1
|
Wu XT, Yang X, Tian R, Li YH, Wang CY, Fan YB, Sun LW. Cells respond to space microgravity through cytoskeleton reorganization. FASEB J 2022; 36:e22114. [PMID: 35076958 DOI: 10.1096/fj.202101140r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
Decades of spaceflight studies have provided abundant evidence that individual cells in vitro are capable of sensing space microgravity and responding with cellular changes both structurally and functionally. However, how microgravity is perceived, transmitted, and converted to biochemical signals by single cells remains unrevealed. Here in this review, over 40 cellular biology studies of real space fights were summarized. Studies on cells of the musculoskeletal system, cardiovascular system, and immune system were covered. Among all the reported cellular changes in response to space microgravity, cytoskeleton (CSK) reorganization emerges as a key indicator. Based on the evidence of CSK reorganization from space flight research, a possible mechanism from the standpoint of "cellular mechanical equilibrium" is proposed for the explanation of cellular response to space microgravity. Cytoskeletal equilibrium is broken by the gravitational change from ground to space and is followed by cellular morphological changes, cell mechanical properties changes, extracellular matrix reorganization, as well as signaling pathway activation/inactivation, all of which ultimately lead to the cell functional changes in space microgravity.
Collapse
Affiliation(s)
- Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ran Tian
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chun-Yan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Moosavi D, Wolovsky D, Depompeis A, Uher D, Lennington D, Bodden R, Garber CE. The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: a systematic scoping review. Physiol Res 2021; 70:119-151. [PMID: 33992043 DOI: 10.33549/physiolres.934550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this systematic review is twofold: 1) to identify, evaluate, and synthesize the heretofore disparate scientific literatures regarding the effects of direct exposure to microgravity on the musculoskeletal system, taking into account for the first time both bone and muscle systems of both humans and animals; and 2) to investigate the efficacy and limitations of exercise countermeasures on the musculoskeletal system under microgravity in humans.The Framework for Scoping Studies (Arksey and O'Malley 2005) and the Cochrane Handbook for Systematic Reviews of Interventions (Higgins JPT 2011) were used to guide this review. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was utilized in obtaining the combined results (Moher, Liberati et al. 2009). Data sources, PubMed, Embase, Scopus, and Web of Science were searched for published articles through October 2019 using the Mesh terms of microgravity, musculoskeletal system, and exercise countermeasures. A total of 84 references were selected, including 40 animal studies and 44 studies with human participants. The heterogeneity in the study designs, methodologies, and outcomes deemed this review unsuitable for a meta-analysis. Thus, we present a narrative synthesis of the results for the key domains under five categories: 1) Skeletal muscle responses to microgravity in humans 2) Skeletal muscle responses to microgravity in animals 3) Adaptation of the skeletal system to microgravity in humans 4) Adaptation of the skeletal system to microgravity in animals 5) Effectiveness of exercise countermeasures on the human musculoskeletal system in microgravity. Existing studies have produced only limited data on the combined effects on bone and muscle of human spaceflight, despite the likelihood that the effects on these two systems are complicated due to the components of the musculoskeletal system being anatomically and functionally interconnected. Bone is directly affected by muscle atrophy as well as by changes in muscle strength, notably at muscle attachments. Given this interplay, the most effective exercise countermeasure is likely to be robust, individualized, resistive exercise, primarily targeting muscle mass and strength.
Collapse
Affiliation(s)
- D Moosavi
- Department of Biobehavioral Sciences, Teachers College, Columbia University. New York City, NY, United States.
