1
|
Pereyra AS, Fernandez RF, Amorese A, Castro JN, Lin CT, Spangenburg EE, Ellis JM. Loss of mitochondria long-chain fatty acid oxidation impairs skeletal muscle contractility by disrupting myofibril structure and calcium homeostasis. Mol Metab 2024; 89:102015. [PMID: 39182841 PMCID: PMC11408158 DOI: 10.1016/j.molmet.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Abnormal lipid metabolism in mammalian tissues can be highly deleterious, leading to organ failure. Carnitine Palmitoyltransferase 2 (CPT2) deficiency is an inherited metabolic disorder affecting the liver, heart, and skeletal muscle due to impaired mitochondrial oxidation of long-chain fatty acids (mLCFAO) for energy production. METHODS However, the basis of tissue damage in mLCFAO disorders is not fully understood. Mice lacking CPT2 in skeletal muscle (Cpt2Sk-/-) were generated to investigate the nexus between mFAO deficiency and myopathy. RESULTS Compared to controls, ex-vivo contractile force was reduced by 70% in Cpt2Sk-/- oxidative soleus muscle despite the preserved capacity to couple ATP synthesis to mitochondrial respiration on alternative substrates to long-chain fatty acids. Increased mitochondrial biogenesis, lipid accumulation, and the downregulation of 80% of dystrophin-related and contraction-related proteins severely compromised the structure and function of Cpt2Sk-/- soleus. CPT2 deficiency affected oxidative muscles more than glycolytic ones. Exposing isolated sarcoplasmic reticulum to long-chain acylcarnitines (LCACs) inhibited calcium uptake. In agreement, Cpt2Sk-/- soleus had decreased calcium uptake and significant accumulation of palmitoyl-carnitine, suggesting that LCACs and calcium dyshomeostasis are linked in skeletal muscle. CONCLUSIONS Our data demonstrate that loss of CPT2 and mLCFAO compromise muscle structure and function due to excessive mitochondrial biogenesis, downregulation of the contractile proteome, and disruption of calcium homeostasis.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.
| | - Regina F Fernandez
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Adam Amorese
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Jasmine N Castro
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Chien-Te Lin
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Espen E Spangenburg
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology and East Carolina Diabetes and Obesity Institute, Greenville, NC, 27834, USA.
| |
Collapse
|
2
|
Heemstra LA, Koch LG, Britton SL, Novak CM. Altered skeletal muscle sarco-endoplasmic reticulum Ca 2+-ATPase calcium transport efficiency after a thermogenic stimulus. Am J Physiol Regul Integr Comp Physiol 2022; 323:R628-R637. [PMID: 36094445 PMCID: PMC9602703 DOI: 10.1152/ajpregu.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023]
Abstract
Exposure to predator threat induces a rapid and robust increase in skeletal muscle thermogenesis in rats. The central nervous system relays threat information to skeletal muscle through activation of the sympathetic nervous system, but muscle mechanisms mediating this thermogenesis remain unidentified. Given the relevance of sarcolipin-mediated futile calcium cycling through the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump to mammalian muscle nonshivering thermogenesis, we hypothesized that this plays a role in contextually induced muscle thermogenesis as well. This was assessed by measuring enzymatic activity of SERCA and sarcoplasmic reticulum Ca2+ transport, where the apparent coupling ratio (Ca2+ uptake rate divided by ATPase activity rate at a standard Ca2+ concentration) was predicted to decrease in association with muscle thermogenesis. Sprague-Dawley rats exposed to predator (ferret) odor (PO) showed a rapid decrease in the apparent coupling ratio in the soleus muscle, indicating SERCA uncoupling compared with control-odor-exposed rats. A rat model of high aerobic fitness and elevated muscle thermogenesis also demonstrated soleus muscle SERCA uncoupling relative to their obesity-prone, low-fitness counterparts. Both the high- and low-aerobic fitness rats showed soleus SERCA uncoupling with exposure to PO. Finally, no increase in sarcolipin expression in soleus muscle was detected with PO exposure. This dataset implicates muscle uncoupling of SERCA Ca2+ transport and ATP hydrolysis, likely through altered SERCA or sarcolipin function outside of translational regulation, as one contributor to the muscle thermogenesis provoked by exposure to predator threat. These data support the involvement of SERCA uncoupling in both muscle thermogenic induction and enhanced aerobic capacity.
