1
|
Ashcroft FJ, Bourboula A, Mahammad N, Barbayianni E, Feuerherm AJ, Nguyen TT, Hayashi D, Kokotou MG, Alevizopoulos K, Dennis EA, Kokotos G, Johansen B. Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A 2 α for targeted cancer therapy. Nat Commun 2025; 16:164. [PMID: 39747052 PMCID: PMC11696576 DOI: 10.1038/s41467-024-55536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Eicosanoids are key players in inflammatory diseases and cancer. Targeting their production by inhibiting Group IVA cytosolic phospholipase A2 (cPLA2α) offers a promising approach for cancer therapy. In this study, we synthesize a second generation of thiazolyl ketone inhibitors of cPLA2α starting with compound GK470 (AVX235) and test their in vitro and cellular activities. We identify a more potent and selective lead molecule, GK420 (AVX420), which we test in parallel with AVX235 and a structurally unrelated compound, AVX002 for inhibition of cell viability across a panel of cancer cell lines. From this, we show that activity of polycomb group repressive complex 2 is a key molecular determinant of sensitivity to cPLA2α inhibition, while resistance depends on antioxidant response pathways. Consistent with these results, we show that elevated intracellular reactive oxygen species and activating transcription factor 4 target gene expression precede cell death in AVX420-sensitive T-cell acute lymphoblastic leukemia cells. Our findings imply cPLA2α may support cancer by mitigating oxidative stress and inhibiting tumor suppressor expression and suggest that AVX420 has potential for treating acute leukemias and other cancers that are susceptible to oxidative cell death.
Collapse
Affiliation(s)
- Felicity J Ashcroft
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asimina Bourboula
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Nur Mahammad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Efrosini Barbayianni
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Astrid J Feuerherm
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh Thuy Nguyen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Edward A Dennis
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, USA
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece.
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
2
|
Lee J, Matuschewski K, van Dooren G, Maier AG, Rug M. Lipid droplet dynamics are essential for the development of the malaria parasite Plasmodium falciparum. J Cell Sci 2024; 137:jcs262162. [PMID: 38962997 DOI: 10.1242/jcs.262162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Lipid droplets (LDs) are organelles that are central to lipid and energy homeostasis across all eukaryotes. In the malaria-causing parasite Plasmodium falciparum the roles of LDs in lipid acquisition from its host cells and their metabolism are poorly understood, despite the high demand for lipids in parasite membrane synthesis. We systematically characterised LD size, composition and dynamics across the disease-causing blood infection. Applying split fluorescence emission analysis and three-dimensional (3D) focused ion beam-scanning electron microscopy (FIB-SEM), we observed a decrease in LD size in late schizont stages. LD contraction likely signifies a switch from lipid accumulation to lipid utilisation in preparation for parasite egress from host red blood cells. We demonstrate connections between LDs and several parasite organelles, pointing to potential functional interactions. Chemical inhibition of triacylglyerol (TAG) synthesis or breakdown revealed essential LD functions for schizogony and in counteracting lipid toxicity. The dynamics of lipid synthesis, storage and utilisation in P. falciparum LDs might provide a target for new anti-malarial intervention strategies.
Collapse
Affiliation(s)
- Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra ACT, 2601, Australia
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Kai Matuschewski
- Molecular Parasitology, Humboldt University, 10099 Berlin, Germany
| | - Giel van Dooren
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, The Australian National University, Canberra ACT, 2601, Australia
| |
Collapse
|
3
|
Papadopoulou P, van der Pol R, van Hilten N, van Os WL, Pattipeiluhu R, Arias-Alpizar G, Knol RA, Noteborn W, Moradi MA, Ferraz MJ, Aerts JMFG, Sommerdijk N, Campbell F, Risselada HJ, Sevink GJA, Kros A. Phase-Separated Lipid-Based Nanoparticles: Selective Behavior at the Nano-Bio Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310872. [PMID: 37988682 DOI: 10.1002/adma.202310872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 11/23/2023]
Abstract
The membrane-protein interface on lipid-based nanoparticles influences their in vivo behavior. Better understanding may evolve current drug delivery methods toward effective targeted nanomedicine. Previously, the cell-selective accumulation of a liposome formulation in vivo is demonstrated, through the recognition of lipid phase-separation by triglyceride lipases. This exemplified how liposome morphology and composition can determine nanoparticle-protein interactions. Here, the lipase-induced compositional and morphological changes of phase-separated liposomes-which bear a lipid droplet in their bilayer- are investigated, and the mechanism upon which lipases recognize and bind to the particles is unravelled. The selective lipolytic degradation of the phase-separated lipid droplet is observed, while nanoparticle integrity remains intact. Next, the Tryptophan-rich loop of the lipase is identified as the region with which the enzymes bind to the particles. This preferential binding is due to lipid packing defects induced on the liposome surface by phase separation. In parallel, the existing knowledge that phase separation leads to in vivo selectivity, is utilized to generate phase-separated mRNA-LNPs that target cell-subsets in zebrafish embryos, with subsequent mRNA delivery and protein expression. Together, these findings can expand the current knowledge on selective nanoparticle-protein communications and in vivo behavior, aspects that will assist to gain control of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Panagiota Papadopoulou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Rianne van der Pol
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Niek van Hilten
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Winant L van Os
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Roy Pattipeiluhu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Gabriela Arias-Alpizar
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Renzo Aron Knol
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Willem Noteborn
- NeCEN, Leiden University, Einsteinweg 55, Leiden, 2333 AL, The Netherlands
| | - Mohammad-Amin Moradi
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Maria Joao Ferraz
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | | | - Nico Sommerdijk
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Medical BioSciences and Radboud Technology Center - Electron Microscopy, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Herre Jelger Risselada
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
- Department of Physics, Technical University Dortmund, 44221, Dortmund, Germany
| | - Geert Jan Agur Sevink
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| |
Collapse
|
4
|
Braun RJ, Swanson JMJ. Capturing the Liquid-Crystalline Phase Transformation: Implications for Protein Targeting to Sterol Ester-Rich Lipid Droplets. MEMBRANES 2022; 12:949. [PMID: 36295707 PMCID: PMC9607156 DOI: 10.3390/membranes12100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Lipid droplets are essential organelles that store and traffic neutral lipids. The phospholipid monolayer surrounding their neutral lipid core engages with a highly dynamic proteome that changes according to cellular and metabolic conditions. Recent work has demonstrated that when the abundance of sterol esters increases above a critical concentration, such as under conditions of starvation or high LDL exposure, the lipid droplet core can undergo an amorphous to liquid-crystalline phase transformation. Herein, we study the consequences of this transformation on the physical properties of lipid droplets that are thought to regulate protein association. Using simulations of different sterol-ester concentrations, we have captured the liquid-crystalline phase transformation at the molecular level, highlighting the alignment of sterol esters in alternating orientations to form concentric layers. We demonstrate how ordering in the core permeates into the neutral lipid/phospholipid interface, changing the magnitude and nature of neutral lipid intercalation and inducing ordering in the phospholipid monolayer. Increased phospholipid packing is concomitant with altered surface properties, including smaller area per phospholipid and substantially reduced packing defects. Additionally, the ordering of sterol esters in the core causes less hydration in more ordered regions. We discuss these findings in the context of their expected consequences for preferential protein recruitment to lipid droplets under different metabolic conditions.
Collapse
|
5
|
Organic mineral supplementation on differential protein profile of Osmanabadi bucks (Capra hircus). Reprod Biol 2021; 21:100533. [PMID: 34280724 DOI: 10.1016/j.repbio.2021.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 11/20/2022]
Abstract
The present study aimed to determine the differential protein profile of seminal plasma proteins of bucks supplemented with trace minerals. Forty bucks of uniform size and body weight were assigned as ten groups (n = 4). The control group (T1) was fed with the control diet (concentration mixture and roughages) whereas the remaining groups were supplemented the control diet with Zn20 mg (T2), Zn40 mg (T3), Zn60 mg (T4), Cu12.5 mg (T5), Cu25 mg (T6), Cu37.5 mg (T7), Zn20 mg + Cu12.5 mg (T8), Zn40 mg + Cu25 mg (T9), and Zn60 mg + Cu37.5 mg (T10) for eight months. Seminal plasma proteins from each group were subjected to two-dimensional electrophoresis and fifteen differential proteins were selected based on differential expression, subjected to identification using Nano-LC-MS/MS (LTQ-Qrbitrap-MS). The identified proteins were Triacylglycerol lipase, EGF like repeats and discoidin domains 3, Lipocalin, Iodothyronine deiodinase, Transcription factor AP2-delta, 60S ribosomal protein L13, IST1 factor associated with ESCRT-III, Lysozyme, Uncharacterized protein (BRI3-binding protein), Uncharacterized protein, Histone deacetylase 11, General transcription factor IIF subunit 2, Nudix hydrolase 6, Protein kinase cAMP-activated catalytic subunit beta and Elongin C. The organic Cu supplemented group is the better than the organic Zn and organic Zn + Cu supplemented groups.
