1
|
Peliciari-Garcia RA, de Barros CF, Secio-Silva A, de Barros Peruchetti D, Romano RM, Bargi-Souza P. Multi-omics Investigations in Endocrine Systems and Their Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:187-209. [PMID: 38409422 DOI: 10.1007/978-3-031-50624-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Innovative techniques such as the "omics" can be a powerful tool for the understanding of intracellular pathways involved in homeostasis maintenance and identification of new potential therapeutic targets against endocrine-metabolic disorders. Over the last decades, proteomics has been extensively applied in the study of a wide variety of human diseases, including those involving the endocrine system. Among the most endocrine-related disorders investigated by proteomics in humans are diabetes mellitus and thyroid, pituitary, and reproductive system disorders. In diabetes, proteins implicated in insulin signaling, glucose metabolism, and β-cell activity have been investigated. In thyroid diseases, protein expression alterations were described in thyroid malignancies and autoimmune thyroid illnesses. Additionally, proteomics has been used to investigate the variations in protein expression in adrenal cancers and conditions, including Cushing's syndrome and Addison's disease. Pituitary tumors and disorders including acromegaly and hypopituitarism have been studied using proteomics to examine changes in protein expression. Reproductive problems such as polycystic ovarian syndrome and endometriosis are two examples of conditions where alterations in protein expression have been studied using proteomics. Proteomics has, in general, shed light on the molecular underpinnings of many endocrine-related illnesses and revealed promising biomarkers for both their detection and treatment. The capacity of proteomics to thoroughly and objectively examine complex protein mixtures is one of its main benefits. Mass spectrometry (MS) is a widely used method that identifies and measures proteins based on their mass-to-charge ratio and their fragmentation pattern. MS can perform the separation of proteins according to their physicochemical characteristics, such as hydrophobicity, charge, and size, in combination with liquid chromatography. Other proteomics techniques include protein arrays, which enable the simultaneous identification of several proteins in a single assay, and two-dimensional gel electrophoresis (2D-DIGE), which divides proteins depending on their isoelectric point and molecular weight. This chapter aims to summarize the most relevant proteomics data from targeted tissues, as well as the daily rhythmic variation of relevant biomarkers in both physiological and pathophysiological conditions within the involved endocrine system, especially because the actual modern lifestyle constantly imposes a chronic unentrained condition, which virtually affects all the circadian clock systems within human's body, being also correlated with innumerous endocrine-metabolic diseases.
Collapse
Affiliation(s)
- Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Carolina Fonseca de Barros
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diogo de Barros Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
Expression of Transthyretin during bovine myogenic satellite cell differentiation. In Vitro Cell Dev Biol Anim 2014; 50:756-65. [PMID: 24903999 DOI: 10.1007/s11626-014-9757-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/07/2014] [Indexed: 12/21/2022]
Abstract
Adult myogenesis responsible for the maintenance and repair of muscle tissue is mainly under the control of myogenic regulatory factors (MRFs) and a few other genes. Transthyretin gene (TTR), codes for a carrier protein for thyroxin (T4) and retinol binding protein bound with retinol in blood plasma, plays a critical role during the early stages of myogenesis. Herein, we investigated the relationship of TTR with other muscle-specific genes and report their expression in muscle satellite cells (MSCs), and increased messenger RNA (mRNA) and protein expression of TTR during MSCs differentiation. Silencing of TTR resulted in decreased myotube formation and decreased expression of myosin light chain (MYL2), myosin heavy chain 3 (MYH3), matrix gla protein (MGP), and voltage-dependent L type calcium channel (Cav1.1) genes. Increased mRNA expression observed in TTR and other myogenic genes with the addition of T4 decreased significantly following TTR knockdown, indicating the critical role of TTR in T4 transportation. Similarly, decreased expression of MGP and Cav1.1 following TTR knockdown signifies the dual role of TTR in controlling muscle myogenesis via regulation of T4 and calcium channel. Our computational and experimental evidences indicate that TTR has a relationship with MRFs and may act on calcium channel and related genes.
