragmentation in preconfluent cells. PTH(1-34) prevented etoposide-induced apoptosis after 6 h but no longer after 24 h. Nitric oxide production was unaffected. CONCLUSION These results indicate that human PDL cells respond to PTH(1-34) with changes in proliferative and apoptotic signaling in a maturation-state-dependent manner. Besides changes in local factor production, these findings provide a further possible mechanism to support the idea that PDL cells possess the potential to be involved in the regulation of dental hard tissue repair.
Collapse
Affiliation(s)
- S Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Germany.
| | | | | |
Collapse
|
33
|
McNamara LM, Prendergast PJ. Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 2007; 40:1381-91. [PMID: 16930610 DOI: 10.1016/j.jbiomech.2006.05.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
Biomechanical theories to predict bone remodelling have used either mechanical strain or microdamage as the stimulus driving cellular responses. Even though experimental data have implicated both stimuli in bone cell regulation, a mechano-regulatory system incorporating both stimuli has not yet been proposed. In this paper, we test the hypothesis that bone remodelling may be regulated by signals due to both strain and microdamage. Four mechano-regulation algorithms are studied where the stimulus is: strain, damage, combined strain/damage, and either strain or damage with damage-adaptive remodelling prioritised when damage is above a critical level. Each algorithm is implemented with both bone lining cell (surface) sensors and osteocyte cell (internal) sensors. Each algorithm is applied to prediction of a bone multicellular unit (BMU) remodelling on the surface of a bone trabecula. It is predicted that a regulatory system capable of responding to changes in either strain or microdamage but which prioritises removal of damaged bone when damage is above a critical level, is the only one that provides a plausible prediction of BMU behaviour. A mechanism for this may be that, below a certain damage threshold, osteocyte processes can sense changes in strain and fluid flow but above the threshold damage interferes with the signalling mechanism, or causes osteocyte apoptosis so that a remodelling response occurs to remove the dead osteocytes.
Collapse
Affiliation(s)
- Laoise M McNamara
- Trinity Centre for Bioengineering, School of Engineering, Parsons Building, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
34
|
Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 2006; 349:1-5. [PMID: 16930556 DOI: 10.1016/j.bbrc.2006.07.214] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 11/17/2022]
Abstract
Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca2+ channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus.
Collapse
Affiliation(s)
- Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Germany.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Bones serve several mechanical functions, including acoustic amplification in the middle ear, shielding vital organs from trauma, and serving as levers for muscles to contract against. Bone is a multiphase material made up of a tough collagenous matrix intermingled with rigid mineral crystals. The mineral gives bone its stiffness. Without sufficient mineralization, bones will plastically deform under load. Collagen provides toughness to bone making it less brittle so that it better resists fracture. Bone adapts to mechanical stresses largely by changing its size and shape, which are major determinants of its resistance to fracture. Tissue is added in regions of high mechanical stress providing an efficient means for improving bone strength. Experiments have shown that small additions of bone mineral density (BMD) (5-8%) caused by mechanical loading can improve bone strength by over 60% and extend bone fatigue life by 100-fold. Consequently, it is clear that bone tissue possesses a mechanosensing apparatus that directs osteogenesis to where it is most needed for improving bone strength. The biological processes involved in bone mechanotransduction are poorly understood and further investigation of the molecular mechanisms involved might uncover drug targets for osteoporosis. Several pathways are emerging from current research, including membrane ion channels, ATP signaling, second messengers, such as prostaglandins and nitric oxide, insulin-like growth factors, and Wnt signaling.
Collapse
Affiliation(s)
- Charles H Turner
- Orthopaedic Research Laboratories and Biomechanics and Biomaterials Research Center, Indiana University Purdue University at Indianapolis, 1120 South Drive, FH 115, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
Donahue SW, Galley SA, Vaughan MR, Patterson-Buckendahl P, Demers LM, Vance JL, McGee ME. Parathyroid hormone may maintain bone formation in hibernating black bears (Ursus americanus) to prevent disuse osteoporosis. J Exp Biol 2006; 209:1630-8. [PMID: 16621944 DOI: 10.1242/jeb.02185] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SUMMARY
Mechanical unloading of bone causes an imbalance in bone formation and resorption leading to bone loss and increased fracture risk. Black bears(Ursus americanus) are inactive for up to six months during hibernation, yet bone mineral content and strength do not decrease with disuse or aging. To test whether hibernating bears have biological mechanisms to prevent disuse osteoporosis, we measured the serum concentrations of hormones and growth factors involved in bone metabolism and correlated them with the serum concentration of a bone formation marker (osteocalcin). Serum was obtained from black bears over a 7-month duration that included periods of activity and inactivity. Both resorption and formation markers increased during hibernation, suggesting high bone turnover occurred during inactivity. However, bone formation appeared to be balanced with bone resorption. The serum concentration of parathyroid hormone (PTH) was higher in the hibernation(P=0.35) and post-hibernation (P=0.006) seasons relative to pre-hibernation levels. Serum leptin was lower (P<0.004)post-hibernation relative to pre-hibernation and hibernation periods. Insulin-like growth factor I (IGF-I) decreased (P<0.0001) during hibernation relative to pre-hibernation and reached its highest value during remobilization. There was no difference (P=0.64) in 25-OH vitamin D between the three seasons. Serum osteocalcin (bone formation marker) was significantly correlated with PTH, but not with leptin, IGF-I or 25-OH vitamin D. Osteocalcin and PTH were positively correlated when samples from all seasons were pooled and when only hibernation samples were considered, raising the possibility that the anabolic actions of PTH help maintain bone formation to prevent disuse osteoporosis. Prostaglandin E2 (PGE2)release from MC3T3 osteoblastic cells was significantly affected by treatment with bear serum from different seasons (i.e. hibernation versus active periods). The seasonal changes in PGE2 release showed trends similar to the seasonal changes in serum IGF-I. Since both PGE2 and IGF-I are associated with collagenous bone formation, it is possible that seasonal changes in a circulating factor influence IGF-I levels in vivo in bears and PGE2 release in osteoblastic cells in vitro. The significant decrease in serum leptin following arousal from hibernation may promote bone formation during remobilization, assuming there is a similar decrease in intracerebroventricular leptin. These findings support the idea that seasonal changes in the concentration of circulating molecules help regulate bone formation activity and may be important for preventing disuse osteoporosis in bears.