Collapse
Affiliation(s)
- Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio
- School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
3
|
Ischemia-Reperfusion Injury in Peripheral Artery Disease and Traditional Chinese Medicine Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4954070. [PMID: 34899949 PMCID: PMC8660193 DOI: 10.1155/2021/4954070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Peripheral artery disease (PAD) is a serious public health issue, characterized by circulation disorder of the lower extreme that reduces the physical activity of the lower extremity muscle. The artery narrowed by atherosclerotic lesions initiates limb ischemia. In the progression of treatment, reperfusion injury is still inevitable. Ischemia-reperfusion injury induced by PAD is responsible for hypoxia and nutrient deficiency. PAD triggers hindlimb ischemia and reperfusion (I/R) cycles through various mechanisms, mainly including mitochondrial dysfunction and inflammation. Alternatively, mitochondrial dysfunction plays a central role. The I/R injury may cause cells' injury and even death. However, the mechanism of I/R injury and the way of cell damage or death are still unclear. We review the pathophysiology of I/R injury, which is majorly about mitochondrial dysfunction. Then, we focus on the cell damage and death during I/R injury. Further comprehension of the progress of I/R will help identify biomarkers for diagnosis and therapeutic targets to PAD. In addition, traditional Chinese medicine has played an important role in the treatment of I/R injury, and we will make a brief introduction.
Collapse
|
4
|
Liu J, Fu Z, Gong Y, Xia L. Investigating two kinds of cellular alternans and corresponding TWA induced by impaired calcium cycling in myocardial ischemia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7648-7665. [PMID: 34814268 DOI: 10.3934/mbe.2021379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND The utility of T wave alternans (TWA) in identifying arrhythmia risk has been demonstrated. During myocardial ischemia (MI), TWA could be induced by cellular alternans. However, the relationship between cellular alternans patterns and TWA patterns in MI has not been investigated thoroughly. METHODS We set MI conditions to simulate alternans. Either prolonging Ca2+ release or increasing spark-induced sparks (secondary sparks) can give rise to different patterns of APD alternans and TWA. In addition, different ischemic zones and reduced conduction velocity are also considered in one dimensional simulation. RESULTS Delay of Ca2+ release can produce discordant Ca2+-driven alternans in single cell simulation. Increasing secondary sparks leads to concordant alternans. Correspondingly, morphology and magnitude of TWA vary in two different cellular alternans. Epi ischemia results in alternans concentrating in the first half of T wave. Endo and transmural ischemia lead to fluctuations in the second half of T wave. In addition, slowing conduction velocity has no effect on TWA magnitude. CONCLUSION Specific ionic channel dysfunction and ischemic zones affect TWA patterns.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenyin Fu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yinglan Gong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling Xia
- Key Laboratory for Biomedical Engineering of Ministry of Education, Institute of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Lindinger MI, Cairns SP. Regulation of muscle potassium: exercise performance, fatigue and health implications. Eur J Appl Physiol 2021; 121:721-748. [PMID: 33392745 DOI: 10.1007/s00421-020-04546-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022]
Abstract
This review integrates from the single muscle fibre to exercising human the current understanding of the role of skeletal muscle for whole-body potassium (K+) regulation, and specifically the regulation of skeletal muscle [K+]. We describe the K+ transport proteins in skeletal muscle and how they contribute to, or modulate, K+ disturbances during exercise. Muscle and plasma K+ balance are markedly altered during and after high-intensity dynamic exercise (including sports), static contractions and ischaemia, which have implications for skeletal and cardiac muscle contractile performance. Moderate elevations of plasma and interstitial [K+] during exercise have beneficial effects on multiple physiological systems. Severe reductions of the trans-sarcolemmal K+ gradient likely contributes to muscle and whole-body fatigue, i.e. impaired exercise performance. Chronic or acute changes of arterial plasma [K+] (hyperkalaemia or hypokalaemia) have dangerous health implications for cardiac function. The current mechanisms to explain how raised extracellular [K+] impairs cardiac and skeletal muscle function are discussed, along with the latest cell physiology research explaining how calcium, β-adrenergic agonists, insulin or glucose act as clinical treatments for hyperkalaemia to protect the heart and skeletal muscle in vivo. Finally, whether these agents can also modulate K+-induced muscle fatigue are evaluated.
Collapse
Affiliation(s)
- Michael I Lindinger
- Research and Development, The Nutraceutical Alliance, Burlington, ON, L7N 2Z9, Canada
| | - Simeon P Cairns
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1020, New Zealand.
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1020, New Zealand.