Collapse
|
4
|
An alternate protocol for establishment of primary caprine fetal myoblast cell culture: an in vitro model for muscle growth study. In Vitro Cell Dev Biol Anim 2013; 49:589-97. [PMID: 23739872 DOI: 10.1007/s11626-013-9642-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/19/2013] [Indexed: 12/17/2022]
Abstract
Cultured myoblasts have been used extensively as an in vitro model in understanding the underlying mechanisms of myogenesis. Various protocols for establishing a pure myoblast culture have been reported which involve the use of special procedures like flow cytometry and density gradient centrifugation. In goat, only a few protocols for establishing a myogenic cell culture are available and these protocols use adult muscle tissues which often does not yield sufficient numbers of precursor cells with adequate proliferative capacity. Considering the disadvantages of adult myoblasts, we are proposing an alternate protocol using caprine fetus which does not require any special procedures. In the present study, more than 90-95% fetal-derived cell populations had the typical spindle to polyhedral shape of myoblast cell and stained positive for desmin, hence confirming their myogenic origin. These cells attained the maximum confluency as early as 3-4 d against 3 wk by adult myoblasts indicating a better growth potential. Further, quantitative real-time PCR analysis revealed a higher expression (p < 0.01) of myogenic regulatory factors (i.e., myogenic determination factor 1, myogenic factor 5, and myogenin) and myostatin (MSTN) in the fetal as compared to the adult myoblasts. Consequently, higher proliferation and differentiation ability along with higher abundance of myogenic markers and MSTN make the fetal myoblasts a better in vitro model.
Collapse
|
5
|
Silvestri E, Lombardi A, de Lange P, Glinni D, Senese R, Cioffi F, Lanni A, Goglia F, Moreno M. Studies of complex biological systems with applications to molecular medicine: the need to integrate transcriptomic and proteomic approaches. J Biomed Biotechnol 2010; 2011:810242. [PMID: 20981256 PMCID: PMC2963870 DOI: 10.1155/2011/810242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/08/2010] [Indexed: 02/07/2023] Open
Abstract
Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a) to discern all at once a globally altered pattern of gene/protein expression and (b) to examine the complex interactions that regulate entire biological processes. Two popular platforms in "omics" are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state) in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity.
Collapse
Affiliation(s)
- Elena Silvestri
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Assunta Lombardi
- Dipartimento delle Scienze Biologiche, Sezione Fisiologia, Università degli Studi di Napoli “Federico II”, Via Mezzocannone 8, 80134 Napoli, Italy
| | - Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Daniela Glinni
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Rosalba Senese
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Cioffi
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| |
Collapse
|
6
|
Postler TS, Budak MT, Khurana TS, Rubinstein NA. Influence of hyperthyroid conditions on gene expression in extraocular muscles of rats. Physiol Genomics 2009; 37:231-8. [PMID: 19276241 DOI: 10.1152/physiolgenomics.00023.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Extraocular muscles (EOMs) are a highly specialized type of tissue with a wide range of unique properties, including characteristic innervation, development, and structural proteins. Even though EOMs are frequently and prominently affected by thyroid-associated diseases, little is known about the direct effects of thyroid hormone on these muscles. To create a comprehensive profile of changes in gene expression levels in EOMs induced by thyroid hormone, hyperthyroid conditions were simulated by treating adult Sprague-Dawley rats with intraperitoneal injections of the thyroid hormone 3,3',5-triiodo-L-thyronine (T(3)); subsequently, microarray analysis was used to determine changes in mRNA levels in EOMs from T(3)-treated animals relative to untreated control animals. The expression of 468 transcripts was found to be significantly altered, with 466 of these transcripts downregulated in EOMs from T(3)-treated animals. The biological processes into which the affected genes could be grouped included cellular metabolism, transport, biosynthesis, protein localization, and cell homeostasis. Moreover, 15 distinct biochemical canonical pathways were represented among the genes with altered transcription levels. Strikingly, myostatin (Gdf8), a potent negative regulator of muscle growth, was found to be strongly downregulated in EOMs from T(3)-treated animals. Together, these findings suggest that pathological concentrations of thyroid hormone have a unique effect on gene expression in EOMs, which is likely to play a hitherto neglected role in thyroid-associated ophthalmopathies.