Collapse
|
6
|
Zamora-Briseño JA, Ruiz-May E, Elizalde-Contreras JM, Hernández-Velázquez IM, Hernández-Pérez A, Fuentes-García AG, Herrera-Salvatierra N, Briones-Fourzán P, Pascual-Jiménez C, Lozano-Álvarez E, Rodríguez-Canul R. iTRAQ-Based Proteomic Profile Analysis of the Hepatopancreas of Caribbean Spiny Lobsters Infected With Panulirus argus Virus 1: Metabolic and Physiological Implications. Front Microbiol 2020; 11:1084. [PMID: 32547519 PMCID: PMC7273172 DOI: 10.3389/fmicb.2020.01084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
The Caribbean spiny lobster Panulirus argus (Latreille, 1084) sustains economically valuable fisheries throughout the wider Caribbean region. This species is currently affected by the pathogenic virus Panulirus argus Virus 1 (PaV1) that causes a systemic and chronic-degenerative infection in juvenile spiny lobsters P. argus. To date, there is no available information regarding the host alterations induced by this pathogen at the molecular level. In the present study, comparative proteomic analyses of the changes in the hepatopancreas between infected and non-infected juvenile lobsters were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ) coupled to synchronous precursor selection (SPS)-based MS3. We identified a total of 636 proteins, being 68 down-regulated and 71 up-regulated proteins. Among the down-regulated proteins, we identified several enzymes involved in the metabolism of hormones and lipids, digestive proteases and glycosidases, while proteins associated with the histone core, protein synthesis, immune response and RNA regulation were up-regulated. Several misregulated enzymes involved in the regulation of neuromodulators were also identified. RT-qPCR assays were used to validate the expression of transcripts encoding for selected differential proteins that were in concordance to proteomic data, as well as the tendency observed in the enzymatic activities of trypsin, chymotrypsin, and glycosidase. In a similar way, we observed glycogen reduction in muscle, and an increase in plasma acylglycerides and glucose, which may be explained by proteomic data. This study provides the first insight into the molecular changes in the hepatopancreas of Caribbean spiny lobsters associated to PaV1 infection. Data provided herein would help to clarify the origin of the molecular misregulations observed at macroscopic level in this host-pathogen interaction.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Laboratorio de Inmunología y Biología Molecular, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | - Eliel Ruiz-May
- Instituto de Ecología, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Xalapa, Mexico
| | | | - Ioreni Margarita Hernández-Velázquez
- Laboratorio de Inmunología y Biología Molecular, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | | | - Ana Guadalupe Fuentes-García
- Laboratorio de Inmunología y Biología Molecular, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | - Nancy Herrera-Salvatierra
- Laboratorio de Inmunología y Biología Molecular, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | - Patricia Briones-Fourzán
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Cristina Pascual-Jiménez
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Mexico
| | - Enrique Lozano-Álvarez
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Rossanna Rodríguez-Canul
- Laboratorio de Inmunología y Biología Molecular, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| |
Collapse
|
7
|
Huang W, Cheng C, Liu J, Zhang X, Ren C, Jiang X, Chen T, Cheng K, Li H, Hu C. Fine Mapping of the High-pH Tolerance and Growth Trait-Related Quantitative Trait Loci (QTLs) and Identification of the Candidate Genes in Pacific White Shrimp (Litopenaeus vannamei). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:1-18. [PMID: 31758429 DOI: 10.1007/s10126-019-09932-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
High-pH tolerance and growth are important traits for the shrimp culture industry in areas with saline-alkali water. In the present study, an F1 full-sib family of Pacific white shrimp (Litopenaeus vannamei) was generated with a new "semidirectional cross" method, and double-digest restriction site-associated DNA sequencing (ddRAD-Seq) technology was applied to genotype the 2 parents and 148 progenies. A total of 3567 high-quality markers were constructed for the genetic linkage map, and the total map length was 4161.555 centimorgans (cM), showing 48 linkage groups (LGs) with an average interlocus length of 1.167 cM. With a constrained logarithm of odds (LOD) score ≥ 2.50, 12 high-pH tolerance and 2 growth (body weight) QTLs were located. L. vannamei genomic scaffolds were used to assist with the detection of 21 stress- and 5 growth-related scaffold genes. According to the high-pH transcriptome data of our previous study, 6 candidate high-pH response genes were discovered, and 5 of these 6 genes were consistently expressed with the high-pH transcriptome data, validating the locations of the high-pH tolerance trait-related QTLs in this study. This paper is the first report of fine-mapping high-pH tolerance and growth (body weight) trait QTLs in one L. vannamei genetic map. Our results will further benefit marker-assisted selection work and might be useful for promoting genomic research on the shrimp L. vannamei.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinshang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Jinyang Biotechnology co. LTD, Maoming, 525027, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Kaimin Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Yuehai Feed Group co., LTD, Zhanjiang, 524017, China
| | - Huo Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Jinyang Biotechnology co. LTD, Maoming, 525027, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Kotlovskiy MY, Udut EV, Kairov GT, Fisenko VP, Udut VV. Effects of Simvastatin on the Metabolism of Fatty Acids in Combined Secondary Prevention of Coronary Heart Disease: Dosage and Gender Differences between the Effects. Cardiovasc Hematol Disord Drug Targets 2020; 20:93-107. [PMID: 31916523 DOI: 10.2174/1871529x20666200109144353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Statins are currently used for secondary prevention of Coronary Heart Disease (CHD), as the lipid-lowering therapy with them is proven safe and effective. OBJECTIVE The purpose of this research is to investigate the dose-dependent effect of statins used for secondary prevention of coronary heart disease, as well as mechanisms of quantitative and qualitative changes in lipoproteins, fatty acids and cholesterol in the blood and tissues of people of both sexes. METHODS In a clinical trial (n=125, of which 89 patients belong to group 1 and 36 to group 2) and an experiment on laboratory animals (n = 100), simvastatin reduced the total level of fatty acids in blood plasma, when given in the amount that was within the therapeutic dose range. RESULTS This effect was achieved through a drug-induced improvement in the capacity of hepatic cells to absorb Low-density (LDL) and Very-low-density (VLDL) lipoproteins. CONCLUSION Considering the formation of saturated fatty acids, statin performed better in males. With Omega-3 polyunsaturated fatty acids involved, changes in lipoproteins, cholesterol and fatty acids (liver and myocardium) were similar to those caused by small doses of a statin drug. Effects of the combination of bisoprolol and acetylsalicylic acid were completely different from those caused by the use of statin.
Collapse
Affiliation(s)
- Mikhail Y Kotlovskiy
- Laboratory of Drug Toxicology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russian Federation.,Laboratory of Drug Toxicology, National Research Tomsk State University, Tomsk, Russian Federation
| | - Elena V Udut
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russian Federation
| | - Gaisa T Kairov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russian Federation
| | - Vladimir P Fisenko
- Department Pharmacology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Vladimir V Udut
- Laboratory of Drug Toxicology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russian Federation.,Laboratory of Drug Toxicology, National Research Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
9
|
Lund J, Helle SA, Li Y, Løvsletten NG, Stadheim HK, Jensen J, Kase ET, Thoresen GH, Rustan AC. Higher lipid turnover and oxidation in cultured human myotubes from athletic versus sedentary young male subjects. Sci Rep 2018; 8:17549. [PMID: 30510272 PMCID: PMC6277406 DOI: 10.1038/s41598-018-35715-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
In this study we compared fatty acid (FA) metabolism in myotubes established from athletic and sedentary young subjects. Six healthy sedentary (maximal oxygen uptake (VO2max) ≤ 46 ml/kg/min) and six healthy athletic (VO2max > 60 ml/kg/min) young men were included. Myoblasts were cultured and differentiated to myotubes from satellite cells isolated from biopsy of musculus vastus lateralis. FA metabolism was studied in myotubes using [14C]oleic acid. Lipid distribution was assessed by thin layer chromatography, and FA accumulation, lipolysis and re-esterification were measured by scintillation proximity assay. Gene and protein expressions were studied. Myotubes from athletic subjects showed lower FA accumulation, lower incorporation of FA into total lipids, triacylglycerol (TAG), diacylglycerol and cholesteryl ester, higher TAG-related lipolysis and re-esterification, and higher complete oxidation and incomplete β-oxidation of FA compared to myotubes from sedentary subjects. mRNA expression of the mitochondrial electron transport chain complex III gene UQCRB was higher in cells from athletic compared to sedentary. Myotubes established from athletic subjects have higher lipid turnover and oxidation compared to myotubes from sedentary subjects. Our findings suggest that cultured myotubes retain some of the phenotypic traits of their donors.
