1
|
Shan W, Ding J, Xu J, Du Q, Chen C, Liao Q, Yang X, Lou J, Jin Z, Chen M, Xie R. Estrogen regulates duodenal glucose absorption by affecting estrogen receptor-α on glucose transporters. Mol Cell Endocrinol 2023:112028. [PMID: 37769868 DOI: 10.1016/j.mce.2023.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms of estrogen in glucose metabolism are well established; however, its role in glucose absorption remains unclear. In this study, we investigated the effects of estrogen on glucose absorption in humans, mice, and SCBN intestinal epithelial cells. We first observed a correlation between estrogen and blood glucose in young women and found that glucose tolerance was significantly less in the premenstrual phase than in the preovulatory phase. Similarly, with decreased serum estradiol levels in ovariectomized mice, estrogen receptors alpha (ERα) and beta (ERβ) in the duodenum were reduced, and weight and abdominal fat increased significantly. The expression of sodium/glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2) and glucose absorption in the duodenum decreased significantly. Estrogen significantly upregulated SGLT1 and GLUT2 expression in SCBN cells. Silencing of ERα, but not ERβ, reversed this trend, suggesting that ERα may be key to estrogen-regulating glucose transporters. A mechanistic study revealed that downstream, estrogen regulates the protein kinase C (PKC) pathway. Overall, our findings indicate that estrogen promotes glucose absorption, and estrogen and ERα deficiency can inhibit SGLT1 and GLUT2 expression through the PKC signaling pathway, thereby reducing glucose absorption.
Collapse
Affiliation(s)
- Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Changmei Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, Guizhou, 563003, China.
| |
Collapse
|
2
|
Guzewska MM, Myszczynski K, Heifetz Y, Kaczmarek MM. Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface. Cell Commun Signal 2023; 21:210. [PMID: 37596609 PMCID: PMC10436626 DOI: 10.1186/s12964-023-01221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane-coated nanoparticles secreted by almost all cell types in living organisms. EVs, as paracrine mediators, are involved in intercellular communication, immune response, and several reproductive events, including the maintenance of pregnancy. Using a domestic animal model (Sus scrofa) with an epitheliochorial, superficial type of placentation, we focused on EV biogenesis pathway at the embryo-maternal interface, when the embryonic signaling occurs for maternal recognition and the maintenance of pregnancy. RESULTS Transmission electron microscopy was used during early pregnancy to visualize EVs and apocrine and/or merocrine pathways of secretion. Immunofluorescent staining localized proteins responsible for EV biogenesis and cell polarization at the embryo-maternal interface. The expression profiles of genes involved in biogenesis and the secretion of EVs pointed to the possible modulation of endometrial expression by embryonic signals. Further in vitro studies showed that factors of embryonic origin can regulate the expression of the ESCRT-II complex and EV trafficking within endometrial luminal epithelial cells. Moreover, miRNA-mediated rapid negative regulation of gene expression was abolished by delivered embryonic signals. CONCLUSIONS Our findings demonstrated that embryonic signals are potent modulators of ESCRT-dependent EV-mediated secretory activity of the endometrium during the critical stages of early pregnancy. Video Abstract.
Collapse
Affiliation(s)
- Maria M Guzewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczynski
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Yael Heifetz
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
3
|
Wan H, Chen XY, Zhang F, Chen J, Chu F, Sellers ZM, Xu F, Dong H. Capsaicin inhibits intestinal Cl - secretion and promotes Na + absorption by blocking TRPV4 channels in healthy and colitic mice. J Biol Chem 2022; 298:101847. [PMID: 35314195 PMCID: PMC9035713 DOI: 10.1016/j.jbc.2022.101847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/06/2023] Open
Abstract
Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling-mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.