Collapse
Affiliation(s)
- Thomas S Postler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Enolase - a glycolytic enzyme is also expressed on the surface of eukaryotic cells such as macrophages, neutrophils, endothelial, neuronal, tumor cells. Surface enolase as plasminogen receptor plays an important role in myogenesis, tumorgenesis and angiogenesis. Determination of enolase localization in the cell lines may give rise to the elucidation of its receptor function in tumor cells. The cellular localization of the muscle-specific isoform of the enolase in normal rat cardiomyocytes (H9c2, an embryonic rat heart-derived cell line) and a rat sarcoma (R1) cell line is reported here. Immunocytochemical assays showed that this enolase isoform is freely diffused in the sarcoplasm of rat cells. The evident location of enolase molecules on the perinuclear surface is observed in immunofluorescence assays. Enolase localization on the surface of some intact normal rat cardiomyocytes was also observed. This surface protein maintains enolase catalytic activity.
Collapse
|
8
|
Llanos C, Chan EKL, Li S, Abadal GX, Izmirly P, Byrne C, Clancy RM, Buyon JP. Antibody reactivity to alpha-enolase in mothers of children with congenital heart block. J Rheumatol 2009; 36:565-9. [PMID: 19208599 DOI: 10.3899/jrheum.080860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate the frequency of anti-alpha-enolase antibodies in the sera of mothers whose children have congenital heart block (CHB), given provocative results in which alpha-enolase, a membrane protein, was recognized by monoclonal antibodies reactive with the peptide p200 of 52 kDa Ro/SSA in a neonatal rat heart library. METHODS An ELISA using a recombinant alpha-enolase protein was developed. Sera from 100 anti-Ro52+ CHB mothers in the Research Registry for Neonatal Lupus, 50 patients with systemic lupus erythematosus (SLE; 7 anti-Ro52+), and 48 healthy controls were tested for anti-alpha-enolase reactivity. RESULTS There were no significant differences in the median values obtained from CHB mothers, patients with SLE, or controls at each of the dilutions tested. Only 7 (7%) at 1:100 dilution and 2 (2%) at 1:1000 dilution of 100 CHB sera were 3 standard deviations above the mean value obtained for controls. Preincubation with recombinant Ro52 did not inhibit anti-alpha-enolase reactivity. CONCLUSION The low frequency of anti-alpha-enolase antibodies in the sera of CHB mothers and the absence of apparent cross-reactivity with Ro52 suggest that antibodies to Ro52 are not likely to mediate CHB via binding to alpha-enolase.
Collapse
Affiliation(s)
- Carolina Llanos
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Peltzer J, Colman L, Cebrian J, Musa H, Peckham M, Keller A. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro. Dev Dyn 2008; 237:1412-23. [DOI: 10.1002/dvdy.21543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Cassar-Malek I, Picard B, Kahl S, Hocquette JF. Relationships between thyroid status, tissue oxidative metabolism, and muscle differentiation in bovine fetuses. Domest Anim Endocrinol 2007; 33:91-106. [PMID: 16797912 DOI: 10.1016/j.domaniend.2006.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 11/17/2022]
Abstract
The temporal relationships between thyroid status and differentiation of liver, heart and different skeletal muscles were examined in 42 bovine fetuses from day 110 to day 260 of development using principal component analysis of the data. Plasma concentrations of reverse-triiodothyronine (rT(3)) and thyroxine (T(4)) increased during development from day 110 to day 210 or 260, respectively, whereas concentration of triiodothyronine (T(3)) and hepatic type-1 5'-deiodinase activity (5'D1) increased from day 180 onwards. On day 260, high T(4) and rT(3) and low T(3) concentrations were observed together with a mature 5'D1 activity. Cytochrome-c oxidase (COX) activity expressed per mg protein increased at day 180 in masseter and near birth in masseter, rectus abdominis and cutaneus trunci muscles (P<0.05). Significant changes in citrate synthase (CS) activity per mg protein were observed between day 110 and day 180 in the liver and between day 210 and day 260 in the liver, the heart and the longissimus thoracis muscle (P<0.05). Muscle contractile differentiation was shown by the disappearance of the fetal myosin heavy chain from day 180 onwards. A positive correlation (r>0.47, P<0.01) was shown between thyroid status parameters (5'D1, concentrations of T(4) and T(3)) and COX activity in muscles known to be oxidative after birth (masseter, rectus abdominis) but not in liver and heart, nor in muscles known to be glycolytic after birth (cutaneus trunci, longissimus thoracis). A similar correlation was found between thyroid parameters and CS activity in liver and masseter. Results indicate that elevation of plasma T(3) concentrations in the last gestational trimester could be involved in the differentiation of oxidative skeletal muscles.