Collapse
Affiliation(s)
- Jenny Lund
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | - Siw A Helle
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nils G Løvsletten
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Hans K Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Eili T Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Hargreaves M, Spriet LL. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029744. [PMID: 28533314 DOI: 10.1101/cshperspect.a029744] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During exercise, the supply of adenosine triphosphate (ATP) is essential for the energy-dependent processes that underpin ongoing contractile activity. These pathways involve both substrate-level phosphorylation, without any need for oxygen, and oxidative phosphorylation that is critically dependent on oxygen delivery to contracting skeletal muscle by the respiratory and cardiovascular systems and on the supply of reducing equivalents from the degradation of carbohydrate, fat, and, to a limited extent, protein fuel stores. The relative contribution of these pathways is primarily determined by exercise intensity, but also modulated by training status, preceding diet, age, gender, and environmental conditions. Optimal substrate availability and utilization before, during, and after exercise is critical for maintaining exercise performance. This review provides a brief overview of exercise metabolism, with expanded discussion of the regulation of muscle glucose uptake and fatty acid uptake and oxidation.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
11
|
Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr 2018; 15:3. [PMID: 29344008 PMCID: PMC5766985 DOI: 10.1186/s12970-018-0207-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/02/2018] [Indexed: 12/02/2022] Open
Abstract
Lipids as a fuel source for energy supply during submaximal exercise originate from subcutaneous adipose tissue derived fatty acids (FA), intramuscular triacylglycerides (IMTG), cholesterol and dietary fat. These sources of fat contribute to fatty acid oxidation (FAox) in various ways. The regulation and utilization of FAs in a maximal capacity occur primarily at exercise intensities between 45 and 65% VO2max, is known as maximal fat oxidation (MFO), and is measured in g/min. Fatty acid oxidation occurs during submaximal exercise intensities, but is also complimentary to carbohydrate oxidation (CHOox). Due to limitations within FA transport across the cell and mitochondrial membranes, FAox is limited at higher exercise intensities. The point at which FAox reaches maximum and begins to decline is referred to as the crossover point. Exercise intensities that exceed the crossover point (~65% VO2max) utilize CHO as the predominant fuel source for energy supply. Training status, exercise intensity, exercise duration, sex differences, and nutrition have all been shown to affect cellular expression responsible for FAox rate. Each stimulus affects the process of FAox differently, resulting in specific adaptions that influence endurance exercise performance. Endurance training, specifically long duration (>2 h) facilitate adaptations that alter both the origin of FAs and FAox rate. Additionally, the influence of sex and nutrition on FAox are discussed. Finally, the role of FAox in the improvement of performance during endurance training is discussed.
Collapse
Affiliation(s)
- Troy Purdom
- 1Department of Health, Athletic Training, Recreation, and Kinesiology, Longwood University, 201 High St, Farmville, VA 23909 USA.,2Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM USA
| | - Len Kravitz
- 2Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM USA
| | - Karol Dokladny
- 2Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM USA.,3Department of Gastroenterology, The University of New Mexico, Albuquerque, NM USA
| | - Christine Mermier
- 2Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM USA
| |
Collapse
|
12
|
Bergan-Roller HE, Ickstadt AT, Kittilson JD, Sheridan MA. Insulin and insulin-like growth factor-1 modulate the lipolytic action of growth hormone by altering signal pathway linkages. Gen Comp Endocrinol 2017; 248:40-48. [PMID: 28410970 DOI: 10.1016/j.ygcen.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 03/23/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Growth hormone (GH) has many actions in vertebrates, including the regulation of two disparate metabolic processes: growth promotion (anabolic) and the mobilization of stored lipids (catabolic). Our previous studies showed that GH stimulated IGF-1 production in hepatocytes from fed rainbow trout, but in cells from fasted fish GH stimulated lipolysis. In this study, we used rainbow trout (Oncorhynchus mykiss) to elucidate regulation of the mechanisms that enable cells to alter their lipolytic responsiveness to GH. In the first experiment, cells were removed from either fed or fasted fish, conditioned in medium containing serum (10%) from either fed or fasted fish, then challenged with GH. GH stimulated the expression of hormone sensitive lipase (HSL), the primary lipolytic enzyme, in cells from fasted fish conditioned with "fasted serum" but not in cells from fasted fish conditioned in "fed serum." Pretreatment of cells from fed fish with "fasted serum" resulted in GH-stimulated HSL expression, whereas GH-stimulated HSL expression in cells from fasted fish was blocked by conditioning in "fed serum." The nature of the conditioning serum governed the signaling pathways activated by GH irrespective of the nutritional state of the animals from which the cells were removed. When hepatocytes were pretreated with "fed serum," GH activated JAK2, STAT5, Akt, and ERK pathways; when cells were pretreated with "fasted serum," GH activated PKC and ERK. In the second study, we examined the direct effects of insulin (INS) and insulin-like growth factor (IGF-1), two nutritionally-regulated hormones, on GH-stimulated lipolysis and signal transduction in isolated hepatocytes. GH only stimulated HSL mRNA expression in cells from fasted fish. Pretreatment with INS and/or IGF-1 abolished this lipolytic response to GH. INS and/or IGF-1 augmented GH activation of JAK2 and STAT5 in cells from fed and fasted fish. However, INS and/or IGF-1 eliminated the ability of GH to activate PKC and ERK from fasted cells. These results indicate that INS and IGF-1 determine the signaling pathways activated by GH and whether or not a lipolytic response ensues. Such hormone-receptor-signal pathway linkages provide insight into the molecular basis of GH multifunctionality and into how cellular responses to GH can be adjusted to meet physiological (e.g., nutritional), developmental, or other conditions.
Collapse
Affiliation(s)
| | - Alicia T Ickstadt
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Mark A Sheridan
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
13
|
Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G. Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab 2016; 23:1078-1092. [PMID: 27304508 PMCID: PMC4910629 DOI: 10.1016/j.cmet.2016.05.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/04/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023]
Abstract
Circulating levels of undercarboxylated and bioactive osteocalcin double during aerobic exercise at the time levels of insulin decrease. In contrast, circulating levels of osteocalcin plummet early during adulthood in mice, monkeys, and humans of both genders. Exploring these observations revealed that osteocalcin signaling in myofibers is necessary for adaptation to exercise by favoring uptake and catabolism of glucose and fatty acids, the main nutrients of myofibers. Osteocalcin signaling in myofibers also accounts for most of the exercise-induced release of interleukin-6, a myokine that promotes adaptation to exercise in part by driving the generation of bioactive osteocalcin. We further show that exogenous osteocalcin is sufficient to enhance the exercise capacity of young mice and to restore to 15-month-old mice the exercise capacity of 3-month-old mice. This study uncovers a bone-to-muscle feedforward endocrine axis that favors adaptation to exercise and can reverse the age-induced decline in exercise capacity.