| |
Collapse
|
6
|
Xue Y, Jin W, Xue Y, Zhang Y, Wang H, Zhang Y, Guan S, Chu X, Zhang J. Safranal, an active constituent of saffron, ameliorates myocardial ischemia via reduction of oxidative stress and regulation of Ca2+ homeostasis. J Pharmacol Sci 2020; 143:156-164. [DOI: 10.1016/j.jphs.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/15/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
|
7
|
Tarpey MD, Amorese AJ, Balestrieri NP, Fisher-Wellman KH, Spangenburg EE. Doxorubicin causes lesions in the electron transport system of skeletal muscle mitochondria that are associated with a loss of contractile function. J Biol Chem 2019; 294:19709-19722. [PMID: 31690631 DOI: 10.1074/jbc.ra119.008426] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Doxorubicin is an anthracycline-based chemotherapeutic that causes myotoxicity with symptoms persisting beyond treatment. Patients experience muscle pain, weakness, fatigue, and atrophy, but the underlying mechanisms are poorly understood. Studies investigating doxorubicin-induced myotoxicity have reported disrupted mitochondrial function. Mitochondria are responsible for regulating both cellular energy status and Ca2+ handling, both of which impact contractile function. Moreover, loss of mitochondrial integrity may initiate muscle atrophy. Skeletal muscle mitochondrial dysregulation may therefore contribute to an overall loss of skeletal muscle quality and performance that may be mitigated by appropriately targeted mitochondrial therapies. We therefore assessed the impact of doxorubicin on muscle performance and applied a multiplexed assay platform to diagnose alterations in mitochondrial respiratory control. Mice received a clinically relevant dose of doxorubicin delivered systemically and were euthanized 72 h later. We measured extensor digitorum longus and soleus muscle forces, fatigue, and contractile kinetics in vitro, along with Ca2+ uptake in isolated sarcoplasmic reticulum. Isolated skeletal muscle mitochondria were used for real-time respirometry or frozen for protein content and activity assays. Doxorubicin impaired muscle performance, which was indicated by reduced force production, fatigue resistance, and sarcoplasmic reticulum-Ca2+ uptake, which were associated with a substrate-independent reduction in respiration and membrane potential but no changes in the NAD(P)H/NAD(P)+ redox state. Protein content and dehydrogenase activity results corroborated these findings, indicating that doxorubicin-induced mitochondrial impairments are located upstream of ATP synthase within the electron transport system. Collectively, doxorubicin-induced lesions likely span mitochondrial complexes I-IV, providing potential targets for alleviating doxorubicin myotoxicity.
Collapse
Affiliation(s)
- Michael D Tarpey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Adam J Amorese
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Nicholas P Balestrieri
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.,East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Espen E Spangenburg
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834 .,East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
8
|
Paradis S, Charles AL, Meyer A, Lejay A, Scholey JW, Chakfé N, Zoll J, Geny B. Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion. Am J Physiol Cell Physiol 2016; 310:C968-82. [PMID: 27076618 DOI: 10.1152/ajpcell.00356.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peripheral artery disease (PAD) is a common circulatory disorder of the lower limb arteries that reduces functional capacity and quality of life of patients. Despite relatively effective available treatments, PAD is a serious public health issue associated with significant morbidity and mortality. Ischemia-reperfusion (I/R) cycles during PAD are responsible for insufficient oxygen supply, mitochondriopathy, free radical production, and inflammation and lead to events that contribute to myocyte death and remote organ failure. However, the chronology of mitochondrial and cellular events during the ischemic period and at the moment of reperfusion in skeletal muscle fibers has been poorly reviewed. Thus, after a review of the basal myocyte state and normal mitochondrial biology, we discuss the physiopathology of ischemia and reperfusion at the mitochondrial and cellular levels. First we describe the chronology of the deleterious biochemical and mitochondrial mechanisms activated by I/R. Then we discuss skeletal muscle I/R injury in the muscle environment, mitochondrial dynamics, and inflammation. A better understanding of the chronology of the events underlying I/R will allow us to identify key factors in the development of this pathology and point to suitable new therapies. Emerging data on mitochondrial dynamics should help identify new molecular and therapeutic targets and develop protective strategies against PAD.
Collapse
Affiliation(s)
- Stéphanie Paradis
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France;
| | - Anne-Laure Charles
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Alain Meyer
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Anne Lejay
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; and
| | - James W Scholey
- Department of Medicine and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nabil Chakfé
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France; and
| | - Joffrey Zoll
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Bernard Geny
- University of Strasbourg, Fédération de Médecine Translationelle, EA 3072, Strasbourg, France; Department of Physiology and Functional Explorations, Thoracic Pathology Unit, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Sarcoplasmic Reticulum Phospholipid Fatty Acid Composition and Sarcolipin Content in Rat Skeletal Muscle. J Membr Biol 2015; 248:1089-96. [PMID: 26193810 DOI: 10.1007/s00232-015-9822-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
In a previous study, we reported lower sarcoplasmic reticulum (SR) Ca(2+) pump ionophore ratios in rat soleus compared to red and white gastrocnemius (RG, WG) muscles which may be indicative of greater SR Ca(2+) permeability in soleus. Here we assessed the lipid composition of the SR membranes obtained from these muscles to determine if SR docosahexaenoic acid (DHA) content and fatty acid unsaturation could help to explain the previously observed differences in SR Ca(2+) permeability. Since we have shown previously that sarcolipin may also influence SR Ca(2+) permeability, we also examined the levels of sarcolipin in rat muscle. We found that SR membrane DHA content was significantly higher in soleus (5.3 ± 0.2 %) compared to RG (4.2 ± 0.2 %) and WG (3.3 ± 0.2 %). Likewise, total SR membrane unsaturation and unsaturation index (UI) were significantly higher in soleus (% unsaturation: 59.1 ± 2.4; UI: 362.9 ± 0.8) compared to RG (% unsaturation: 55.3 ± 1.0; UI: 320.9 ± 2.5) and WG (% unsaturation: 52.6 ± 1.1; UI: 310. ± 2.2). Sarcolipin protein was 17-fold more abundant in rat soleus compared to RG and was not detected in WG; however, comparisons between soleus, RG, and WG in sarcolipin-null mice revealed that, in the absence of sarcolipin, ionophore ratios are still lowest in soleus and highest in WG. Overall, our results suggest that SR membrane DHA content and unsaturation, and, in part, sarcolipin expression may contribute to SR Ca(2+) permeability and, in turn, may have implications in muscle-based metabolism and diet-induced obesity.