Collapse
Affiliation(s)
- Hanxing Wan
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiong Ying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fenglan Chu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zachary M Sellers
- Pediatric Gastroenterology Hepatology & Nutrition, Stanford University School of Medicine, Palo Alto, California, USA
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China; Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China; Department of Medicine, School of Medicine, University of California, San Diego, California, USA.
| |
Collapse
|
4
|
Zhang F, Wan H, Chu F, Lu C, Chen J, Dong H. Small intestinal glucose and sodium absorption through calcium-induced calcium release and store-operated Ca 2+ entry mechanisms. Br J Pharmacol 2020; 178:346-362. [PMID: 33080043 DOI: 10.1111/bph.15287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Luminal glucose enhances intestinal Ca2+ absorption through apical Cav 1.3 channels necessary for GLUT2-mediated glucose absorption. As these reciprocal mechanisms are not well understood, we investigated the regulatory mechanisms of intestinal [Ca2+ ]cyt and SGLT1-mediated Na+ -glucose co-transports. EXPERIMENTAL APPROACH Glucose absorption and channel expression were examined in mouse upper jejunal epithelium using an Ussing chamber, immunocytochemistry and Ca2+ and Na+ imaging in single intestinal epithelial cells. KEY RESULTS Glucose induced jejunal Isc via Na+ -glucose cotransporter 1 (SGLT1) operated more efficiently in the presence of extracellular Ca2+ . A crosstalk between luminal Ca2+ entry via plasma Cav 1.3 channels and the ER Ca2+ release through ryanodine receptor (RYR) activation in small intestinal epithelial cell (IEC) or Ca2+ -induced Ca2+ release (CICR) mechanism was involve in Ca2+ -mediated jejunal glucose absorption. The ER Ca2+ release through RyR triggered basolateral Ca2+ entry or store-operated Ca2+ entry (SOCE) mechanism and the subsequent Ca2+ entry via Na+ /Ca2+ exchanger 1 (NCX1) were found to be critical in Na+ -glucose cotransporter-mediated glucose absorption. Blocking RyR, SOCE and NCX1 inhibited glucose induced [Na+ ]cyt and [Ca2+ ]cyt in single IEC and protein expression and co-localization of STIM1/Orai1, RyR1 and NCX1 were detected in IEC and jejunal mucosa. CONCLUSION AND IMPLICATIONS Luminal Ca2+ influx through Cav 1.3 triggers the CICR through RyR1 to deplete the ER Ca2+ , which induces the basolateral STIM1/Orai1-mediated SOCE mechanism and the subsequent Ca2+ entry via NCX1 to regulate intestinal glucose uptake via Ca2+ signalling. Targeting these mechanisms in IEC may help to modulate blood glucose and sodium in the metabolic disease.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fenglan Chu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
5
|
Feng X, Yan J, Li G, Liu J, Fan R, Li S, Zheng L, Zhang Y, Zhu J. Source of dopamine in gastric juice and luminal dopamine-induced duodenal bicarbonate secretion via apical dopamine D 2 receptors. Br J Pharmacol 2020; 177:3258-3272. [PMID: 32154577 PMCID: PMC7312307 DOI: 10.1111/bph.15047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Dopamine protects the duodenal mucosa. Here we have investigated the source of dopamine in gastric juice and the mechanism underlying the effects of luminal dopamine on duodenal bicarbonate secretion (DBS) in rodents. EXPERIMENTAL APPROACH Immunofluorescence, UPLC-MS/MS, gastric incubation and perfusion were used to detect gastric-derived dopamine. Immunofluorescence and RT-PCR were used to examine the expression of dopamine receptors in the duodenal mucosa. Real-time pH titration and pHi measurement were performed to investigate DBS. KEY RESULTS H+ -K+ -ATPase was co-localized with tyrosine hydroxylase and dopamine transporters in gastric parietal cells. Dopamine was increased in in vivo gastric perfusate after intravenous infusion of histamine and in gastric mucosa incubated, in vitro, with bethanechol chloride or tyrosine. D2 receptors were the most abundant dopamine receptors in rat duodenum, mainly distributed on the apical membrane of epithelial cells. Luminal dopamine increased DBS in a concentration-dependent manner, an effect mimicked by a D2 receptor agonist quinpirole and inhibited by the D2 receptor antagonist L741,626, in vivo D2 receptor siRNA and in D2 receptor -/- mice. Dopamine and quinpirole raised the duodenal enterocyte pHi . Quinpirole-evoked DBS and PI3K/Akt activity were inhibited by calcium chelator BAPTA-AM or in D2 receptor-/- mice. CONCLUSION AND IMPLICATIONS Dopamine in the gastric juice is derived from parietal cells and is secreted along with gastric acid. On arrival in the duodenal lumen, dopamine increased DBS via an apical D2 receptor- and calcium-dependent pathway. Our data provide novel insights into the protective effects of dopamine on the duodenal mucosa.