Collapse
Affiliation(s)
- Paula Mera
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Kathrin Laue
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Mathieu Ferron
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cyril Confavreux
- INSERM UMR1033-Université de Lyon, Hospices Civils de Lyon, Lyon 69003, France
| | - Jianwen Wei
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Marta Galán-Díez
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Alain Lacampagne
- UMR 9214 CNRS, U1046 INSERM, Université de Montpellier, CHRU Montpellier, 34295 Montpellier Cedex 5, France
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yun Chen
- Department of Medicine (Cardiology), Department of Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Justine Bacchetta
- INSERM UMR1033-Université de Lyon, Hospices Civils de Lyon, Lyon 69003, France
| | - Pawel Szulc
- INSERM UMR1033-Université de Lyon, Hospices Civils de Lyon, Lyon 69003, France
| | - Richard N Kitsis
- Department of Medicine (Cardiology), Department of Cell Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Richard A Friedman
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Christopher Torsitano
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Irwin Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Hirako S, Wakayama Y, Kim H, Iizuka Y, Matsumoto A, Wada N, Kimura A, Okabe M, Sakagami J, Suzuki M, Takenoya F, Shioda S. The relationship between aquaglyceroporin expression and development of fatty liver in diet-induced obesity and ob/ob mice. Obes Res Clin Pract 2015; 10:710-718. [PMID: 26747210 DOI: 10.1016/j.orcp.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022]
Abstract
Aquaporin (AQP) 7 and AQP9 are subcategorised as aquaglyceroporins which transport glycerin in addition to water. These AQPs may play a role in the homeostasis of energy metabolism. We examined the effect of AQP7, AQP9, and lipid metabolism-related gene expression in obese mice. In diet-induced obese (DIO) mice, excess lipid accumulated in the liver, which was hyperleptinemic and hyperinsulinemic. Hepatic AQP9 gene expression was significantly increased in both DIO and ob/ob mice compared to controls. The mRNA expression levels of fatty acid and triglyceride synthesis-related genes and fatty acid β oxidation-related genes in the liver were also higher in both mouse models, suggesting that triglyceride synthesis in this organ is promoted as a result of glycerol release from adipocytes. Adipose AQP7 and AQP9 gene expressions were increased in DIO mice, but there was no difference in ob/ob mice compared to wild-type mice. In summary, adipose AQP7 and AQP9 gene expressions are increased by diet-induced obesity, indicating that this is one of the mechanisms by which lipid accumulates in response to a high fat diet, not the genetic mutation of ob/ob mice. Hepatic AQP9 gene expression was increased in both obesity model mice. AQP7 and AQP9 therefore have the potential of defining molecules for the characterisation of obesity or fatty liver and may be a target molecules for the treatment of those disease.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Yoshihiro Wakayama
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan; Wakayama Clinic, Machida-shi, Tokyo, Japan
| | - Hyounju Kim
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yuzuru Iizuka
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Akiyo Matsumoto
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Nobuhiro Wada
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ai Kimura
- Hoshi University School of Pharmacy and Pharmaceutical Sciences Global Research Center for Innovative Life Science Peptide Drug Innovation, Tokyo, Japan
| | - Mai Okabe
- Tokyo Shokuryo Dietitian Academy, Tokyo, Japan
| | - Junichi Sakagami
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Mamiko Suzuki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Fumiko Takenoya
- Department of Exercise and Sports Physiology, Hoshi University School of Pharmacy and Pharmaceutical Science, Tokyo, Japan
| | - Seiji Shioda
- Hoshi University School of Pharmacy and Pharmaceutical Sciences Global Research Center for Innovative Life Science Peptide Drug Innovation, Tokyo, Japan.
| |
Collapse
|
15
|
The interplay between metabolic homeostasis and neurodegeneration: insights into the neurometabolic nature of amyotrophic lateral sclerosis. CELL REGENERATION 2015; 4:5. [PMID: 26322226 PMCID: PMC4551561 DOI: 10.1186/s13619-015-0019-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that is characterized by the selective degeneration of upper motor neurons and lower spinal motor neurons, resulting in the progressive paralysis of all voluntary muscles. Approximately 10 % of ALS cases are linked to known genetic mutations, with the remaining 90 % of cases being sporadic. While the primary pathology in ALS is the selective death of upper and lower motor neurons, numerous studies indicate that an imbalance in whole body and/or cellular metabolism influences the rate of progression of disease. This review summarizes current research surrounding the impact of impaired metabolic physiology in ALS. We extend ideas to consider prospects that lie ahead in terms of how metabolic alterations may impact the selective degeneration of neurons in ALS and how targeting of adenosine triphosphate-sensitive potassium (KATP) channels may represent a promising approach for obtaining neuroprotection in ALS.
Collapse
|
16
|
Khaire A, Rathod R, Kale A, Joshi S. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats. Prostaglandins Leukot Essent Fatty Acids 2015; 99:7-17. [PMID: 26003565 DOI: 10.1016/j.plefa.2015.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.
Collapse
Affiliation(s)
- Amrita Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Richa Rathod
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
17
|
Mason RR, Watt MJ. Unraveling the roles of PLIN5: linking cell biology to physiology. Trends Endocrinol Metab 2015; 26:144-52. [PMID: 25682370 DOI: 10.1016/j.tem.2015.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/07/2023]
Abstract
The discovery of perilipin (PLIN) 1 provided a major conceptual shift in the understanding of adipose tissue lipolysis and generated intense interest in lipid droplet biology research. The subsequent discovery of other PLIN proteins revealed unique tissue distribution profiles, subcellular locations, and lipid-binding properties and divergent cellular functions. PLIN5 is highly expressed in oxidative tissues such as skeletal muscle, liver, and heart and is central to lipid homeostasis in these tissues. Studies in cell systems have ascribed several metabolic roles to PLIN5 and demonstrated interactions with other proteins that are requisite for these functions. We examine recent in vivo studies and ask whether the evidence from the cell biology approaches is consistent with the physiological roles of PLIN5.
Collapse
Affiliation(s)
- Rachael R Mason
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
18
|
Abstract
Fat and carbohydrate are important fuels for aerobic exercise and there can be reciprocal shifts in the proportions of carbohydrate and fat that are oxidized. The interaction between carbohydrate and fatty acid oxidation is dependent on the intracellular and extracellular metabolic environments. The availability of substrate, both from inside and outside of the muscle, and exercise intensity and duration will affect these environments. The ability of increasing fat provision to downregulate carbohydrate metabolism in the heart, diaphragm and peripheral skeletal muscle has been well studied. However, the regulation of fat metabolism in human skeletal muscle during exercise in the face of increasing carbohydrate availability and exercise intensity has not been well studied until recently. Research in the past 10 years has demonstrated that the regulation of fat metabolism is complex and involves many sites of control, including the transport of fat into the muscle cell, the binding and transport of fat in the cytoplasm, the regulation of intramuscular triacylglycerol synthesis and breakdown, and the transport of fat into the mitochondria. The discovery of proteins that assist in transporting fat across the plasma and mitochondrial membranes, the ability of these proteins to translocate to the membranes during exercise, and the new roles of adipose triglyceride lipase and hormone-sensitive lipase in regulating skeletal muscle lipolysis are examples of recent discoveries. This information has led to the proposal of mechanisms to explain the downregulation of fat metabolism that occurs in the face of increasing carbohydrate availability and when moving from moderate to intense aerobic exercise.
Collapse
|
19
|
Crotonis Fructus and Its Constituent, Croton Oil, Stimulate Lipolysis in OP9 Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:780385. [PMID: 25435891 PMCID: PMC4244682 DOI: 10.1155/2014/780385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022]
Abstract
Introduction. Crotonis fructus (CF) is the mature fruit of Croton tiglium L. and has been used for the treatment of gastrointestinal disturbance in Asia. It is well known that the main component of CF is croton oil (CO). The present study is to investigate the effects of CF extracts (CFE) and CO on lipolysis in OP9 adipocytes. Methods. Glycerol release to the culture supernatants was used as a marker of adipocyte lipolysis. Results. Treatment with various concentrations of CFE and CO stimulates glycerol release in a dose-dependent manner. The increase in glycerol release by CFE is more potent than isoproterenol, which is a β-adrenergic agonist as a positive control in our system. The increased lipolysis by CFE and CO was accompanied by an increase of phosphorylated hormone sensitive lipase (pHSL) but not nonphosphorylated HSL protein and mRNA. Pretreatment with H89, which is a protein kinase A inhibitor, significantly abolished the CFE- and CO-induced glycerol release in OP9 adipocytes. These results suggest that CFE and CO may be a candidate for the development of a lipolysis-stimulating agent in adipocytes.