Collapse
|
10
|
Fajardo VA, Bombardier E, Irvine T, Metherel AH, Stark KD, Duhamel T, Rush JWE, Green HJ, Tupling AR. Dietary docosahexaenoic acid supplementation reduces SERCA Ca2+ transport efficiency in rat skeletal muscle. Chem Phys Lipids 2015; 187:56-61. [PMID: 25772907 DOI: 10.1016/j.chemphyslip.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 03/11/2015] [Indexed: 01/08/2023]
Abstract
Docosahexaenoic acid (DHA) can reduce the efficiency and increase the energy consumption of Na(+)/K(+)-ATPase pump and mitochondrial electron transport chain by promoting Na(+) and H(+) membrane permeability, respectively. In skeletal muscle, the sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) pumps are major contributors to resting metabolic rate. Whether DHA can affect SERCA efficiency remains unknown. Here, we examined the hypothesis that dietary supplementation with DHA would reduce Ca(2+) transport efficiency of the SERCA pumps in skeletal muscle. Total lipids were extracted from enriched sarcoplasmic reticulum (SR) membranes that were isolated from red vastus lateralis skeletal muscles of rats that were either fed a standard chow diet supplemented with soybean oil or supplemented with DHA for 8 weeks. The fatty acid composition of total SR membrane lipids and the major phospholipid species were determined using electrospray ionization mass spectrometry (ESI-MS). After 8 weeks of DHA supplementation, total SR DHA content was significantly elevated (control, 4.1 ± 1.0% vs. DHA, 9.9 ± 1.7%; weight percent of total fatty acids) while total arachidonic acid was reduced (control, 13.5 ± 0.4% vs. DHA-fed, 9.4 ± 0.2). Similar changes in these fatty acids were observed in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, altogether indicating successful incorporation of DHA into the SR membranes post-diet. As hypothesized, DHA supplementation reduced SERCA Ca(2+) transport efficiency (control, 0.018 ± 0.0002 vs. DHA-fed, 0.014 ± 0.0009) possibly through enhanced SR Ca(2+) permeability (ionophore ratio: control, 2.8 ± 0.2 vs. DHA-fed, 2.2 ± 0.3). Collectively, our results suggest that DHA may promote skeletal muscle-based metabolism and thermogenesis through its influence on SERCA.
Collapse
Affiliation(s)
- Val Andrew Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Thomas Irvine
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Adam H Metherel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Todd Duhamel
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2 Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg MB R2H 2A6, Canada
| | - James W E Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
11
|
Solis LR, Liggins A, Uwiera RRE, Poppe N, Pehowich E, Seres P, Thompson RB, Mushahwar VK. Distribution of internal pressure around bony prominences: implications to deep tissue injury and effectiveness of intermittent electrical stimulation. Ann Biomed Eng 2012; 40:1740-59. [PMID: 22354272 DOI: 10.1007/s10439-012-0529-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/03/2012] [Indexed: 11/27/2022]
Abstract
The overall goal of this project is to develop interventions for the prevention of deep tissue injury (DTI), a form of pressure ulcers that originates in deep tissue around bony prominences. The present study focused on: (1) obtaining detailed measures of the distribution of pressure experienced by tissue around the ischial tuberosities, and (2) investigating the effectiveness of intermittent electrical stimulation (IES), a novel strategy for the prevention of DTI, in alleviating pressure in regions at risk of breakdown due to sustained loading. The experiments were conducted in adult pigs. Five animals had intact spinal cords and healthy muscles and one had a spinal cord injury that led to substantial muscle atrophy at the time of the experiment. A force-controlled servomotor was used to load the region of the buttocks to levels corresponding to 25%, 50% or 75% of each animal's body weight. A pressure transducer embedded in a catheter was advanced into the tissue to measure pressure along a three dimensional grid around the ischial tuberosity of one hind leg. For all levels of external loading in intact animals, average peak internal pressure was 2.01 ± 0.08 times larger than the maximal interfacial pressure measured at the level of the skin. In the animal with spinal cord injury, similar absolute values of internal pressure as that in intact animals were recorded, but the substantial muscle atrophy produced larger maximal interfacial pressures. Average peak internal pressure in this animal was 1.43 ± 0.055 times larger than the maximal interfacial pressure. Peak internal pressure was localized within a ±2 cm region medio-laterally and dorso-ventrally from the bone in intact animals and ±1 cm in the animal with spinal cord injury. IES significantly redistributed internal pressure, shifting the peak values away from the bone in spinally intact and injured animals. These findings provide critical information regarding the relationship between internal and interfacial pressure around the ischial tuberosities during loading levels equivalent to those experienced while sitting. The information could guide future computer models investigating the etiology of DTI, as well as inform the design and prescription of seating cushions for people with reduced mobility. The findings also suggest that IES may be an effective strategy for the prevention of DTI.