Collapse
Affiliation(s)
- Xiao‐Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jing‐Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Guang‐Wen Li
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jing‐Hua Liu
- Grade 2017 Clinical Medicine, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Rui‐Fang Fan
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Shi‐Chao Li
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Li‐Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jin‐Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Takeuchi K, Ohashi Y, Amagase K. Roles of Up-Regulated Expression of ASIC3 in Sex Difference of Acid-Induced Duodenal HCO3 - Responses. Curr Pharm Des 2020; 26:3001-3009. [PMID: 32303171 DOI: 10.2174/1381612826666200417170319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
Although the morbidity of ulcers is statistically higher in males than females, the mechanism of this difference remains unknown. Recent studies show that duodenal HCO3 - response to mucosal acidification is higher in females than males, and this may be a factor responsible for the sex difference in the mucosal protective mechanisms. In this article, we examined the duodenal HCO3 - responses to various stimuli in male and female rats, including estrogen, and reviewed the mechanisms responsible for the sex difference in the acid-induced HCO3 - secretion. Mucosal acidification was performed by exposing the duodenum to 10 mM HCl for 10 min. PGE2 was administered intravenously, while capsaicin was applied topically to the duodenum for 10 min. Tamoxifen was given s.c. 30 min before the acidification. Ovariectomy was performed 2 weeks before the experiments; half of the animals were given estrogen i.m. after the operation. Mucosal acidification increased duodenal HCO3 - secretion in male rats, and this response was inhibited by indomethacin and sensory deafferentation. Although no sex difference was found in HCO3 - responses to PGE2 and capsaicin, the response to acid was significantly greater in female than male rats. The different HCO3 - response to acid disappeared on ovariectomy, and this effect was totally reversed by the repeated administration of estrogen. The gene expression of ASIC3 in female rats was greater than in male rats and down-regulated by ovariectomy or tamoxifen treatment in an estradiol- dependent manner, while no sex difference was observed in TRPV1 and CFTR expressions. In conclusion, the acid-induced HCO3 - response is greater in female than male rats, and this phenomenon is not due to changes in PGE2 sensitivity or TRPV1/CFTR expressions but may be accounted for by increased expression of ASIC3 on sensory neurons, which is associated with the chronic influence of estrogen.
Collapse
Affiliation(s)
- Koji Takeuchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan,General Incorporated Association, Kyoto Research Center for Gastrointestinal Diseases, Karasuma-Oike,
Kyoto 604-8106, Japan
| | - Yumi Ohashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan,Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan
University, Shiga 525-8577, Japan
| |
Collapse
|
7
|
Zhang F, Wan H, Yang X, He J, Lu C, Yang S, Tuo B, Dong H. Molecular mechanisms of caffeine-mediated intestinal epithelial ion transports. Br J Pharmacol 2019; 176:1700-1716. [PMID: 30808064 DOI: 10.1111/bph.14640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE As little is known about the effect of caffeine, one of the most widely consumed substances worldwide, on intestinal function, we aimed to study its action on intestinal anion secretion and the underlying molecular mechanisms. EXPERIMENTAL APPROACH Anion secretion and channel expression were examined in mouse duodenal epithelium by Ussing chambers and immunocytochemistry. Ca2+ imaging was also performed in intestinal epithelial cells (IECs). KEY RESULTS Caffeine (10 mM) markedly increased mouse duodenal short-circuit current (Isc ), which was attenuated by a removal of either Cl- or HCO3 - , Ca2+ -free serosal solutions and selective blockers of store-operated Ca2+ channels (SOC/Ca2+ release-activated Ca2+ channels), and knockdown of Orai1 channels on the serosal side of duodenal tissues. Caffeine induced SOC entry in IEC, which was inhibited by ruthenium red and selective blockers of SOC. Caffeine-stimulated duodenal Isc was inhibited by the endoplasmic reticulum Ca2+ chelator (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine), selective blockers (ruthenium red and dantrolene) of ryanodine receptors (RyR), and of Ca2+ -activated Cl- channels (niflumic acid and T16A). There was synergism between cAMP and Ca2+ signalling, in which cAMP/PKA promoted caffeine/Ca2+ -mediated anion secretion. Expression of STIM1 and Orai1 was detected in mouse duodenal mucosa and human IECs. The Orai1 proteins were primarily co-located with the basolateral marker Na+ , K+ -ATPase. CONCLUSIONS AND IMPLICATIONS Caffeine stimulated intestinal anion secretion mainly through the RyR/Orai1/Ca2+ signalling pathway. There is synergism between cAMP/PKA and caffeine/Ca2+ -mediated anion secretion. Our findings suggest that a caffeine-mediated RyR/Orai1/Ca2+ pathway could provide novel potential drug targets to control intestinal anion secretion.