Collapse
|
20
|
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014; 5:282. [PMID: 25132820 PMCID: PMC4116787 DOI: 10.3389/fphys.2014.00282] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022] Open
Abstract
Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete. Cells store fatty acids (FAs) as triacylglycerol and package them into cytoplasmic lipid droplets (LDs). New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates. Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g., exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain reactive oxygen species (ROS) within levels compatible with signaling while ensuring robust and reliable energy supply.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Niraj Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sonia C Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
21
|
Zierler KA, Zechner R, Haemmerle G. Comparative gene identification-58/α/β hydrolase domain 5: more than just an adipose triglyceride lipase activator? Curr Opin Lipidol 2014; 25:102-9. [PMID: 24565921 PMCID: PMC4170181 DOI: 10.1097/mol.0000000000000058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Comparative gene identification-58 (CGI-58) is a lipid droplet-associated protein that controls intracellular triglyceride levels by its ability to activate adipose triglyceride lipase (ATGL). Additionally, CGI-58 was described to exhibit lysophosphatidic acid acyl transferase (LPAAT) activity. This review focuses on the significance of CGI-58 in energy metabolism in adipose and nonadipose tissue. RECENT FINDINGS Recent studies with transgenic and CGI-58-deficient mouse strains underscored the importance of CGI-58 as a regulator of intracellular energy homeostasis by modulating ATGL-driven triglyceride hydrolysis. In accordance with this function, mice and humans that lack CGI-58 accumulate triglyceride in multiple tissues. Additionally, CGI-58-deficient mice develop an ATGL-independent severe skin barrier defect and die soon after birth. Although the premature death prevented a phenotypical characterization of adult global CGI-58 knockout mice, the characterization of mice with tissue-specific CGI-58 deficiency revealed new insights into its role in neutral lipid and energy metabolism. Concerning the ATGL-independent function of CGI-58, a recently identified LPAAT activity for CGI-58 was shown to be involved in the generation of signaling molecules regulating inflammatory processes and insulin action. SUMMARY Although the function of CGI-58 in the catabolism of cellular triglyceride depots via ATGL is well established, further studies are required to consolidate the function of CGI-58 as LPAAT and to clarify the involvement of CGI-58 in the metabolism of skin lipids.
Collapse
Affiliation(s)
- Kathrin A Zierler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | |
Collapse
|
22
|
Marra F, Lotersztajn S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Des 2014; 19:5250-69. [PMID: 23394092 DOI: 10.2174/13816128113199990344] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/01/2013] [Indexed: 02/07/2023]
Abstract
Non alcoholic steatohepatitis (NASH) is the more severe form of nonalcoholic fatty liver disease. In NASH, fatty liver, hepatic inflammation, hepatocyte injury and fibrogenesis are associated, and this condition may eventually lead to cirrhosis. Current treatment of NASH relies on the reduction of body weight and increase in physical activity, but there is no pharmacologic treatment approved as yet. Emerging data indicate that NASH progression results from parallel events originating from the liver as well as from the adipose tissue, the gut and the gastrointestinal tract. Thus, dysfunction of the adipose tissue through enhanced flow of free fatty acids and release of adipocytokines, and alterations in the gut microbiome generate proinflammatory signals that underlie NASH progression. Additional 'extrahepatic hits' include dietary factors and gastrointestinal hormones. Within the liver, hepatocyte apoptosis, ER stress and oxidative stress are key contributors to hepatocellular injury. In addition, lipotoxic mediators and danger signals activate Kupffer cells which initiate and perpetuate the inflammatory response by releasing inflammatory mediators that contribute to inflammatory cell recruitment and development of fibrosis. Inflammatory and fibrogenic mediators include chemokines, the cannabinoid system, the inflammasome and activation of pattern-recognition receptors. Here we review the major mechanisms leading to appearance and progression of NASH, focusing on both extrahepatic signals and local inflammatory mechanisms, in an effort to identify the most promising molecular targets for the treatment of this condition.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Italy.
| | | |
Collapse
|
23
|
Marra F, Lotersztajn S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Des 2014. [PMID: 23394092 DOI: 10.2174/1381612811399990344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non alcoholic steatohepatitis (NASH) is the more severe form of nonalcoholic fatty liver disease. In NASH, fatty liver, hepatic inflammation, hepatocyte injury and fibrogenesis are associated, and this condition may eventually lead to cirrhosis. Current treatment of NASH relies on the reduction of body weight and increase in physical activity, but there is no pharmacologic treatment approved as yet. Emerging data indicate that NASH progression results from parallel events originating from the liver as well as from the adipose tissue, the gut and the gastrointestinal tract. Thus, dysfunction of the adipose tissue through enhanced flow of free fatty acids and release of adipocytokines, and alterations in the gut microbiome generate proinflammatory signals that underlie NASH progression. Additional 'extrahepatic hits' include dietary factors and gastrointestinal hormones. Within the liver, hepatocyte apoptosis, ER stress and oxidative stress are key contributors to hepatocellular injury. In addition, lipotoxic mediators and danger signals activate Kupffer cells which initiate and perpetuate the inflammatory response by releasing inflammatory mediators that contribute to inflammatory cell recruitment and development of fibrosis. Inflammatory and fibrogenic mediators include chemokines, the cannabinoid system, the inflammasome and activation of pattern-recognition receptors. Here we review the major mechanisms leading to appearance and progression of NASH, focusing on both extrahepatic signals and local inflammatory mechanisms, in an effort to identify the most promising molecular targets for the treatment of this condition.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Italy.
| | | |
Collapse
|
24
|
Dias FM, Leffa DD, Daumann F, Marques SDO, Luciano TF, Possato JC, de Santana AA, Neves RX, Rosa JC, Oyama LM, Rodrigues B, de Andrade VM, de Souza CT, de Lira FS. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet. Lipids Health Dis 2014; 13:24. [PMID: 24495336 PMCID: PMC3926336 DOI: 10.1186/1476-511x-13-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue.To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. MATERIALS/METHODS Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. RESULTS The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. CONCLUSIONS Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fabio Santos de Lira
- Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, UNESP, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP, Brazil.
| |
Collapse
|
25
|
Bolsoni-Lopes A, Festuccia WT, Farias TSM, Chimin P, Torres-Leal FL, Derogis PBM, de Andrade PB, Miyamoto S, Lima FB, Curi R, Alonso-Vale MIC. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. Am J Physiol Endocrinol Metab 2013; 305:E1093-102. [PMID: 24022867 DOI: 10.1152/ajpendo.00082.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether palmitoleic acid, a fatty acid that enhances whole body glucose disposal and suppresses hepatic steatosis, modulates triacylglycerol (TAG) metabolism in adipocytes. For this, both differentiated 3T3-L1 cells treated with either palmitoleic acid (16:1n7, 200 μM) or palmitic acid (16:0, 200 μM) for 24 h and primary adipocytes from wild-type or PPARα-deficient mice treated with 16:1n7 (300 mg·kg(-1)·day(-1)) or oleic acid (18:1n9, 300 mg·kg(-1)·day(-1)) by gavage for 10 days were evaluated for lipolysis, TAG, and glycerol 3-phosphate synthesis and gene and protein expression profile. Treatment of differentiated 3T3-L1 cells with 16:1n7, but not 16:0, increased basal and isoproterenol-stimulated lipolysis, mRNA levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) and protein content of ATGL and pSer(660)-HSL. Such increase in lipolysis induced by 16:1n7, which can be prevented by pharmacological inhibition of PPARα, was associated with higher rates of PPARα binding to DNA. In contrast to lipolysis, both 16:1n7 and 16:0 increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose without affecting glyceroneogenesis and glycerokinase expression. Corroborating in vitro findings, treatment of wild-type but not PPARα-deficient mice with 16:1n7 increased primary adipocyte basal and stimulated lipolysis and ATGL and HSL mRNA levels. In contrast to lipolysis, however, 16:1n7 treatment increased fatty acid incorporation into TAG and glycerol 3-phosphate synthesis from glucose in both wild-type and PPARα-deficient mice. In conclusion, palmitoleic acid increases adipocyte lipolysis and lipases by a mechanism that requires a functional PPARα.
Collapse
Affiliation(s)
- Andressa Bolsoni-Lopes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stephenson EJ, Lessard SJ, Rivas DA, Watt MJ, Yaspelkis BB, Koch LG, Britton SL, Hawley JA. Exercise training enhances white adipose tissue metabolism in rats selectively bred for low- or high-endurance running capacity. Am J Physiol Endocrinol Metab 2013; 305:E429-38. [PMID: 23757406 PMCID: PMC4073983 DOI: 10.1152/ajpendo.00544.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Impaired visceral white adipose tissue (WAT) metabolism has been implicated in the pathogenesis of several lifestyle-related disease states, with diminished expression of several WAT mitochondrial genes reported in both insulin-resistant humans and rodents. We have used rat models selectively bred for low- (LCR) or high-intrinsic running capacity (HCR) that present simultaneously with divergent metabolic phenotypes to test the hypothesis that oxidative enzyme expression is reduced in epididymal WAT from LCR animals. Based on this assumption, we further hypothesized that short-term exercise training (6 wk of treadmill running) would ameliorate this deficit. Approximately 22-wk-old rats (generation 22) were studied. In untrained rats, the abundance of mitochondrial respiratory complexes I-V, citrate synthase (CS), and PGC-1 was similar for both phenotypes, although CS activity was greater than 50% in HCR (P = 0.09). Exercise training increased CS activity in both phenotypes but did not alter mitochondrial protein content. Training increased the expression and phosphorylation of proteins with roles in β-adrenergic signaling, including β3-adrenergic receptor (16% increase in LCR; P < 0.05), NOR1 (24% decrease in LCR, 21% decrease in HCR; P < 0.05), phospho-ATGL (25% increase in HCR; P < 0.05), perilipin (25% increase in HCR; P < 0.05), CGI-58 (15% increase in LCR; P < 0.05), and GLUT4 (16% increase in HCR; P < 0.0001). A training effect was also observed for phospho-p38 MAPK (12% decrease in LCR, 20% decrease in HCR; P < 0.05) and phospho-JNK (29% increase in LCR, 20% increase in HCR; P < 0.05). We conclude that in the LCR-HCR model system, mitochondrial protein expression in WAT is not affected by intrinsic running capacity or exercise training. However, training does induce alterations in the activity and expression of several proteins that are essential to the intracellular regulation of WAT metabolism.