Collapse
Affiliation(s)
- Leandro R Solis
- Rehabilitation Science Program, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Su QS, Zhang JG, Dong R, Hua B, Sun JZ. Comparison of changes in markers of muscle damage induced by eccentric exercise and ischemia/reperfusion. Scand J Med Sci Sports 2010; 20:748-56. [DOI: 10.1111/j.1600-0838.2009.01015.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Thomas MM, Vigna C, Betik AC, Tupling AR, Hepple RT. Initiating treadmill training in late middle age offers modest adaptations in Ca2+ handling but enhances oxidative damage in senescent rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1269-78. [PMID: 20200131 DOI: 10.1152/ajpregu.00663.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aging skeletal muscle shows an increased time to peak force and relaxation and a decreased specific force, all of which could relate to changes in muscle Ca(2+) handling. The purpose of this study was to determine if Ca(2+)-handling protein content and function are decreased in senescent gastrocnemius muscle and if initiating a training program in late middle age (LMA, 29 mo old) could improve function in senescent (34- to 36-mo-old) muscle. LMA male Fischer 344 x Brown-Norway rats underwent 5-7 mo of treadmill training. Aging resulted in a decrease in maximal sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity and a decrease in Ca(2+) release rate but no change in Ca(2+) uptake rate. Efficiency of the Ca(2+) pump was increased with age, as was the content of SERCA2a. Training caused a further increase in SERCA2a content. Aging also caused an increase in protein carbonyl and reactive nitrogen species damage accumulation, and both further increased with training. Consistent with the increase in oxidative damage, heat shock protein 70 content was increased with age and further increased with training. Together, these results suggest that while initiating exercise training in LMA augments the age-related increase in expression of heat shock protein 70 and the more efficient SERCA2a isoform, it did not prevent the decrease in SERCA activity and exacerbated oxidative damage in senescent gastrocnemius muscle.
Collapse
Affiliation(s)
- Melissa M Thomas
- Muscle and Aging Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
14
|
Solis LR, Hallihan DP, Uwiera RRE, Thompson RB, Pehowich ED, Mushahwar VK. Prevention of pressure-induced deep tissue injury using intermittent electrical stimulation. J Appl Physiol (1985) 2007; 102:1992-2001. [PMID: 17272408 DOI: 10.1152/japplphysiol.01092.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pressure ulcers develop due to morphological and biochemical changes triggered by the combined effects of mechanical deformation, ischemia, and reperfusion that occur during extended periods of immobility. The goal of this study was to test the effectiveness of a novel electrical stimulation technique in the prevention of deep tissue injury (DTI). We propose that contractions elicited by intermittent electrical stimulation (IES) in muscles subjected to constant pressure would induce periodic relief in internal pressure; additionally, each contraction would also restore blood flow to the tissue. The application of constant pressure to the quadriceps muscles of rats generated a DTI that affected 60 ± 15% of the compressed muscle as assessed by magnetic resonance imaging. In contrast, in the groups of rats that received IES at 10- and 5-min intervals, DTI of the muscle was limited to 16 ± 16 and 25 ± 13%, respectively. Injury to the muscle was corroborated by histology. In an experiment with a human volunteer, compression of the buttocks reduced the oxygenation level of the muscles by ∼4%; after IES, oxygenation levels increased by ∼6% beyond baseline. Concurrently, the surface pressure profiles of the loaded muscles were redistributed and the high-pressure points were reduced during each IES-induced contraction. The results of this study indicate that IES significantly reduces the amount of DTI by increasing the oxygen available to the tissue and by modifying the pressure profiles of the loaded muscles. This presents a promising technique for the prevention of pressure ulcers in immobilized and/or insensate individuals.
Collapse
Affiliation(s)
- Leandro R Solis
- Dept. of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | | | |
Collapse
|
15
|
Holloway GP, Green HJ, Tupling AR. Differential effects of repetitive activity on sarcoplasmic reticulum responses in rat muscles of different oxidative potential. Am J Physiol Regul Integr Comp Physiol 2005; 290:R393-404. [PMID: 16179493 DOI: 10.1152/ajpregu.00006.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.