| | | | | | | | | | | | | |
Collapse
|
3
|
Gamboa A, Branscum AJ, Olson DA, Sattgast LH, Iwaniec UT, Turner RT. Effects of spaceflight on cancellous and cortical bone in proximal femur in growing rats. Bone Rep 2021; 14:100755. [PMID: 33665238 PMCID: PMC7907224 DOI: 10.1016/j.bonr.2021.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Mechanical loading of the skeleton during normal weight bearing plays an important role in bone accrual and turnover balance. We recently evaluated bone microarchitecture in the femoral head in 5.6-week-old male Sprague Dawley rats subjected to a 4-day spaceflight aboard STS-41. Compared to weight bearing ground controls, cancellous bone volume fraction was dramatically lower in animals subjected to microgravity. The effects of spaceflight on the rat skeleton are potentially influenced by factors such as age, duration of flight, strain and sex. To test the generalizability of our initial observation, we evaluated archived proximal femora from two additional spaceflight missions: a 10-day mission (STS-57) with 7.5-week-old male Fisher 344 rats, and a 14-day mission (STS-62) with 12-week-old ovariectomized (ovx) female Fisher 344 rats. Cancellous microarchitecture and cortical thickness were assessed using x-ray microtomography/microcomputed tomography. In male rats, cancellous bone volume fraction (bone volume/tissue volume) was lower in flight animals compared to flight controls, but differences were not significant compared to baseline. In ovx female rats, cancellous bone volume fraction was lower in flight animals compared to flight controls and baseline, indicating net bone loss. Cortical thickness did not differ among groups in either experiment. In summary, findings from three separate studies support the conclusion that spaceflight results in cancellous osteopenia in femoral head of growing rats. Spaceflight resulted in cancellous osteopenia in femoral head of growing rats. Osteopenia was observed in female ovariectomized and male Fisher 344 rats. The femoral head should be evaluated in future spaceflight experiments.
Collapse
Affiliation(s)
- Amanda Gamboa
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Dawn A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lara H Sattgast
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.,Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.,Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Coulombe JC, Senwar B, Ferguson VL. Spaceflight-Induced Bone Tissue Changes that Affect Bone Quality and Increase Fracture Risk. Curr Osteoporos Rep 2020; 18:1-12. [PMID: 31897866 DOI: 10.1007/s11914-019-00540-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Bone mineral density and systemic factors are used to assess skeletal health in astronauts. Yet, even in a general population, these measures fail to accurately predict when any individual will fracture. This review considers how long-duration human spaceflight requires evaluation of additional bone structural and material quality measures that contribute to microgravity-induced skeletal fragility. RECENT FINDINGS In both humans and small animal models following spaceflight, bone mass is compromised via reduced bone formation and elevated resorption levels. Concurrently, bone structural quality (e.g., trabecular microarchitecture) is diminished and the quality of bone material is reduced via impaired tissue mineralization, maturation, and maintenance (e.g., mediated by osteocytes). Bone structural and material quality are both affected by microgravity and may, together, jeopardize astronaut operational readiness and lead to increased fracture risk upon return to gravitational loading. Future studies need to directly evaluate how bone quality combines with diminished bone mass to influence bone strength and toughness (e.g., resistance to fracture). Bone quality assessment promises to identify novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jennifer C Coulombe
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Bhavya Senwar
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, CO, 80309, USA.
- BioFrontiers Institute, University of Colorado, UCB 596, Boulder, CO, 80309, USA.
- BioServe Space Technologies, University of Colorado, UCB 429, Boulder, CO, 80309, USA.
| |
Collapse
|
5
|
Montague TG, Almansoori A, Gleason EJ, Copeland DS, Foley K, Kraves S, Alvarez Saavedra E. Gene expression studies using a miniaturized thermal cycler system on board the International Space Station. PLoS One 2018; 13:e0205852. [PMID: 30379894 PMCID: PMC6209215 DOI: 10.1371/journal.pone.0205852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/02/2018] [Indexed: 02/02/2023] Open
Abstract
The distance and duration of human spaceflight missions is set to markedly increase over the coming decade as we prepare to send astronauts to Mars. However, the health impact of long-term exposure to cosmic radiation and microgravity is not fully understood. In order to identify the molecular mechanisms underpinning the effects of space travel on human health, we must develop the capacity to monitor changes in gene expression and DNA integrity in space. Here, we report successful implementation of three molecular biology procedures on board the International Space Station (ISS) using a miniaturized thermal cycler system and C. elegans as a model organism: first, DNA extraction–the initial step for any type of DNA analysis; second, reverse transcription of RNA to generate complementary DNA (cDNA); and third, the subsequent semi-quantitative PCR amplification of cDNA to analyze gene expression changes in space. These molecular procedures represent a significant expansion of the budding molecular biology capabilities of the ISS and will permit more complex analyses of space-induced genetic changes during spaceflight missions aboard the ISS and beyond.
