1
|
Zhu G, Wilhelm SJ, George LG, Cassidy BM, Zino S, Luke CJ, Hanna M, Stone S, Phan N, Matiwala N, Ballentine SJ, Lowe ME, Xiao X. Preclinical mouse model of a misfolded PNLIP variant develops chronic pancreatitis. Gut 2023:gutjnl-2022-327960. [PMID: 36631248 DOI: 10.1136/gutjnl-2022-327960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Increasing evidence implicates mutation-induced protein misfolding and endoplasm reticulum (ER) stress in the pathophysiology of chronic pancreatitis (CP). The paucity of animal models harbouring genetic risk variants has hampered our understanding of how misfolded proteins trigger CP. We previously showed that pancreatic triglyceride lipase (PNLIP) p.T221M, a variant associated with steatorrhoea and possibly CP in humans, misfolds and elicits ER stress in vitro suggesting proteotoxicity as a potential disease mechanism. Our objective was to create a mouse model to determine if PNLIP p.T221M causes CP and to define the mechanism. DESIGN We created a mouse model of Pnlip p.T221M and characterised the structural and biochemical changes in the pancreas aged 1-12 months. We used multiple methods including histochemistry, immunostaining, transmission electron microscopy, biochemical assays, immunoblotting and qPCR. RESULTS We demonstrated the hallmarks of human CP in Pnlip p.T221M homozygous mice including progressive pancreatic atrophy, acinar cell loss, fibrosis, fatty change, immune cell infiltration and reduced exocrine function. Heterozygotes also developed CP although at a slower rate. Immunoblot showed that pancreatic PNLIP T221M misfolded as insoluble aggregates. The level of aggregates in homozygotes declined with age and was much lower in heterozygotes at all ages. The Pnlip p.T221M pancreas had increased ER stress evidenced by dilated ER, increased Hspa5 (BiP) mRNA abundance and a maladaptive unfolded protein response leading to upregulation of Ddit3 (CHOP), nuclear factor-κB and cell death. CONCLUSION Expression of PNLIP p.T221M in a preclinical mouse model results in CP caused by ER stress and proteotoxicity of misfolded mutant PNLIP.
Collapse
Affiliation(s)
- Guoying Zhu
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA.,Department of Clinical Nutrition, Putuo People's Hospital, School of Medicine,Tongji University, Shanghai, China
| | - Steven J Wilhelm
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Leah G George
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Brett M Cassidy
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sammy Zino
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Cliff J Luke
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA.,Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mina Hanna
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Stephen Stone
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nhung Phan
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Neel Matiwala
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Samuel J Ballentine
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mark E Lowe
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Xunjun Xiao
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
2
|
Li X, Qin H, Anwar A, Zhang X, Yu F, Tan Z, Tang Z. Molecular mechanism analysis of m6A modification-related lncRNA-miRNA-mRNA network in regulating autophagy in acute pancreatitis. Islets 2022; 14:184-199. [PMID: 36218109 PMCID: PMC9559333 DOI: 10.1080/19382014.2022.2132099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This study aims to explore the molecular mechanism of N6-methyladenosine (m6A) modification-related long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network in regulating autophagy and affecting the occurrence and development of acute pancreatitis (AP). RNA-seq datasets related to AP were obtained from Gene Expression Omnibus (GEO) database and merged after batch effect removal. lncRNAs significantly related to m6A in AP, namely candidate lncRNA, were screened by correlation analysis and differential expression analysis. In addition, candidate autophagy genes were screened through the multiple databases. Furthermore, the key pathways for autophagy to play a role in AP were determined by functional enrichment analysis. Finally, we predicted the miRNAs binding to genes and lncRNAs through TargetScan, miRDB and DIANA TOOLS databases and constructed two types of lncRNA-miRNA-mRNA regulatory networks mediated by upregulated and downregulated lncRNAs in AP. Nine lncRNAs related to m6A were differentially expressed in AP, and 21 candidate autophagy genes were obtained. Phosphoinositide 3-kinase (PI3K)-Akt signaling pathway and Forkhead box O (FoxO) signaling pathway might be the key pathways for autophagy to play a role in AP. Finally, we constructed a lncRNA-miRNA-mRNA regulatory network. An upregulated lncRNA competitively binds to 13 miRNAs to regulate 6 autophagy genes, and a lncRNA-miRNA-mRNA regulatory network in which 2 downregulated lncRNAs competitively bind to 7 miRNAs to regulate 2 autophagy genes. m6A modification-related lncRNA Pvt1, lncRNA Meg3 and lncRNA AW112010 may mediate the lncRNA-miRNA-mRNA network, thereby regulating autophagy to affect the development of AP.