Collapse
Affiliation(s)
- G P Holloway
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
16
|
Fredsted A, Mikkelsen UR, Gissel H, Clausen T. Anoxia induces Ca2+influx and loss of cell membrane integrity in rat extensor digitorum longus muscle. Exp Physiol 2005; 90:703-14. [PMID: 15908508 DOI: 10.1113/expphysiol.2005.030247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anoxia can lead to skeletal muscle damage. In this study we have investigated whether an increased influx of Ca2+, which is known to cause damage during electrical stimulation, is a causative factor in anoxia-induced muscle damage. Isolated extensor digitorum longus (EDL) muscles from 4-week-old Wistar rats were mounted at resting length and were either resting or stimulated (30 min, 40 Hz, 10 s on, 30 s off) in the presence of standard oxygenation (95% O2, 5% CO2), anoxia (95% N2, 5% CO2) or varying degrees of reduced oxygenation. At varying extracellular Ca2+ concentrations ([Ca2+]o), 45Ca influx and total cellular Ca2+ content were measured and the release of lactic acid dehydrogenase (LDH) was determined as an indicator of cell membrane leakage. In resting muscles, incubated at 1.3 mM Ca2+, 15-75 min of exposure to anoxia increased 45Ca influx by 46-129% (P<0.001) and Ca2+ content by 20-50% (P<0.001). Mg2+ (11.2 mM) reduced the anoxia-induced increase in 45Ca influx by 43% (P<0.001). In muscles incubated at 20 and 5% O2, 45Ca influx was also stimulated (P<0.001). Increasing [Ca2+]o to 5 mM induced a progressive increase in both 45Ca uptake and LDH release in resting anoxic muscles. When electrical stimulation was applied during anoxia, Ca2+ content and LDH release increased markedly and showed a significant correlation (r2=0.55, P<0.001). In conclusion, anoxia or incubation at 20 or 5% O2 leads to an increased influx of 45Ca. This is associated with a loss of cell membrane integrity, possibly initiated by Ca2+. The loss of cell membrane integrity further increases Ca2+ influx, which may elicit a self-amplifying process of cell membrane leakage.
Collapse
Affiliation(s)
- Anne Fredsted
- Department of Physiology, University of Aarhus, Ole Worms Allé 160, DK-8000 Arhus C, Denmark.
| | | | | | | |
Collapse
|
17
|
Duhamel TA, Green HJ, Sandiford SD, Perco JG, Ouyang J. Effects of progressive exercise and hypoxia on human muscle sarcoplasmic reticulum function. J Appl Physiol (1985) 2004; 97:188-96. [PMID: 15064300 DOI: 10.1152/japplphysiol.00958.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the effects of progressive exercise to fatigue in normoxia (N) on muscle sarcoplasmic reticulum (SR) Ca2+cycling and whether alterations in SR Ca2+cycling are related to the blunted peak mechanical power output (POpeak) and peak oxygen consumption (V̇o2 peak) observed during progressive exercise in hypoxia (H). Nine untrained men (20.7 ± 0.42 yr) performed progressive cycle exercise to fatigue on two occasions, namely during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14). Tissue extracted from the vastus lateralis before exercise and at power output corresponding to 50 and 70% of V̇o2 peak(as determined during N) and at fatigue was used to investigate changes in homogenate SR Ca2+-cycling properties. Exercise in H compared with N resulted in a 19 and 21% lower ( P < 0.05) POpeakand V̇o2 peak, respectively. During progressive exercise in N, Ca2+-ATPase kinetics, as determined by maximal activity, the Hill coefficient, and the Ca2+concentration at one-half maximal activity were not altered. However, reductions with exercise in N were noted in Ca2+uptake (before exercise = 357 ± 29 μmol·min−1·g protein−1; at fatigue = 306 ± 26 μmol·min−1·g protein−1; P < 0.05) when measured at free Ca2+concentration of 2 μM and in phase 2 Ca2+release (before exercise = 716 ± 33 μmol·min−1·g protein−1; at fatigue = 500 ± 53 μmol·min−1·g protein−1; P < 0.05) when measured in vitro in whole muscle homogenates. No differences were noted between N and H conditions at comparable power output or at fatigue. It is concluded that, although structural changes in SR Ca2+-cycling proteins may explain fatigue during progressive exercise in N, they cannot explain the lower POpeakand V̇o2 peakobserved during H.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
18
|
Green HJ, Ballantyne CS, MacDougall JD, Tarnopolsky MA, Schertzer JD. Adaptations in human muscle sarcoplasmic reticulum to prolonged submaximal training. J Appl Physiol (1985) 2003; 94:2034-42. [PMID: 12679353 DOI: 10.1152/japplphysiol.00244.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we employed single-leg submaximal cycle training, conducted over a 10-wk period, to investigate adaptations in sarcoplasmic reticulum (SR) Ca(2+)-regulatory proteins and processes of the vastus lateralis. During the final weeks, the untrained volunteers (age 21.4 +/- 0.3 yr; means +/- SE, n = 10) were exercising 5 times/wk and for 60 min/session. Analyses were performed on tissue extracted by needle biopsy approximately 4 days after the last training session. Compared with the control leg, the trained leg displayed a 19% reduction (P < 0.05) in homogenate maximal Ca(2+)-ATPase activity (192 +/- 11 vs. 156 +/- 18 micromol. g protein(-1). min(-1)), a 4.3% increase (P < 0.05) in pCa(50), defined as the Ca(2+) concentration at half-maximal activity (6.01 +/- 0.05 vs. 6.26 +/- 0.07), and no change in the Hill coefficient (1.75 +/- 0.15 vs. 1.76 +/- 0.21). Western blot analysis using monoclonal antibodies (7E6 and A52) revealed a 13% lower (P < 0.05) sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) 1 in trained vs. control in the absence of differences in SERCA2a. Training also resulted in an 18% lower (P < 0.05) SR Ca(2+) uptake and a 26% lower (P < 0.05) Ca(2+) release. It is concluded that a downregulation in SR Ca(2+) cycling in vastus lateralis occurs with aerobic-based training, which at least in the case of Ca(2+) uptake can be explained by reduction in Ca(2+)-ATPase activity and SERCA1 protein levels.