Collapse
Affiliation(s)
- I Cassar-Malek
- Equipe Croissance et Métabolismes du Muscle, Unité de Recherches sur les Herbivores, INRA, Centre de Clermont-Ferrand/Theix, 63122 St Genès-Champanelle, France.
| | | | | | | |
Collapse
|
11
|
Ratajczak P, Oliviéro P, Marotte F, Kolar F, Ostadal B, Samuel JL. Expression and localization of caveolins during postnatal development in rat heart: implication of thyroid hormone. J Appl Physiol (1985) 2005; 99:244-51. [PMID: 15718400 DOI: 10.1152/japplphysiol.01292.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolins modulate signaling pathways involved in cardiac development. Caveolin-1 exists in two isoforms: the beta-isoform derivates from an alternative translational start site that creates a protein truncated by 31 amino acids, mainly expressed in endothelial cells, whereas caveolin-3 is present in muscle cells. Our aim was to define caveolin distribution and expression during cardiac postnatal development using immunofluorescence and Western blotting. Caveolin-3 sarcolemmal labeling appeared as dotted lines from days 1 to 5 and as continuous lines after 14 days of age. Caveolin-3 expression, low at birth, increased (4-fold) to reach a maximum (P < 0.05) by day 5 and then decreased to stabilize in adults. Total caveolin-1 and its alpha-isoform were codistributed at birth in endothelial and smooth muscle cells; afterward, only the caveolin-1alpha labeling became limited to endothelium. Quantitative analysis indicated a similar temporal pattern of both total caveolin-1 and caveolin-1alpha expression, suggesting that caveolin-1alpha and -1beta are coregulated; the caveolin-1alpha levels increased fourfold by day 5 to reach a maximum by day 14 (P < 0.05). Tyrosine-14-caveolin-1 phosphorylation, low at birth, increased suddenly around day 14 (8-fold vs. day 1) and returning afterward to basal level. Because the T3/T4 level is maximal by day 14, caveolin-1 expression/phosphorylation profiles were analyzed in hypothyroid heart. The levels of caveolin-1alpha and consequently tyrosine-14-caveolin-1 phosphorylation, but not that of caveolin-3, decreased (50%) in hypothyroid 14-day-old rats. Our data demonstrate that, during postnatal cardiac growth, 1) caveolins are distinctly regulated, and 2) thyroid hormones are involved in caveolin-1alpha expression.
Collapse
Affiliation(s)
- Philippe Ratajczak
- CRCIL U689, IFR139, Hôpital Lariboisière, 41 Boulevard de la Chapelle, 75475 Paris Cedex 10, France
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Thyroid hormones are key regulators of development and metabolism that modulate transcription via nuclear receptors. Although the molecular actions of thyroid hormones have been thoroughly studied, their pleiotropic effects are mediated by complex changes in expression of numerous, but still largely unknown, target genes. This review summarizes the recent advances in the characterization of target genes in different organs. RECENT FINDINGS New patterns of gene expression regulation have been described in tissues with known physiological actions of thyroid hormone, that is brain, liver, skeletal and cardiac muscles, and brown and white adipose tissues. The studies have benefited from the numerous transgenic models with altered thyroid hormone receptor expression and the application of DNA microarray technology to mouse and human tissues. SUMMARY Data on thyroid hormone-mediated control of gene expression and on the roles of the different thyroid hormone receptor isoforms bring new clues to our understanding of the molecular mechanisms of thyroid hormone action in physiological situations and, most importantly, in diseases associated with alterations of the thyroid status.