Collapse
Affiliation(s)
- Erin J Stephenson
- School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ruggles KV, Turkish A, Sturley SL. Making, baking, and breaking: the synthesis, storage, and hydrolysis of neutral lipids. Annu Rev Nutr 2013; 33:413-51. [PMID: 23701589 DOI: 10.1146/annurev-nutr-071812-161254] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The esterification of amphiphilic alcohols with fatty acids is a ubiquitous strategy implemented by eukaryotes and some prokaryotes to conserve energy and membrane progenitors and simultaneously detoxify fatty acids and other lipids. This key reaction is performed by at least four evolutionarily unrelated multigene families. The synthesis of this "neutral lipid" leads to the formation of a lipid droplet, which despite the clear selective advantage it confers is also a harbinger of cellular and organismal malaise. Neutral lipid deposition as a cytoplasmic lipid droplet may be thermodynamically favored but nevertheless is elaborately regulated. Optimal utilization of these resources by lipolysis is similarly multigenic in determination and regulation. We present here a perspective on these processes that originates from studies in model organisms, and we include our thoughts on interventions that target reductions in neutral lipids as therapeutics for human diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Kelly V Ruggles
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
28
|
Abstract
Preservation of aerobic fitness and skeletal muscle strength through exercise training can ameliorate metabolic dysfunction and prevent chronic disease. These benefits are mediated in part by extensive metabolic and molecular remodeling of skeletal muscle by exercise. Aerobic and resistance exercise represent extremes on the exercise continuum and elicit markedly different training responses that are mediated by a complex interplay between a myriad of signaling pathways coupled to downstream regulators of transcription and translation. Here, we review the metabolic responses and molecular mechanisms that underpin the adaptatation of skeletal muscle to acute exercise and exercise training.
Collapse
Affiliation(s)
- Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
29
|
Pulido MR, Rabanal-Ruiz Y, Almabouada F, Díaz-Ruiz A, Burrell MA, Vázquez MJ, Castaño JP, Kineman RD, Luque RM, Diéguez C, Vázquez-Martínez R, Malagón MM. Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue. J Mol Endocrinol 2013; 50:19-29. [PMID: 23093555 DOI: 10.1530/jme-12-0140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is increasing evidence that proteins associated with lipid droplets (LDs) play a key role in the coordination of lipid storage and mobilization in adipocytes. The small GTPase, RAB18, has been recently identified as a novel component of the protein coat of LDs and proposed to play a role in both β-adrenergic stimulation of lipolysis and insulin-induced lipogenesis in 3T3-L1 adipocytes. In order to better understand the role of Rab18 in the regulation of lipid metabolism in adipocytes, we evaluated the effects of age, fat location, metabolic status, and hormonal milieu on Rab18 expression in rodent white adipose tissue (WAT). Rab18 mRNA was undetectable at postnatal day 15 (P15), but reached adult levels by P45, in both male and female rats. In adult rats, Rab18 immunolocalized around LDs, as well as within the cytoplasm of mature adipocytes. A weak Rab18 signal was also detected in the stromal-vascular fraction of WAT. In mice, fasting significantly increased, though with a distinct time-course pattern, Rab18 mRNA and protein levels in visceral and subcutaneous WAT. The expression of Rab18 was also increased in visceral and subcutaneous WAT of obese mice (diet-induced, ob/ob, and New Zealand obese mice) compared with lean controls. Rab18 expression in rats was unaltered by castration, adrenalectomy, or GH deficiency but was increased by hypophysectomy, as well as hypothyroidism. When viewed together, our results suggest the participation of Rab18 in the regulation of lipid processing in adipose tissue under both normal and pathological conditions.
Collapse
Affiliation(s)
- Marina R Pulido
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba, University of Córdoba/Hospital Universitario Reina Sofia, Edificio Severo-Ochoa, Pl. 3, Campus Univ. de Rabanales, E-14014 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang X, Heckmann BL, Liu J. Studying lipolysis in adipocytes by combining siRNA knockdown and adenovirus-mediated overexpression approaches. Methods Cell Biol 2013; 116:83-105. [PMID: 24099289 DOI: 10.1016/b978-0-12-408051-5.00006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3T3-L1 adipocytes are widely used as a model system for studying hormone-stimulated lipolysis. However, these cells were limited in their utility for gain- and loss-of-function studies due to the low efficiency of their transfection with plasmid DNA or small interfering RNA (siRNA) oligos. In this chapter, we provide a review of two methods established for manipulation of protein expression in differentiated mature adipocytes. The use of electroporation allows a high-efficiency delivery of siRNA oligos and subsequent knockdown of specific gene expression. A centrifugation-assisted infection with recombinant adenovirus, on the other hand, enables robust overexpression of ectopic proteins. Most importantly, by combining siRNA electroporation with adenovirus infection, simultaneous manipulation of levels of two different proteins can be achieved in differentiated adipocytes. Through subsequent analyses of lipase activity in cell extracts and fatty acid or glycerol release from living cells, mutual interdependence between the two proteins in the context of basal and hormone-stimulated adipocyte lipolysis can be evaluated.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, Arizona, USA; Metabolic HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| | | | | |
Collapse
|
31
|
You T, Wang X, Yang R, Lyles MF, Gong D, Nicklas BJ. Effect of exercise training intensity on adipose tissue hormone sensitive lipase gene expression in obese women under weight loss. JOURNAL OF SPORT AND HEALTH SCIENCE 2012; 1:184-190. [PMID: 39850239 PMCID: PMC11756585 DOI: 10.1016/j.jshs.2012.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Background Hormone sensitive lipase (HSL) is an enzyme that regulates adipose tissue lipolysis and plays an important role in chronic exercise-induced changes in adipose tissue metabolism. The purpose of this study was to determine whether aerobic exercise intensity influences abdominal adipose tissue HSL gene expression in obese women under weight loss. Methods Thirty women (body mass index (BMI) = 33.0 ± 0.7 kg/m2, age = 58 ± 1 years) completed one of three 20-week interventions: caloric restriction alone (CR only, n = 8), CR plus moderate-intensity exercise (CR + moderate-intensity, 45%-50% heart rate reserve (HRR), 3 day/week, n = 9), or CR plus vigorous-intensity exercise (CR + vigorous-intensity, 70%-75% HRR, 3 day/week, n = 13). Each group had a similar prescribed energy deficit comprised of underfeeding alone (2800 kcal/week for CR only) or underfeeding (2400 kcal/week) plus exercise (400 kcal/week). Body composition and maximal aerobic capacity (VO2max) were measured, and subcutaneous abdominal adipose tissue samples were collected before and after the interventions. Adipose tissue HSL gene expression was measured by real time reverse-transcriptase polymerase chain reaction. Results All three interventions reduced body weight, fat mass, percent fat, and waist to a similar degree (all p < 0.01). In addition, all interventions did not change absolute VO2max, but increased relative VO2max (p < 0.05 to p < 0.01). Compared to pre-intervention, neither CR only nor CR + moderate-intensity changed adipose tissue HSL gene expression, but CR + vigorous-intensity significantly increased adipose tissue HSL gene expression (p < 0.01). The changes of HSL gene expression levels in the CR + vigorous-intensity group were significantly different from those in the CR only (p < 0.05) and CR + moderate-intensity (p < 0.01) groups. In the whole cohort, changes in adipose tissue HSL gene expression correlated positively to changes in absolute (r = 0.55, p < 0.01) and relative (r = 0.32, p = 0.09) VO2max. Conclusion These results support a potential effect of aerobic exercise training intensity on hormone sensitive lipase pathway in adipose tissue metabolism in obese women under weight loss.