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| | | | | | | | | |
Collapse
|
19
|
Inashima S, Matsunaga S, Yasuda T, Wada M. Effect of endurance training and acute exercise on sarcoplasmic reticulum function in rat fast- and slow-twitch skeletal muscles. Eur J Appl Physiol 2003; 89:142-9. [PMID: 12665977 DOI: 10.1007/s00421-002-0763-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2002] [Indexed: 10/22/2022]
Abstract
Following 10 weeks of endurance training and in age-matched sedentary rats, sarcoplasmic reticulum (SR) Ca(2+)-uptake, Ca(2+)-release, and Ca(2+)-stimulated adenosinetriphosphatase (ATPase) activity were examined in homogenates of the plantaris and soleus muscles from rats subjected to moderate-intensity treadmill running to exhaustion. In order to examine the effects of acute exercise and/or training on SR Ca(2+)-handling capacity, comparisons between exhausted and non-exercised rats and between trained and untrained rats were performed. Our data confirm that Ca(2+)-sequestration by the SR from fast-twitch muscles is depressed after training. Immediately after exhaustive running, decreases in SR function occurred in both muscles, but were more pronounced in the soleus. In the plantaris, reductions in SR Ca(2+)-uptake rate and Ca(2+)-ATPase activity were observed in untrained rats only, while in the soleus they were adversely affected irrespective of training status. Although the average run time to exhaustion varied markedly between untrained and trained animals (untrained: 253.0 min; trained: 559.4 min), no differences existed with regard to the magnitude of decreases in SR function in the soleus after exercise. The mean rate of decline in SR Ca(2+)-handling capacity during acute exercise, as estimated from the run time and the extent of the decline, was more than twofold higher in untrained than in trained soleus. From the present study, it is unclear whether there exists a causal relationship between muscular fatigue and SR function because the run time to exhaustion was not significantly correlated with any of parameters indicative of SR Ca(2+)-handling capacity, but suggested that endurance training may be capable of delaying a progression of the deterioration in SR function that occurs during exercise.
Collapse
Affiliation(s)
- Shuichiro Inashima
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, 739-8521 Higashihiroshima-shi, Hiroshima-ken, Japan
| | | | | | | |
Collapse
|
20
|
Schertzer JD, Green HJ, Duhamel TA, Tupling AR. Mechanisms underlying increases in SR Ca2+-ATPase activity after exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab 2003; 284:E597-610. [PMID: 12409282 DOI: 10.1152/ajpendo.00190.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged exercise followed by a brief period of reduced activity has been shown to result in an overshoot in maximal sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity [maximal velocity (V(max))] in rat locomoter muscles (Ferrington DA, Reijneveld JC, Bär PR, and Bigelow DJ. Biochim Biophys Acta 1279: 203-213, 1996). To investigate the functional significance and underlying mechanisms for the increase in V(max), we analyzed Ca(2+)-ATPase activity and Ca(2+) uptake in SR vesicles from the fast rat gastrocnemius muscles after prolonged running (RUN) and after prolonged running plus 45 min of low-intensity activity (RUN+) or no activity (REC45) and compared them with controls (Con). Although no differences were observed between RUN and Con, both V(max) and Ca(2+) uptake were higher (P < 0.05) by 43 and 63%, respectively, in RUN+ and by 35 and 34%, respectively, in REC45. The increase in V(max) was accompanied by increases (P < 0.05) in the phosphorylated enzyme intermediate measured by [gamma-(32)P]ATP. No differences between groups for each condition were found for the fluorescent probes FITC and (N-cyclohexyl-N(1)-dimethylamino-alpha-naphthyl)carbodiimide, competitive inhibitors of the nucleotide-binding and Ca(2+)-binding sites on the enzyme, respectively. Similarly, no differences for the Ca(2+)-ATPase were observed between groups in nitrotyrosine and phosphoserine residues, a measure of nitrosylation and phosphorylation states, respectively. Western blots indicated no changes in relative isoform content of sarcoendoplasmic reticulum (SERCA)1 and SERCA2a. It is concluded that the increase in V(max) of the Ca(2+)-ATPase observed in recovery is not the result of changes in enzyme nitroslyation or phosphorylation, changes in ATP and Ca(2+)-binding affinity, or changes in protein content of the Ca(2+)-ATPase.