Collapse
Affiliation(s)
- Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
8
|
Yang X, Wen G, Tuo B, Zhang F, Wan H, He J, Yang S, Dong H. Molecular mechanisms of calcium signaling in the modulation of small intestinal ion transports and bicarbonate secretion. Oncotarget 2017; 9:3727-3740. [PMID: 29423078 PMCID: PMC5790495 DOI: 10.18632/oncotarget.23197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023] Open
Abstract
Background and Purpose: Although Ca2+ signaling may stimulate small intestinal ion secretion, little is known about its critical role and the molecular mechanisms of Ca2+-mediated biological action. Key Results Activation of muscarinic receptors by carbachol(CCh) stimulated mouse duodenal Isc, which was significantly inhibited in Ca2+-free serosal solution and by several selective store-operated Ca2+ channels(SOC) blockers added to the serosal side of duodenal tissues. Furthermore, we found that CRAC/Orai channels may represent the molecular candidate of SOC in intestinal epithelium. CCh increased intracellular Ca2+ but not cAMP, and Ca2+ signaling mediated duodenal Cl- and HCO3- secretion in wild type mice but not in CFTR knockout mice. CCh induced duodenal ion secretion and stimulated PI3K/Akt activity in duodenal epithelium, all of which were inhibited by selective PI3K inhibitors with different structures. CCh-induced Ca2+ signaling also stimulated the phosphorylation of CFTR proteins and their trafficking to the plasma membrane of duodenal epithelial cells, which were inhibited again by selective PI3K inhibitors. Materials and Methods Functional, biochemical and morphological experiments were performed to examine ion secretion, PI3K/Akt and CFTR activity of mouse duodenal epithelium. Ca2+ imaging was performed on HT-29 cells. Conclusions and Implications Ca2+ signaling plays a critical role in intestinal ion secretion via CRAC/Orai-mediated SOCE mechanism on the serosal side of epithelium. We also demonstrated the molecular mechanisms of Ca2+ signaling in CFTR-mediated secretion via novel PI3K/Akt pathway. Our findings suggest new perspectives for drug targets to protect the upper GI tract and control liquid homeostasis in the small intestine.
Collapse
Affiliation(s)
- Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Shiming Yang
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, and Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.,Department of Medicine, School of Medicine, University of California, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Yang X, Guo Y, He J, Zhang F, Sun X, Yang S, Dong H. Estrogen and estrogen receptors in the modulation of gastrointestinal epithelial secretion. Oncotarget 2017; 8:97683-97692. [PMID: 29228643 PMCID: PMC5722595 DOI: 10.18632/oncotarget.18313] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/22/2017] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) epithelial ion transport is physiologically important in many aspects of humans, such as in maintaining fluid balance of whole body, and also plays a role in the development and progression of common GI disease. Estrogen and estrogen receptors have been shown to modulate the activity of epithelial ion secretion in GI tract. This review aims to address the current state of knowledge about the role of estrogen and estrogen receptors in modulation of GI epithelial secretion and to elucidate the underlying mechanisms. We highlight the recent findings regarding the importance of estrogen and estrogen receptors in GI epithelia protection and body fluid balance by modulation of gastrointestinal epithelial HCO3- and Cl- secretion, especially current information about the regulatory mechanisms of duodenal HCO3- secretion based on our study in this field. Since there are no reviews on this topic but only few papers to address the main issues, we hope to timely provide new perspectives for the association between estrogen and GI disease.