Collapse
Affiliation(s)
- Xiang Li
- Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, P.R. China
| | - Ali Anwar
- Xiangya School of Public Health, Central South University, Changsha, P.R. China
- Food and Nutrition Society Gilgit Baltistan, Pakistan
| | - Xingwen Zhang
- Emergency Department (three), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Fang Yu
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Zheng Tan
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Zhanhong Tang
- Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- CONTACT Zhanhong Tang Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning530021, Guangxi, P.R. China
| |
Collapse
|
3
|
Sándor M, Thiel FG, Schmid M, Demcsák A, Morales Granda NC, Németh BC, Vajda S, Hoerning A, Sahin-Tóth M. Novel p.G250A Mutation Associated with Chronic Pancreatitis Highlights Misfolding-Prone Region in Carboxypeptidase A1 (CPA1). Int J Mol Sci 2022; 23:15463. [PMID: 36555104 PMCID: PMC9779553 DOI: 10.3390/ijms232415463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Inborn mutations in the digestive protease carboxypeptidase A1 (CPA1) gene may be associated with hereditary and idiopathic chronic pancreatitis (CP). Pathogenic mutations, such as p.N256K, cause intracellular retention and reduced secretion of CPA1, accompanied by endoplasmic reticulum (ER) stress, suggesting that mutation-induced misfolding underlies the phenotype. Here, we report the novel p.G250A CPA1 mutation found in a young patient with CP. Functional properties of the p.G250A mutation were identical to those of the p.N256K mutation, confirming its pathogenic nature. We noted that both mutations are in a catalytically important loop of CPA1 that is stabilized by the Cys248-Cys271 disulfide bond. Mutation of either or both Cys residues to Ala resulted in misfolding, as judged by the loss of CPA1 secretion and intracellular retention. We re-analyzed seven previously reported CPA1 mutations that affect this loop and found that all exhibited reduced secretion and caused ER stress of varying degrees. The magnitude of ER stress was proportional to the secretion defect. Replacing the naturally occurring mutations with Ala (e.g., p.V251A for p.V251M) restored secretion, with the notable exception of p.N256A. We conclude that the disulfide-stabilized loop of CPA1 is prone to mutation-induced misfolding, in most cases due to the disruptive nature of the newly introduced side chain. We propose that disease-causing CPA1 mutations exhibit abolished or markedly reduced secretion with pronounced ER stress, whereas CPA1 mutations with milder misfolding phenotypes may be associated with lower disease risk or may not be pathogenic at all.