Collapse
Affiliation(s)
- J D Schertzer
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
21
|
Tupling R, Green H. Silver ions induce Ca2+ release from the SR in vitro by acting on the Ca2+ release channel and the Ca2+ pump. J Appl Physiol (1985) 2002; 92:1603-10. [PMID: 11896027 DOI: 10.1152/japplphysiol.00756.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Silver nitrate (AgNO3) is a sulfhydryl oxidizing agent that induces a biphasic Ca2+ release from isolated sarcoplasmic reticulum (SR) vesicles by presumably oxidizing critical sulfhydryl groups in the Ca2+ release channel (CRC), causing the channel to open. To further examine the effects of AgNO3 on the CRC and the Ca2+-ATPase, Ca2+ release was measured in muscle homogenates prepared from rat hindlimb muscle using indo 1. Cyclopiazonic acid (CPA) and ruthenium red (RR) were used to inhibit the Ca2+-ATPase and block the CRC, respectively, before inducing Ca2+ release with both AgNO3 and 4-chloro-m-cresol (4-CMC), a releasing agent specific for the CRC. With AgNO3 and CPA, the early rapid rate of release (phase 1) was increased (P < 0.05) by 42% (314 +/- 5 vs. 446 +/- 39 micromol x g protein(-1) x min(-1)), whereas the slower, more prolonged rate of release (phase 2) was decreased (P < 0.05) by 72% (267 +/- 39 vs. 74 +/- 7.7 micromol x g protein(-1) x min(-1)). RR, in combination with AgNO3, had no effect on phase 1 (P > 0.05) (314 +/- 51 vs. 334 +/- 43 micromol x g protein(-1) x min(-1)) and decreased phase 2 (P < 0.05) by 65% (245 +/- 34 vs. 105 +/- 8.2 micromol x g protein(-1) x min(-1)). With 4-CMC, CPA had no effect (P > 0.05) on either phase 1 or 2. With addition of RR, phase 1 was reduced (P < 0.05) by 59% (2,468 +/- 279 vs. 1,004 +/- 87 micromol x g protein(-1) x min(-1)), and RR completely blocked phase 2. Both AgNO3 and 4-CMC fully inhibited Ca2+-ATPase activity measured in homogenates. These findings indicate that AgNO3, but not 4-CMC, induces Ca2+ release by acting on both the CRC and the Ca2+-ATPase.
Collapse
Affiliation(s)
- R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
22
|
Tupling R, Green H, Senisterra G, Lepock J, McKee N. Effects of 4-h ischemia and 1-h reperfusion on rat muscle sarcoplasmic reticulum function. Am J Physiol Endocrinol Metab 2001; 281:E867-77. [PMID: 11551865 DOI: 10.1152/ajpendo.2001.281.4.e867] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the hypothesis that ischemia and reperfusion would impair sarcoplasmic reticulum (SR) Ca(2+) regulation in skeletal muscle, Sprague-Dawley rats (n = 20) weighing 290 +/- 3.5 g were randomly assigned to either a control control (CC) group, in which only the effects of anesthetization were studied, or to a group in which the muscles in one hindlimb were made ischemic for 4 h and allowed to recover for 1 h (I). The nonischemic, contralateral muscles served as control (C). Measurements of Ca(2+)-ATPase properties in homogenates and SR vesicles, in mixed gastrocnemius and tibialis anterior muscles, indicated no differences between groups on maximal activity, the Hill coefficient, and Ca(50), defined as the Ca(2+) concentration needed to elicit 50% of maximal activity. In homogenates, Ca(2+) uptake was lower (P < 0.05) by 20-25%, measured at 0.5 and 1.0 microM of free Ca(2+) ([Ca(2+)](f)) in C compared with CC. In SR vesicles, Ca(2+) uptake was lower (P < 0.05) by 30-38% in I compared with CC at [Ca(2+)](f) between 0.5 and 1.5 microM. Silver nitrate induced Ca(2+) release, assessed during both the initial, early rapid (phase 1), and slower, prolonged late (phase 2) phases, in homogenates and SR vesicles, indicated a higher (P < 0.05) release only in phase 1 in SR vesicles in I compared with CC. These results indicate that the alterations in SR Ca(2+) regulation, previously observed after prolonged ischemia by our group, are reversed within 1 h of reperfusion. However, the lower Ca(2+) uptake observed in long-term, nonischemic homogenates suggests that altered regulation may occur in the absence of ischemia.
Collapse
Affiliation(s)
- R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | | | | | | |
Collapse
|