Collapse
Affiliation(s)
- Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | | | | | - Kevin Foley
- Boeing, Houston, TX, United States of America
| | | | | |
Collapse
|
6
|
Janmaleki M, Pachenari M, Seyedpour SM, Shahghadami R, Sanati-Nezhad A. Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell. Sci Rep 2016; 6:32418. [PMID: 27581365 PMCID: PMC5007526 DOI: 10.1038/srep32418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
This study focused on the effects of simulated microgravity (s-μg) on mechanical properties, major cytoskeleton biopolymers, and morphology of endothelial cells (ECs). The structural and functional integrity of ECs are vital to regulate vascular homeostasis and prevent atherosclerosis. Furthermore, these highly gravity sensitive cells play a key role in pathogenesis of many diseases. In this research, impacts of s-μg on mechanical behavior of human umbilical vein endothelial cells were investigated by utilizing a three-dimensional random positioning machine (3D-RPM). Results revealed a considerable drop in cell stiffness and viscosity after 24 hrs of being subjected to weightlessness. Cortical rigidity experienced relatively immediate and significant decline comparing to the stiffness of whole cell body. The cells became rounded in morphology while western blot analysis showed reduction of the main cytoskeletal components. Moreover, fluorescence staining confirmed disorganization of both actin filaments and microtubules (MTs). The results were compared statistically among test and control groups and it was concluded that s-μg led to a significant alteration in mechanical behavior of ECs due to remodeling of cell cytoskeleton.
Collapse
Affiliation(s)
- M. Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory, Center for
BioEngineering Research and Education, Department of Mechanical and Manufacturing
Engineering, University of Calgary, Canada
- Medical Nanotechnology and Tissue Engineering Research Center,
Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - M. Pachenari
- Medical Nanotechnology and Tissue Engineering Research Center,
Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - S. M. Seyedpour
- Chair of Mechanics - Structural Analysis - Dynamics, Faculty of
Architecture and Civil Engineering, TU
Dortmund, Germany
| | - R. Shahghadami
- Department of Medical Physics and Biomedical Engineering, Shahid
Beheshti University of Medical Sciences, Tehran,
Iran
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Center for
BioEngineering Research and Education, Department of Mechanical and Manufacturing
Engineering, University of Calgary, Canada
| |
Collapse
|
7
|
Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity Stress: Bone and Connective Tissue. Compr Physiol 2016; 6:645-86. [PMID: 27065165 DOI: 10.1002/cphy.c130027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions.
Collapse
Affiliation(s)
- Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Daniel A Martinez
- Department of Mechanical Engineering, University of Houston, Houston, Texas, USA
| | - Ramon D Boudreaux
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Anita V Mantri
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA.,Health Science Center School of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Keune JA, Branscum AJ, Iwaniec UT, Turner RT. Effects of Spaceflight on Bone Microarchitecture in the Axial and Appendicular Skeleton in Growing Ovariectomized Rats. Sci Rep 2015; 5:18671. [PMID: 26691062 PMCID: PMC4687043 DOI: 10.1038/srep18671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022] Open
Abstract
This study investigated the effects of a 14-day spaceflight on bone mass, density and microarchitecture in weight bearing (femur and humerus) and non-weight bearing (2nd lumbar vertebra and calvarium) bones in the context of ovarian hormone insufficiency. 12-week-old Fisher 344 rats were ovariectomized 2 weeks before flight and randomized into one of three groups: 1) baseline (n = 6), 2) ground control (n = 12) or 3) spaceflight (n = 12). Additional ground-based ovary-intact rats provided age-matched reference values at baseline (n = 8) and landing (n = 10). Ovariectomy resulted in bone- and bone compartment-specific deficits in cancellous bone volume fraction. Spaceflight resulted in lower cortical bone accrual in the femur but had no effect on cortical bone in the humerus or calvarium. Cancellous bone volume fraction was lower in flight animals compared to ground control animals in lumbar vertebra and distal femur metaphysis and epiphysis; significant differences were not detected in the distal humerus. Bone loss (compared to baseline controls) in the femur metaphysis was associated with lower trabecular number, whereas trabecular thickness and number were lower in the epiphysis. In summary, the effect of spaceflight on bone microarchitecture in ovariectomized rats was bone-and bone compartment-specific but not strictly related to weight bearing.