Collapse
Affiliation(s)
- Máté Sándor
- Department of Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Franziska G. Thiel
- Department of Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Margit Schmid
- Clinic for Children and Adolescent Medicine, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Balázs Csaba Németh
- Department of Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - André Hoerning
- Clinic for Children and Adolescent Medicine, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Bhatia R, Thompson CM, Clement EJ, Ganguly K, Cox JL, Rauth S, Siddiqui JA, Mashiana SS, Jain M, Wyatt TA, Mashiana HS, Singh S, Woods NT, Kharbanda KK, Batra SK, Kumar S. Malondialdehyde-Acetaldehyde Extracellular Matrix Protein Adducts Attenuate Unfolded Protein Response During Alcohol and Smoking-Induced Pancreatitis. Gastroenterology 2022; 163:1064-1078.e10. [PMID: 35788346 PMCID: PMC9796922 DOI: 10.1053/j.gastro.2022.06.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Epidemiological studies have established alcohol and smoking as independent risk factors for recurrent acute pancreatitis and chronic pancreatitis. However, the molecular players responsible for the progressive loss of pancreatic parenchyma and fibroinflammatory response are poorly characterized. METHODS Tandem mass tag-based proteomic and bioinformatics analyses were performed on the pancreata of mice exposed to alcohol, cigarette smoke, or a combination of alcohol and cigarette smoke. Biochemical, immunohistochemistry, and transcriptome analyses were performed on the pancreatic tissues and primary acinar cells treated with cerulein in combination with ethanol (50 mmol/L) and cigarette smoke extract (40 μg/mL) for the mechanistic studies. RESULTS A unique alteration in the pancreatic proteome was observed in mice exposed chronically to the combination of alcohol and cigarette smoke (56.5%) compared with cigarette smoke (21%) or alcohol (17%) alone. The formation of toxic metabolites (P < .001) and attenuated unfolded protein response (P < .04) were the significantly altered pathways on combined exposure. The extracellular matrix (ECM) proteins showed stable malondialdehyde-acetaldehyde (MAA) adducts in the pancreata of the combination group and chronic pancreatitis patients with a history of smoking and alcohol consumption. Interestingly, MAA-ECM adducts significantly suppressed expression of X-box-binding protein-1, leading to acinar cell death in the presence of alcohol and smoking. The stable MAA-ECM adducts persist even after alcohol and smoking cessation, and significantly delay pancreatic regeneration by abrogating the expression of cyclin-dependent kinases (CDK7 and CDK5) and regeneration markers. CONCLUSIONS The combined alcohol and smoking generate stable MAA-ECM adducts that increase endoplasmic reticulum stress and acinar cell death due to attenuated unfolded protein response and suppress expression of cell cycle regulators. Targeting aldehyde adducts might provide a novel therapeutic strategy for the management of recurrent acute pancreatitis and chronic pancreatitis.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christopher M Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emalie J Clement
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Simran S Mashiana
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Todd A Wyatt
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harmeet S Mashiana
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shailender Singh
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nicholas T Woods
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
5
|
Kassay N, Toldi V, Tőzsér J, Szabó A. Cigarette smoke toxin hydroquinone and misfolding pancreatic lipase variant cooperatively promote endoplasmic reticulum stress and cell death. PLoS One 2022; 17:e0269936. [PMID: 35704637 PMCID: PMC9200355 DOI: 10.1371/journal.pone.0269936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
Mutation-induced protein misfolding of pancreatic secretory enzymes and consequent endoplasmic reticulum stress can cause chronic pancreatitis. A recent study revealed that cigarette smoke also increases the risk of the disease through endoplasmic reticulum stress. Here, we investigated the cumulative cellular effect of the G233E misfolding human pancreatic lipase variant and hydroquinone; a main toxic constituent of cigarette smoke, using mammalian cell lines. We found that hydroquinone reduces cell viability on a dose-dependent manner through programmed cell death, and diminishes lipase secretion without affecting its expression. Interestingly, hydroquinone decreased the viability more markedly in cells expressing the G233E lipase variant, than in cells producing wild-type lipase. The more substantial viability loss was due to increased endoplasmic reticulum stress, as demonstrated by elevated levels of X-box binding protein 1 mRNA splicing and immunoglobulin binding protein, NAD(P)H:quinone oxidoreductase 1 and C/EBP homologous protein expression. Unresolved endoplasmic reticulum stress, and especially up-regulation of the pro-apoptotic transcription factor C/EBP homologous protein were likely responsible for the increased cell death. Our observations demonstrated that the combination of hydroquinone and misfolding pancreatic lipase variant promote increased levels of endoplasmic reticulum stress and cell death, which may predispose to chronic pancreatitis.