Collapse
Affiliation(s)
- Tongjian You
- Department of Exercise and Health Sciences, College of Nursing and Health Sciences, University of Massachusetts, Boston, MA 02125, USA
| | - Xuewen Wang
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Rongze Yang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary F. Lyles
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dawei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Barbara J. Nicklas
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Center on Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
32
|
Yang X, Heckmann BL, Zhang X, Smas CM, Liu J. Distinct mechanisms regulate ATGL-mediated adipocyte lipolysis by lipid droplet coat proteins. Mol Endocrinol 2012. [PMID: 23204327 DOI: 10.1210/me.2012-1178] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Adipose triglyceride lipase (ATGL) is the key triacylglycerol hydrolase in adipocytes. The precise mechanisms by which ATGL action is regulated by lipid droplet (LD) coat proteins and responds to hormonal stimulation are incompletely defined. By combining usage of loss- and gain-of-function approaches, we sought to determine the respective roles of perilipin 1 and fat-specific protein 27 (FSP27) in the control of ATGL-mediated lipolysis in adipocytes. Knockdown of endogenous perilipin 1 expression resulted in elevated basal lipolysis that was less responsive to β-adrenergic agonist isoproterenol. In comparison, depletion of FSP27 protein increased both basal and stimulated lipolysis with no significant impact on the overall response of cells to isoproterenol. In vitro assays showed that perilipin but not FSP27 was able to inhibit the triacylglycerol hydrolase activity of ATGL. Perilipin 1 also attenuated dose-dependent activation of ATGL by its Coactivator Comparative Gene identification-58. Accordingly, depletion of perilipin 1 and CGI-58 in adipocytes inversely affected basal lipolysis specifically mediated by overexpressed ATGL. Moreover, although depletion of perilipin 1 abolished the LD translocation of ATGL stimulated by isoproterenol, absence of FSP27 resulted in multilocularization of LDs along with increased LD presence of ATGL under both basal and stimulated conditions. Interestingly, knockdown of ATGL expression increased LD size and decreased LD number in FSP27-depeleted cells. Together, our results demonstrate that although FSP27 acts to constitutively limit the LD presence of ATGL, perilipin 1 plays an essential role in mediating the response of ATGL action to β-adrenergic hormones.
Collapse
Affiliation(s)
- Xingyuan Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, Arizona 85259, USA
| | | | | | | | | |
Collapse
|
33
|
Stimulation of fat accumulation in hepatocytes by PGE₂-dependent repression of hepatic lipolysis, β-oxidation and VLDL-synthesis. J Transl Med 2012; 92:1597-606. [PMID: 22964849 DOI: 10.1038/labinvest.2012.128] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic steatosis is recognized as hepatic presentation of the metabolic syndrome. Hyperinsulinaemia, which shifts fatty acid oxidation to de novo lipogenesis and lipid storage in the liver, appears to be a principal elicitor particularly in the early stages of disease development. The impact of PGE₂, which has previously been shown to attenuate insulin signaling and hence might reduce insulin-dependent lipid accumulation, on insulin-induced steatosis of hepatocytes was studied. The PGE₂-generating capacity was enhanced in various obese mouse models by the induction of cyclooxygenase 2 and microsomal prostaglandin E-synthases (mPGES1, mPGES2). PGE₂ attenuated the insulin-dependent induction of SREBP-1c and its target genes glucokinase and fatty acid synthase. Nevertheless, PGE₂ enhanced incorporation of glucose into hepatic triglycerides synergistically with insulin. This was most likely due to a combination of a PGE₂-dependent repression of (1) the key lipolytic enzyme adipose triglyceride lipase, (2) carnitine-palmitoyltransferase 1, a key regulator of mitochondrial β-oxidation, and (3) microsomal transfer protein, as well as (4) apolipoprotein B, key components of the VLDL synthesis. Repression of PGC1α, a common upstream regulator of these genes, was identified as a possible cause. In support of this hypothesis, overexpression of PGC1α completely blunted the PGE₂-dependent fat accumulation. PGE₂ enhanced lipid accumulation synergistically with insulin, despite attenuating insulin signaling and might thus contribute to the development of hepatic steatosis. Induction of enzymes involved in PGE₂ synthesis in in vivo models of obesity imply a potential role of prostanoids in the development of NAFLD and NASH.
Collapse
|
34
|
Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 2012; 302:E1343-51. [PMID: 22395109 DOI: 10.1152/ajpendo.00004.2012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glycogen content of muscle determines not only our capacity for exercise but also the signaling events that occur in response to exercise. The result of the shift in signaling is that frequent training in a low-glycogen state results in improved fat oxidation during steady-state submaximal exercise. This review will discuss how the amount or localization of glycogen particles can directly or indirectly result in this differential response to training. The key direct effect discussed is carbohydrate binding, whereas the indirect effects include the metabolic shift toward fat oxidation, the increase in catecholamines, and osmotic stress. Although our understanding of the role of glycogen in response to training has expanded exponentially over the past 5 years, there are still many questions remaining as to how stored carbohydrate affects the muscular adaptation to exercise.
Collapse
Affiliation(s)
- Andrew Philp
- Dept. of Neurobiology, Physiology and Behavior, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
Nielsen TS, Vendelbo MH, Jessen N, Pedersen SB, Jørgensen JO, Lund S, Møller N. Fasting, but not exercise, increases adipose triglyceride lipase (ATGL) protein and reduces G(0)/G(1) switch gene 2 (G0S2) protein and mRNA content in human adipose tissue. J Clin Endocrinol Metab 2011; 96:E1293-7. [PMID: 21613358 DOI: 10.1210/jc.2011-0149] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Fasting and exercise are characterized by increased lipolysis, but the underlying mechanisms are not fully understood. OBJECTIVE The study was designed to test whether fasting and exercise affect mRNA and protein levels of adipose triglyceride lipase (ATGL) and G(0)/G(1) switch gene 2 (G0S2), a recently discovered ATGL inhibitor, in humans. DESIGN AND PARTICIPANTS We studied eight healthy men (age, 25.5 ± 4.3 yr) for 6 h (a 4-h basal and a 2-h clamp period) on three occasions in a randomized crossover design: 1) in the basal state and after; 2) 72-h fasting; and 3) 1-h exercise (65% VO(2max)). Subcutaneous abdominal adipose tissue (AT) biopsies were taken at t = 30 and 270 min. SETTING The study was conducted at a university hospital research unit. RESULTS Circulating free fatty acids and GH were increased, and C-peptide was decreased by both fasting and exercise. During fasting, insulin failed to suppress free fatty acid levels, suggesting AT insulin resistance. ATGL protein was increased 44% (P < 0.001), and G0S2 mRNA and protein were decreased 56% (P = 0.02) and 54% (P = 0.01), respectively, after fasting, but both ATGL and G0S2 were unaffected by exercise. Protein levels of hormone-sensitive lipase and comparative gene identification-58 were unaffected throughout. CONCLUSIONS We found increased AT content of ATGL and decreased protein and mRNA content of the ATGL inhibitor G0S2, suggesting increased ATGL activity during fasting, but not after short-term exercise. These findings are compatible with the notion that the ATGL-G0S2 complex is an important long-term regulator of lipolysis under physiological conditions such as fasting in humans.