Collapse
Affiliation(s)
- Jessica A Keune
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.,Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.,Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
9
|
Hefferan TE, Evans GL, Lotinun S, Zhang M, Morey-Holton E, Turner RT. Effect of gender on bone turnover in adult rats during simulated weightlessness. J Appl Physiol (1985) 2003; 95:1775-80. [PMID: 12882994 DOI: 10.1152/japplphysiol.00455.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prologned spaceflight results in bone loss in astronauts, but there is considerable individual variation. The goal of this rat study was to determine whether gender influences bone loss during simulated weightlessness. Six-month-old Fisher 344 rats were hindlimb unweighted for 2 wk, after which the proximal tibiae were evaluated by histomorphometry. There were gender differences in tibia length, bone area, cancellous bone architecture, and bone formation. Compared with female rats, male rats had an 11.6% longer tibiae, a 27.8% greater cortical bone area, and a 37.6% greater trabecular separation. Conversely, female rats had greater cortical (316%) and cancellous (145%) bone formation rates, 28.6% more cancellous bone, and 30% greater trabecular number. Hindlimb unweighting resulted in large reductions in periosteal bone formation and mineral apposition rate in both genders. Unweighting also caused cancellous bone loss in both genders; trabecular number was decreased, and trabecular separation was increased. There was, however, no change in trabecular thickness in either gender. These architectural changes in cancellous bone were associated with decreases in bone formation and steady-state mRNA levels for bone matrix proteins and cancellous bone resorption. In conclusion, there are major gender-related differences in bone mass and turnover; however, the bone loss in hindlimb unweighted adult male and female rats appears to be due to similar mechanisms.
Collapse
Affiliation(s)
- T E Hefferan
- Department of Orthopedics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
10
|
Zérath E, Grynpas M, Holy X, Viso M, Patterson-Buckendahl P, Marie PJ. Spaceflight affects bone formation in rhesus monkeys: a histological and cell culture study. J Appl Physiol (1985) 2002; 93:1047-56. [PMID: 12183502 DOI: 10.1152/japplphysiol.00610.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using analyses of iliac crest cell and tissue, back-scattered electron imaging, and biochemical techniques, we characterized the effects of a 14-day spaceflight (Bion 11) on bone structure and bone formation in two 3- to 4-yr-old male rhesus monkeys compared with eight age-matched Earth-control monkeys. We found that postflight bone volume was 35% lower than preflight values in flight monkeys. This was associated with reduced osteoid (-40%) and mineralizing (-32%) surfaces and decreased bone formation rate (-53%). Moreover, flight monkeys exhibited trends to lower values of mineralization profile in iliac bone (back-scattered electron imaging) and to decreased osteocalcin serum levels (P = 0.08). The initial number of trabecular bone cells yielded in cultures did not differ in flight and control animals before or after the flight. However, osteoblastic cell proliferation was markedly lower in postflight vs. preflight at 9 and 14 days of culture in one flight monkey. This study suggests that a 14-day spaceflight reduces iliac bone formation, osteoblastic activity, and/or recruitment in young rhesus monkeys, resulting in decreased trabecular bone volume.
Collapse
Affiliation(s)
- Erik Zérath
- Department of Aerospace Physiology, IMASSA, 91223 Brétigny-sur-Orge, France.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
This review of the peer-reviewed literature focuses on the effects of spaceflight on bone. Studies performed in humans and laboratory animals have revealed abnormalities in bone and mineral metabolism that suggest that long-duration spaceflight will have detrimental effects on the skeleton. However, because of large gaps in our knowledge, it is not presently possible to estimate the magnitude of the health risk, individual variations in risk, effective countermeasures, or mechanism(s) of action. Specific recommendations are made for future research to ascertain risk and develop appropriate countermeasures.