Collapse
Affiliation(s)
- Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular, Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Vanda Toldi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular, Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Szabó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Misfolding-induced chronic pancreatitis in CPA1 N256K mutant mice is unaffected by global deletion of Ddit3/Chop. Sci Rep 2022; 12:6357. [PMID: 35428786 PMCID: PMC9012826 DOI: 10.1038/s41598-022-09595-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic mutations in pancreatic digestive enzymes may cause protein misfolding, endoplasmic reticulum (ER) stress and chronic pancreatitis. The CPA1 N256K mouse model carries the human p.N256K carboxypeptidase A1 (CPA1) mutation, a classic example of a pancreatitis-associated misfolding variant. CPA1 N256K mice develop spontaneous, progressive chronic pancreatitis with moderate acinar atrophy, acinar-to-ductal metaplasia, fibrosis, and macrophage infiltration. Upregulation of the ER-stress associated pro-apoptotic transcription factor Ddit3/Chop mRNA was observed in the pancreas of CPA1 N256K mice suggesting that acinar cell death might be mediated through this mechanism. Here, we crossed the CPA1 N256K strain with mice containing a global deletion of the Ddit3/Chop gene (Ddit3-KO mice) and evaluated the effect of DDIT3/CHOP deficiency on the course of chronic pancreatitis. Surprisingly, CPA1 N256K x Ddit3-KO mice developed chronic pancreatitis with a similar time course and features as the CPA1 N256K parent strain. In contrast, Ddit3-KO mice showed no pancreas pathology. The observations indicate that DDIT3/CHOP plays no significant role in the development of misfolding-induced chronic pancreatitis in CPA1 N256K mice and this transcription factor is not a viable target for therapeutic intervention in this disease.
Collapse
|
7
|
Li H, Wen W, Luo J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022; 10:biomedicines10010108. [PMID: 35052788 PMCID: PMC8773075 DOI: 10.3390/biomedicines10010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatitis and alcoholic pancreatitis are serious health concerns with an urgent need for effective treatment strategies. Alcohol is a known etiological factor for pancreatitis, including acute pancreatitis (AP) and chronic pancreatitis (CP). Excessive alcohol consumption induces many pathological stress responses; of particular note is endoplasmic reticulum (ER) stress and adaptive unfolded protein response (UPR). ER stress results from the accumulation of unfolded/misfolded protein in the ER and is implicated in the pathogenesis of alcoholic pancreatitis. Here, we summarize the possible mechanisms by which ER stress contributes to alcoholic pancreatitis. We also discuss potential approaches targeting ER stress and UPR in developing novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Wen Wen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Jia Luo
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
- Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Correspondence: ; Tel.: +1-319-335-2256
| |
Collapse
|
8
|
Kawamoto M, Kohi S, Abe T, Dbouk M, Macgregor-Das A, Koi C, Song KB, Borges M, Sugimine R, Laheru D, Hruban RH, Roberts N, Klein AP, Goggins M. Endoplasmic stress-inducing variants in CPB1 and CPA1 and risk of pancreatic cancer: A case-control study and meta-analysis. Int J Cancer 2021; 150:1123-1133. [PMID: 34817877 DOI: 10.1002/ijc.33883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
Gene variants that encode pancreatic enzymes with impaired secretion can induce pancreatic acinar endoplasmic reticulum (ER) stress, cellular injury and pancreatitis. The role of such variants in pancreatic cancer risk has received little attention. We compared the prevalence of ER stress-inducing variants in CPA1 and CPB1 in patients with pancreatic ductal adenocarcinoma (PDAC cases), enrolled in the National Familial Pancreas Tumor Registry, to their prevalence in noncancer controls in the Genome Aggregation Database (gnomAD). Variants of unknown significance were expressed and variants with reduced secretion assessed for ER stress induction. In vitro assessments