Collapse
Affiliation(s)
- Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xuemei Sun
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China.,Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
10
|
Coon SD, Rajendran VM, Schwartz JH, Singh SK. Glucose-dependent insulinotropic polypeptide-mediated signaling pathways enhance apical PepT1 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2015; 308:G56-62. [PMID: 25377315 PMCID: PMC4281688 DOI: 10.1152/ajpgi.00168.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have shown recently that glucose-dependent insulinotropic polypeptide (GIP), but not glucagon-like peptide 1 (GLP-1) augments H(+) peptide cotransporter (PepT1)-mediated peptide absorption in murine jejunum. While we observed that inhibiting cAMP production decreased this augmentation of PepT1 activity by GIP, it was unclear whether PKA and/or other regulators of cAMP signaling pathway(s) were involved. This study utilized tritiated glycyl-sarcosine [(3)H-glycyl-sarcosine (Gly-Sar), a relatively nonhydrolyzable dipeptide] uptake to measure PepT1 activity in CDX2-transfected IEC-6 (IEC-6/CDX2) cells, an absorptive intestinal epithelial cell model. Similar to our earlier observations with mouse jejunum, GIP but not GLP-1 augmented Gly-Sar uptake (control vs. +GIP: 154 ± 22 vs. 454 ± 39 pmol/mg protein; P < 0.001) in IEC-6/CDX2 cells. Rp-cAMP (a PKA inhibitor) and wortmannin [phosophoinositide-3-kinase (PI3K) inhibitor] pretreatment completely blocked, whereas neither calphostin C (a potent PKC inhibitor) nor BAPTA (an intracellular Ca(2+) chelator) pretreatment affected the GIP-augmented Gly-Sar uptake in IEC-6/CDX2 cells. The downstream metabolites Epac (control vs. Epac agonist: 287 ± 22 vs. 711 ± 80 pmol/mg protein) and AKT (control vs. AKT inhibitor: 720 ± 50 vs. 75 ± 19 pmol/mg protein) were shown to be involved in GIP-augmented PepT1 activity as well. Western blot analyses revealed that both GIP and Epac agonist pretreatment enhance the PepT1 expression on the apical membranes, which is completely blocked by wortmannin in IEC-6/CDX2 cells. These observations demonstrate that both cAMP and PI3K signaling pathways augment GIP-induced peptide uptake through Epac and AKT-mediated pathways in intestinal epithelial cells, respectively. In addition, these observations also indicate that both Epac and AKT-mediated signaling pathways increase apical membrane expression of PepT1 in intestinal absorptive epithelial cells.