Collapse
Affiliation(s)
- Nathalie Viguerie
- French Institute of Health and Medical Research, Toulouse University Hospitals, Toulouse, France
| | | |
Collapse
|
13
|
Fougerousse F, Edom-Vovard F, Merkulova T, Ott MO, Durand M, Butler-Browne G, Keller A. The muscle-specific enolase is an early marker of human myogenesis. J Muscle Res Cell Motil 2002; 22:535-44. [PMID: 12038587 DOI: 10.1023/a:1015008208007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In higher vertebrates, the glycolytic enzyme enolase (2-phospho-D-glycerate hydrolase; EC 4.2.1.11) is active as a dimer formed from three different subunits, alpha, beta and gamma, encoded by separate genes. The expression of these genes is developmentally regulated in a tissue-specific manner. A shift occurs during development, from the unique embryonic isoform alphaalpha, towards specific isoforms in two tissues with high energy demands: alphagamma and gammagamma in the nervous system, alphabeta and betabeta in striated muscles. The alphaalpha remains widely distributed in adult tissues. Here we report the results of the first extensive study of beta enolase expression during human development. Indeed, the beta subunit is specifically expressed at early stages of human myogenesis. Immunocytochemical analyses demonstrated that it is first detected in the heart of 3-week-old embryos and in the myotomal compartment of somites from 4-week-old embryos. At this stage, the muscle-specific sarcomeric protein titin is expressed in this structure, which will give rise to all body skeletal muscles, but embryonic myosin heavy chain is not yet present. Analyses at the protein level show that, during human ontogenesis, myogenesis is accompanied by an increase in beta enolase expression and by a decrease in the expression of the two other alpha and gamma subunits. Furthermore, beta enolase subunit is expressed in proliferating myoblasts from both embryonic and post-natal muscles. In addition, clonal analysis of primary cell cultures, obtained from the leg muscle of a 7-week-old human embryo, revealed that the beta subunit is present in the dividing myoblasts of all four types, according to the classification of Edom-Vovard et al. [(1999) J Cell Sci 112: 191-199], but not in cells of the non-myogenic lineage. Myoblast fusion is accompanied by a large increase in beta enolase expression. Our results demonstrate that this muscle-specific isoform of a glycolytic enzyme (beta enolase) is among the earliest markers of myogenic differentiation in humans.
Collapse
|
14
|
Comi GP, Fortunato F, Lucchiari S, Bordoni A, Prelle A, Jann S, Keller A, Ciscato P, Galbiati S, Chiveri L, Torrente Y, Scarlato G, Bresolin N. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol 2001; 50:202-7. [PMID: 11506403 DOI: 10.1002/ana.1095] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A severe muscle enolase deficiency, with 5% of residual activity, was detected in a 47-year-old man affected with exercise intolerance and myalgias. No rise of serum lactate was observed with the ischemic forearm exercise. Ultrastructural analysis showed focal sarcoplasmic accumulation of glycogen beta particles. The enzyme enolase catalyzes the interconversion of 2-phosphoglycerate and phosphoenolpyruvate. In adult human muscle, over 90% of enolase activity is accounted for by the beta-enolase subunit, the protein product of the ENO3 gene. The beta-enolase protein was dramatically reduced in the muscle of our patient, by both immunohistochemistry and immunoblotting, while alpha-enolase was normally represented. The ENO3 gene of our patient carries two heterozygous missense mutations affecting highly conserved amino acid residues; a G467A transition changing a glycine residue at position 156 to aspartate, in close proximity to the catalytic site, and a G1121A transition changing a glycine to glutamate at position 374. These mutations were probably inherited as autosomal recessive traits since the mother was heterozygous for the G467A and a sister was heterozygous for the G1121A transition. Our data suggest that ENO3 mutations result in decreased stability of mutant beta-enolase. Muscle beta-enolase deficiency should be considered in the differential diagnosis of metabolic myopathies due to inherited defects of distal glycolysis.
Collapse
Affiliation(s)
- G P Comi
- Istituto di Clinica Neurologica, Università degli Studi di Milano, IRCCS, Ospedale Maggiore Policlinico, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|