Collapse
Affiliation(s)
- R T Turner
- Departments of Orthopedics and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
12
|
Morey-Holton ER, Halloran BP, Garetto LP, Doty SB. Animal housing influences the response of bone to spaceflight in juvenile rats. J Appl Physiol (1985) 2000; 88:1303-9. [PMID: 10749823 DOI: 10.1152/jappl.2000.88.4.1303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat has been used extensively as an animal model to study the effects of spaceflight on bone metabolism. The results of these studies have been inconsistent. On some missions, bone formation at the periosteal bone surface of weight-bearing bones is impaired and on others it is not, suggesting that experimental conditions may be an important determinant of bone responsiveness to spaceflight. To determine whether animal housing can affect the response of bone to spaceflight, we studied young growing (juvenile) rats group housed in the animal enclosure module and singly housed in the research animal holding facility under otherwise identical flight conditions (Spacelab Life Science 1). Spaceflight reduced periosteal bone formation by 30% (P < 0.001) and bone mass by 7% in single-housed animals but had little or no effect on formation (-6%) or mass (-3%) in group-housed animals. Group housing reduced the response of bone to spaceflight by as much as 80%. The data suggest that housing can dramatically affect the skeletal response of juvenile rats to spaceflight. These observations explain many of the discrepancies in previous flight studies and emphasize the need to study more closely the effects of housing (physical-social interaction) on the response of bone to the weightlessness of spaceflight.
Collapse
Affiliation(s)
- E R Morey-Holton
- Life Sciences Division, National Aeronautics and Space Administration Ames Research Center, Moffett Field 94035-1000, California, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The protein loss in humans during spaceflight is partly due to a normal adaptive response to a decreased work load on the muscles involved in weight bearing. The process is mediated by changes in prostaglandin release, secondary to the decrease in tension on the affected muscles. On missions, where there is a high level of physical demands on the astronauts, there tends to be an energy deficit, which adds to the muscle protein loss and depletes the body fat reserves. While the adaptive response is a normal part of homeostasis, the additional protein loss from an energy deficit can, in the long run, have a negative effect on health and capability of humans to live and work in space and afterward return to Earth.
Collapse
Affiliation(s)
- T P Stein
- Department of Surgery, University of Medicine and Dentistry of New Jersey, Stratford, USA
| |
Collapse
|
14
|
Carmeliet G, Bouillon R. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. FASEB J 1999; 13 Suppl:S129-34. [PMID: 10352154 DOI: 10.1096/fasebj.13.9001.s129] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mass and architecture of the skeletal system adapt, to some extent, to their mechanical environment. A site-specific bone loss of 1-2% is observed in astronauts and in-flight animals after 1 month of spaceflight. Biochemical data of astronauts and histomorphometric analysis of rat bones show that the change in bone mass is a result of decreased bone formation in association with normal (or increased) bone resorption. The changes in bone formation appear to be due in part to decreased osteoblast differentiation, matrix maturation, and mineralization. Recent data show that spaceflight alters the mRNA level for several bone-specific proteins in rat bone, suggesting that the characteristics of osteoblasts are altered during spaceflight. A possible underlying mechanism is that osteoblasts themselves are sensitive to altered gravity levels as suggested by several studies investigating the effect of microgravity on osteoblasts in vitro. Changes in cell and nuclear morphology were observed as well as alterations in the expression of growth factors (interleukin-6 and insulin-like growth factor binding proteins) and matrix proteins (collagen type I and osteocalcin). Taken together, this altered cellular function in combination with differences in local or systemic factors may mediate the effects of spaceflight on bone physiology.
Collapse
Affiliation(s)
- G Carmeliet
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Belgium.
| | | |
Collapse
|
15
|
Affiliation(s)
- Elisabeth H. Burger
- ACTA‐Vrije UniversiteitDepartment of Oral Cell BiologyAmsterdamThe Netherlands
| | | |
Collapse
|
16
|
Westerlind KC, Wronski TJ, Ritman EL, Luo ZP, An KN, Bell NH, Turner RT. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci U S A 1997; 94:4199-204. [PMID: 9108129 PMCID: PMC20601 DOI: 10.1073/pnas.94.8.4199] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1995] [Accepted: 01/27/1997] [Indexed: 02/04/2023] Open
Abstract
Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.
Collapse
Affiliation(s)
- K C Westerlind
- Department of Orthopedics, Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|