were compared with software predictions of variant function. Protein variant software was used to assess variants found in only one gnomAD control ("n-of-one" variants). A meta-analysis of prior PDAC case/control studies was also performed. Of the 1385 patients with PDAC, 0.65% were found to harbor an ER stress-inducing variant in CPA1 or CPB1, compared to 0.17% of the 64 026 controls (odds ratio [OR]: 3.80 [1.92-7.51], P = .0001). ER stress-inducing variants in the CPA1 gene were identified in 4 of 1385 PDAC cases vs 77 of 64 026 gnomAD controls (OR: 2.4 [0.88-6.58], P = .087), and variants in CPB1 were detected in 5 of 1385 cases vs 33 of 64 026 controls (OR: 7.02 [2.74-18.01], P = .0001). Meta-analysis demonstrated strong associations for pancreatic cancer and ER-stress inducing variants for both CPA1 (OR: 3.65 [1.58-8.39], P < .023) and CPB1 (OR: 9.51 [3.46-26.15], P < .001). Rare variants in CPB1 and CPA1 that induce ER stress are associated with increased odds of developing pancreatic cancer.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shiro Kohi
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Toshiya Abe
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mohamad Dbouk
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Chiho Koi
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ki-Byung Song
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Borges
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ryo Sugimine
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Nicholas Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Bloomberg School of Public Health, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Liu K, Liu J, Zou B, Li C, Zeh HJ, Kang R, Kroemer G, Huang J, Tang D. Trypsin-Mediated Sensitization to Ferroptosis Increases the Severity of Pancreatitis in Mice. Cell Mol Gastroenterol Hepatol 2021; 13:483-500. [PMID: 34562639 PMCID: PMC8688567 DOI: 10.1016/j.jcmgh.2021.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Pancreatitis is characterized by acinar cell death and persistent inflammation. Ferroptosis is a type of lipid peroxidation-dependent necrosis, which is negatively regulated by glutathione peroxidase 4. We studied how trypsin, a serine protease secreted by pancreatic acinar cells, affects the contribution of ferroptosis to triggering pancreatitis. METHODS In vitro, the mouse pancreatic acinar cell line 266-6 and mouse primary pancreatic acinar cells were used to investigate the effect of exogenous trypsin on ferroptosis sensitivity. Short hairpin RNAs were designed to silence gene expression, whereas a library of 1080 approved drugs was used to identify new ferroptosis inhibitors in 266-6 cells. In vivo, a Cre/LoxP system was used to generate mice with a pancreas-specific knockout of Gpx4 (Pdx1-Cre;Gpx4flox/flox mice). Acute or chronic pancreatitis was induced in these mice (Gpx4flox/flox mice served as controls) by cerulein injections or a Lieber-DeCarli alcoholic liquid diet. Pancreatic tissues, acinar cells, and serum were collected and analyzed by histology, immunoblot, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, or immunohistochemical analyses. RESULTS Supraphysiological doses of trypsin (500 or 1000 ng/mL) alone did not trigger significant cell death in 266-6 cells and mouse primary pancreatic acinar cells, but did increase the sensitivity of these cells to ferroptosis upon treatment with cerulein, L-arginine, alcohol, erastin, or RSL3. Proteasome 26S subunit, non-adenosine triphosphatase 4-dependent lipid peroxidation caused ferroptosis in pancreatic acinar cells by promoting the proteasomal degradation of glutathione peroxidase 4. The drug screening campaign identified the antipsychotic drug olanzapine as an antioxidant inhibiting ferroptosis in pancreatic acinar cells. Mice lacking pancreatic Gpx4 developed more severe pancreatitis after cerulein infection or ethanol feeding than control mice. Conversely, olanzapine administration protected against pancreatic ferroptotic damage and experimental pancreatitis in Gpx4-deficient mice. CONCLUSIONS Trypsin-mediated sensitization to ferroptotic damage increases the severity of pancreatitis in mice, and this process can be reversed by olanzapine.