Collapse
Affiliation(s)
- Thomas S Nielsen
- Medical Research Laboratories, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Lipids are the most abundant organic constituents in many humans. The rise in obesity prevalence has prompted a need for a more refined understanding of the effects of lipid molecules on cell physiology. In skeletal muscle, deposition of lipids can be associated with insulin resistance that contributes to the development of diabetes. Here, we review the evidence that muscle cells are equipped with the molecular machinery to convert and sequester lipid molecules, thus rendering them harmless. Induction of mitochondrial and lipogenic flux in the setting of elevated lipid deposition can protect muscle from lipid-induced "poisoning" of the cellular machinery. Lipid flux may also be directed toward the synthesis of ligands for nuclear receptors, further enhancing the capacity of muscle for lipid metabolism to promote favorable physiology. Exploiting these mechanisms may have implications for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Div. of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
37
|
Current world literature. Curr Opin Lipidol 2011; 22:231-6. [PMID: 21562387 DOI: 10.1097/mol.0b013e328347aeca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Oberer M, Boeszoermenyi A, Nagy HM, Zechner R. Recent insights into the structure and function of comparative gene identification-58. Curr Opin Lipidol 2011; 22:149-58. [PMID: 21494142 PMCID: PMC5808844 DOI: 10.1097/mol.0b013e328346230e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Comparative gene identification-58 (CGI-58) is an important player in lipid metabolism. It acts as activator of triglyceride hydrolases and as acyl-CoA-dependent lysophosphatidic acid acyltransferase. This review aims at establishing a structure-function relationship of this still rather enigmatic protein based on recent studies characterizing different functions of CGI-58. RECENT FINDINGS Novel studies confirm the important regulatory role of CGI-58 as activator of the triglyceride hydrolase adipose triglyceride lipase. New evidence, corroborated by the characterization of a CGI-58 knockout mouse model, also suggests the existence of yet unknown lipases that are activated by CGI-58. Additionally, CGI-58 was identified to exert acyl-CoA-dependent lysophosphatidic acid acyltransferase activity, which implies possible roles in triglyceride or phospholipid synthesis or signaling processes. Unlike mammalian CGI-58 proteins, orthologs from plants and yeast additionally act as weak triglyceride and phospholipid hydrolases. A first three-dimensional model was calculated and allows preliminary structural considerations for the functions of CGI-58. SUMMARY Despite important progress concerning the different biochemical functions of CGI-58, the physiological importance of these activities requires better characterization. Furthermore, three-dimensional structural data for CGI-58 are required to unveil the molecular mechanism of how CGI-58 acts as activator of lipases and exerts its enzymatic functions.
Collapse
Affiliation(s)
- Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Andras Boeszoermenyi
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Harald Manuel Nagy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| |
Collapse
|
39
|
Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab 2011; 36:12-22. [PMID: 21326374 DOI: 10.1139/h10-089] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The performance of prolonged (>90 min), continuous, endurance exercise is limited by endogenous carbohydrate (CHO) stores. Accordingly, for many decades, sports nutritionists and exercise physiologists have proposed a number of diet-training strategies that have the potential to increase fatty acid availability and rates of lipid oxidation and thereby attenuate the rate of glycogen utilization during exercise. Because the acute ingestion of exogenous substrates (primarily CHO) during exercise has little effect on the rates of muscle glycogenolysis, recent studies have focused on short-term (<1-2 weeks) diet-training interventions that increase endogenous substrate stores (i.e., muscle glycogen and lipids) and alter patterns of substrate utilization during exercise. One such strategy is "fat adaptation", an intervention in which well-trained endurance athletes consume a high-fat, low-CHO diet for up to 2 weeks while undertaking their normal training and then immediately follow this by CHO restoration (consuming a high-CHO diet and tapering for 1-3 days before a major endurance event). Compared with an isoenergetic CHO diet for the same intervention period, this "dietary periodization" protocol increases the rate of whole-body and muscle fat oxidation while attenuating the rate of muscle glycogenolysis during submaximal exercise. Of note is that these metabolic perturbations favouring the oxidation of fat persist even in the face of restored endogenous CHO stores and increased exogenous CHO availability. Here we review the current knowledge of some of the potential mechanisms by which skeletal muscle sustains high rates of fat oxidation in the face of high exogenous and endogenous CHO availability.
Collapse
Affiliation(s)
- Wee Kian Yeo
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | | | |
Collapse
|
40
|
Van Proeyen K, Szlufcik K, Nielens H, Deldicque L, Van Dyck R, Ramaekers M, Hespel P. High-fat diet overrules the effects of training on fiber-specific intramyocellular lipid utilization during exercise. J Appl Physiol (1985) 2011; 111:108-16. [PMID: 21551007 DOI: 10.1152/japplphysiol.01459.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we compared the effects of endurance training in the fasted state (F) vs. the fed state [ample carbohydrate intake (CHO)] on exercise-induced intramyocellular lipid (IMCL) and glycogen utilization during a 6-wk period of a hypercaloric (∼+30% kcal/day) fat-rich diet (HFD; 50% of kcal). Healthy male volunteers (18-25 yrs) received a HFD in conjunction with endurance training (four times, 60-90 min/wk) either in F (n = 10) or with CHO before and during exercise sessions (n = 10). The control group (n = 7) received a HFD without training and increased body weight by ∼3 kg (P < 0.001). Before and after a HFD, the subjects performed a 2-h constant-load bicycle exercise test in F at ∼70% maximal oxygen uptake rate. A HFD, both in the absence (F) or presence (CHO) of training, elevated basal IMCL content by ∼50% in type I and by ∼75% in type IIa fibers (P < 0.05). Independent of training in F or CHO, a HFD, as such, stimulated exercise-induced net IMCL breakdown by approximately twofold in type I and by approximately fourfold in type IIa fibers. Furthermore, exercise-induced net muscle glycogen breakdown was not significantly affected by a HFD. It is concluded that a HFD stimulates net IMCL degradation by increasing basal IMCL content during exercise in type I and especially IIa fibers. Furthermore, a hypercaloric HFD provides adequate amounts of carbohydrates to maintain high muscle glycogen content during training and does not impair exercise-induced muscle glycogen breakdown.
Collapse
Affiliation(s)
- Karen Van Proeyen
- Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
41
|
Hawley JA, Burke LM, Phillips SM, Spriet LL. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (1985) 2011; 110:834-45. [DOI: 10.1152/japplphysiol.00949.2010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle displays remarkable plasticity, enabling substantial adaptive modifications in its metabolic potential and functional characteristics in response to external stimuli such as mechanical loading and nutrient availability. Contraction-induced adaptations are determined largely by the mode of exercise and the volume, intensity, and frequency of the training stimulus. However, evidence is accumulating that nutrient availability serves as a potent modulator of many acute responses and chronic adaptations to both endurance and resistance exercise. Changes in macronutrient intake rapidly alter the concentration of blood-borne substrates and hormones, causing marked perturbations in the storage profile of skeletal muscle and other insulin-sensitive tissues. In turn, muscle energy status exerts profound effects on resting fuel metabolism and patterns of fuel utilization during exercise as well as acute regulatory processes underlying gene expression and cell signaling. As such, these nutrient-exercise interactions have the potential to activate or inhibit many biochemical pathways with putative roles in training adaptation. This review provides a contemporary perspective of our understanding of the molecular and cellular events that take place in skeletal muscle in response to both endurance and resistance exercise commenced after acute and/or chronic alterations in nutrient availability (carbohydrate, fat, protein, and several antioxidants). Emphasis is on the results of human studies and how nutrient provision (or lack thereof) interacts with specific contractile stimulus to modulate many of the acute responses to exercise, thereby potentially promoting or inhibiting subsequent training adaptation.
Collapse
Affiliation(s)
- John A. Hawley
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Australia
| | - Louise M. Burke
- Department of Sports Nutrition, Australian Institute of Sport, Belconnen, Australia
| | | | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Marrades MP, González-Muniesa P, Martínez JA, Moreno-Aliaga MJ. A dysregulation in CES1, APOE and other lipid metabolism-related genes is associated to cardiovascular risk factors linked to obesity. Obes Facts 2010; 3:312-8. [PMID: 20975297 PMCID: PMC6452131 DOI: 10.1159/000321451] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the relationship between the differential expression of genes related to lipid metabolism in subcutaneous adipose tissue and metabolic syndrome features in lean and obese subjects with habitual high fat intake. METHODS Microarray and RT-PCR analysis were used to analyze and validate differential gene expression in subcutaneous abdominal adipose tissue samples from lean and obese phenotype subjects. RESULTS Several genes and transcripts involved in lipolysis were down-regulated, such as AKAP1, PRKAR2B, Gi and CIDEA, whereas NPY1R and CES1 were up-regulated, when comparing obese to lean subjects. Similarly, transcripts associated with cholesterol and lipoprotein metabolism showed a differential expression, with APOE and ABCA being decreased and VLDLR being increased in obese versus lean subjects. In addition, positive correlations were found between different markers of the metabolic syndrome and CES1 and NPY1R mRNA expressions, while APOE showed an inverse association with some of them. CONCLUSION Different expression patterns in transcripts encoding for proteins involved in lipolysis and lipoprotein metabolism were found between lean and obese subjects. Moreover, the dysregulation of genes such as CES1 and APOE seems to be associated with some physiopathological markers of insulin resistance and cardiovascular risk factors in obesity.
Collapse
Affiliation(s)
| | | | | | - María J. Moreno-Aliaga
- *Dr. María J. Moreno-Aliaga, Department of Nutrition, Food Sciences, Physiology and Toxicology., University of Navarra, 31008 Pamplona, Spain, Tel. +34 948 4256–00, Fax -49,
| |
Collapse
|