Collapse
Affiliation(s)
- Steven D. Coon
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Department of Medicine, Boston Veterans Affairs Healthcare System, Boston, Massachusetts; ,3Department of Medicine, Boston University Clinical & Translational Science Institute, Boston, Massachusetts; and
| | - Vazhaikkurichi M. Rajendran
- 4Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John H. Schwartz
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
| | - Satish K. Singh
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Department of Medicine, Boston Veterans Affairs Healthcare System, Boston, Massachusetts;
| |
Collapse
|
11
|
Mohd Mokhtar H, Giribabu N, Kassim N, Muniandy S, Salleh N. Testosterone decreases fluid and chloride secretions in the uterus of adult female rats via down-regulating cystic fibrosis transmembrane regulator (CFTR) expression and functional activity. J Steroid Biochem Mol Biol 2014; 144 Pt B:361-72. [PMID: 25125390 DOI: 10.1016/j.jsbmb.2014.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/14/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Estrogen is known to stimulate uterine fluid and Cl(-) secretion via CFTR. This study investigated testosterone effect on these changes in a rat model. METHODS Ovariectomized adult female rats received estrogen for five days or estrogen for three days followed by two days peanut oil or testosterone either alone or in the presence of flutamide or finasteride. At the end of treatment, uteri were perfused with perfusate containing CFTRinh-172. The rate of fluid and Cl(-) secretion were determined. Dose-dependent effect of testosterone and effect of forskolin on fluid secretion rate were measured. Animals were sacrificed and uteri were removed for CFTR protein and mRNA expression analyses, histology and cAMP measurement. Morphology of uterus, levels of expression of CFTR protein and mRNA and distribution of CFTR protein were observed. RESULTS Estrogen causes increase while testosterone causes decrease in uterine fluid and Cl(-) secretions. The effects of estrogen but not testosterone were antagonized by CFTRinh-172. Luminal fluid volume and apical expression of CFTR in the luminal epithelia were highest under estrogen and lowest under testosterone influences. Similar changes were observed in CFTR protein and mRNA expressions. Uterine cAMP level was highest under estrogen and lowest under testosterone influence. Forskolin increases fluid secretion rate in estrogen but not in testosterone-treated animals. Testosterone effects were dose-dependent and were antagonized by flutamide however, not finasteride. CONCLUSIONS Testosterone inhibition of estrogen-induced uterine fluid and Cl(-) secretion occurs via inhibition of CFTR expression and functional activities. These changes could explain the adverse effects of testosterone on fertility.
Collapse
Affiliation(s)
- Helmy Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Normadiah Kassim
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
12
|
Alexandre-Pires G, Martins C, Galvão AM, Correia M, Ramilo D, Quaresma M, Ligeiro D, Nunes T, Caldeira RM, Ferreira-Dias G. Morphological aspects and expression of estrogen and progesterone receptors in the interdigital sinus in cyclic ewes. Microsc Res Tech 2014; 77:313-25. [PMID: 24779038 DOI: 10.1002/jemt.22345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many species that belong to Artiodactyls order show an interdigital sinus (IS), as it occurs in sheep, in all four extremities. These are considered to be scent glands responsible for sexual communication having strong attractiveness to mature males at the peak of the breeding season. The aim of this study was to evaluate, in IS in cyclic ewes, the microscopic and ultrastructure (scanning and transmission electron microscopy) anatomy, secretion composition, and mRNA and protein expression of estrogen receptors a and b and progesterone receptors. Glandular sebaceous structures occupy a superficial area of the pouch. The other glands present in the IS show a coiled tubular structure and tall and polyhedral secretory cells with irregular luminal surface resulting from the secretory process. Protein and mRNA gene transcription studies were performed to determine the presence of ER (a and b) and P4r in IS. At the follicular phase, IS cell populations analyzed using flow cytometry expressed higher levels of ERb compared with ERa (P<0.05), whereas no difference was observed between them in the luteal phase. The IS amount of secretion was the highest in the follicular phase compared with luteal phase (P<0.05) or pregnancy (P<0.001).To the best of our knowledge, for the first time, the presence of ER (a and b) within the IS was demonstrated. As estrogen action is mediated by specific receptors in target cells, the presence of these receptors in IS might be needed to trigger signaling pathways involved in conspecific chemical (sexual) communication attributed to this area.
Collapse
|
13
|
Yan XJ, Feng CC, Liu Q, Zhang LY, Dong X, Liu ZL, Cao ZJ, Mo JZ, Li Y, Fang JY, Chen SL. Vagal Afferents Mediate Antinociception of Estrogen in a Rat Model of Visceral Pain: The Involvement of Intestinal Mucosal Mast Cells and 5-Hydroxytryptamine 3 Signaling. THE JOURNAL OF PAIN 2014; 15:204-17. [DOI: 10.1016/j.jpain.2013.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/14/2013] [Accepted: 10/31/2013] [Indexed: 12/19/2022]
|