Collapse
Affiliation(s)
- Ke Liu
- Department of Ophthalmology, The 2nd Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Borong Zou
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changfeng Li
- Department of Endoscopy Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Herbert J. Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jun Huang
- Department of Orthopaedics, The 2nd Xiangya Hospital, Central South University, Changsha, China,Jun Huang, MD, Department of Orthopaedics, The 2nd Xiangya Hospital, Central South University, Changsha 410011, China. fax: (86) 731-85295999
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas,Correspondence Address correspondence to: Daolin Tang, MD, Department of Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| |
Collapse
|
10
|
Protein misfolding in combination with other risk factors in CEL-HYB1-mediated chronic pancreatitis. Eur J Gastroenterol Hepatol 2021; 33:839-843. [PMID: 33079780 DOI: 10.1097/meg.0000000000001963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The hybrid allele of the carboxyl ester lipase gene (CEL-HYB1) is a genetic risk factor for chronic pancreatitis (CP) although the mechanism promoting disease development is largely unknown. Here, we aimed to clinically describe subjects carrying the CEL-HYB1 allele and to elucidate why the protein product is pathogenic by analyzing pancreatic secretions and cellular models. METHODS Norwegian cases (n = 154) diagnosed with recurrent acute pancreatitis or CP were subjected to genetic screening by a CEL-HYB1-specific PCR assay followed by Sanger sequencing. For investigation of CEL-HYB1 protein secretion, duodenal juice samples from cases and controls were analyzed by western blotting. HEK293cells were transfected with constructs expressing CEL-HYB1 or the normal CEL protein (CEL-WT) and analyzed by qPCR, cell fractionation and western blotting. RESULTS Two CEL-HYB1-positive families were identified. In both pedigrees, CEL-HYB1 did not fully co-segregate with disease. One proband had recurrent acute pancreatitis and was an active smoker. Her mother was a CEL-HYB1 carrier who had suffered from several attacks of acute pancreatitis until she stopped smoking. The other proband was diagnosed with CP and pancreas divisum. Her CEL-HYB1-positive parent was symptom-free but exhibited pancreatic imaging changes. When analyzing the CEL protein in duodenal juice, CEL-WT was readily detectable but no band corresponding to the risk variant was seen. In CEL-HYB1-transfected cells, we observed impaired protein secretion, protein aggregation and endoplasmic reticulum stress. CONCLUSION Our data suggest that CEL-HYB1, in combination with well-known pancreatitis risk factors, causes disease through the misfolding-dependent pathway of genetic CP risk.
Collapse
|
11
|
Scale and Scope of Gene-Alcohol Interactions in Chronic Pancreatitis: A Systematic Review. Genes (Basel) 2021; 12:genes12040471. [PMID: 33806082 PMCID: PMC8064432 DOI: 10.3390/genes12040471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Excessive alcohol consumption has long been known to be the primary cause of chronic pancreatitis (CP) but genetic risk factors have been increasingly identified over the past 25 years. The scale and scope of gene-alcohol interactions in CP nevertheless remain unclear. METHODS All studies that had obtained genetic variant data concurrently on alcoholic CP (ACP) patients, non-ACP (NACP) patients and normal controls were collated. Employing normal controls as a common baseline, paired ORACP and ORNACP (odds ratios associated with ACP and NACP, respectively) values were calculated and used to assess gene-alcohol interactions. RESULTS Thirteen variants involving PRSS1, SPINK1, CTRC, CLDN2, CPA1, CEL and CTRB1-CTRB2, and varying from very rare to common, were collated. Seven variants had an ORACP > ORNACP, which was regarded as an immediate indicator of gene-alcohol interactions in CP. Variants with an ORACP < ORNACP were also found to interact with alcohol consumption by virtue of their impact on age at first pancreatitis symptoms in ACP. CONCLUSIONS This study revealed evidence for extensive gene-alcohol interactions in CP. Our findings lend support to the hypothesis that alcohol affects the expression of genetically determined CP and highlight a predominant role of weak-effect variants in the development of ACP.
Collapse
|