Collapse
Affiliation(s)
- Seth W Donahue
- Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Vance J, Galley S, Liu DF, Donahue SW. Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release. ACTA ACUST UNITED AC 2006; 11:1832-9. [PMID: 16411829 DOI: 10.1089/ten.2005.11.1832] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Josef Vance
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA
| | | | | | | |
Collapse
|
38
|
Maldonado S, Borchers S, Findeisen R, Allgöwer F. Mathematical modeling and analysis of force induced bone growth. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:3154-3157. [PMID: 17947010 DOI: 10.1109/iembs.2006.260532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bone is a dynamic living tissue that undergoes continuous adaptation of its mass and structure in response to mechanical and biological environment demands. Studies of bone adaptation have focused on metabolic or mechanical stimulus, but mathematical models of bone adaptation considering both, are not available by now. In this paper, we propose a mathematical model of bone adaptation during a remodeling cycle due to mechanical stimulus with the introduction of osteocytes as mechanotransducers. The model captures qualitatively very well the bone adaptation and cell interactions during the bone remodeling.
Collapse
|
39
|
Lavigne P, Benderdour M, Lajeunesse D, Reboul P, Shi Q, Pelletier JP, Martel-Pelletier J, Fernandes JC. Subchondral and trabecular bone metabolism regulation in canine experimental knee osteoarthritis. Osteoarthritis Cartilage 2005; 13:310-7. [PMID: 15780644 DOI: 10.1016/j.joca.2004.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 12/24/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine trabecular and subchondral bone metabolic changes in experimental canine osteoarthritis (OA). METHODS OA was induced in 19 dogs by transection of the anterior cruciate ligament (ACL) of the right knee through a stab wound. Dogs were sacrificed at 8 (n=7) and 12 weeks (n=12) after surgery. Non-operated normal dogs (n=6) were used as controls. After sacrifice, samples were obtained from the weight-bearing area of medial tibial plateaus. Explants and cell cultures were prepared from subchondral and trabecular bone. Osteocalcin (Oc), cellular alkaline phosphatase (ALPase), urokinase plasminogen-activator (uPA), prostaglandin E2 (PGE2), metalloproteinase (MMP) and nitric oxide (NO) were measured using standard procedures. RESULTS ALPase production was significantly increased only at week 12 in subchondral and trabecular bone, while an increase in Oc was noted at week 8. uPA and MMP activity were increased significantly at week 12 in subchondral bone, while PGE2 levels were significantly higher in subchondral and trabecular bone at week 12 compared to normal. A decrease in NO production appeared late at week 12 in trabecular bone, whereas NO levels from subchondral bone were significantly increased compared to normal at week 8. DISCUSSION Intense bone remodeling takes place in both subchondral and trabecular bone in the knee following ACL transection. This process seems to occur around week 12, although Oc and NO appeared to be involved earlier at 8 weeks. These results suggest that not only subchondral but also trabecular bone metabolism is altered in this OA model.
Collapse
Affiliation(s)
- P Lavigne
- Orthopaedic Research Laboratory, Centre de recherche, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Pearson OM, Lieberman DE. The aging of Wolff's ?law?: Ontogeny and responses to mechanical loading in cortical bone. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2004; Suppl 39:63-99. [PMID: 15605390 DOI: 10.1002/ajpa.20155] [Citation(s) in RCA: 368] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The premise that bones grow and remodel throughout life to adapt to their mechanical environment is often called Wolff's law. Wolff's law, however, is not always true, and in fact comprises a variety of different processes that are best considered separately. Here we review the molecular and physiological mechanisms by which bone senses, transduces, and responds to mechanical loads, and the effects of aging processes on the relationship (if any) between cortical bone form and mechanical function. Experimental and comparative evidence suggests that cortical bone is primarily responsive to strain prior to sexual maturity, both in terms of the rate of new bone growth (modeling) as well as rates of turnover (Haversian remodeling). Rates of modeling and Haversian remodeling, however, vary greatly at different skeletal sites. In addition, there is no simple relationship between the orientation of loads in long bone diaphyses and their cross-sectional geometry. In combination, these data caution against assuming without testing adaptationist views about form-function relationships in order to infer adult activity patterns from skeletal features such as cross-sectional geometry, cortical bones density, and musculo-skeletal stress markers. Efforts to infer function from shape in the human skeleton should be based on biomechanical and developmental models that are experimentally tested and validated.
Collapse
Affiliation(s)
- Osbjorn M Pearson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico 87198-1086, USA.
| | | |
Collapse
|