1
|
Yaeger MJ, Leuenberger L, Shaikh SR, Gowdy KM. Omega-3 Fatty Acids and Chronic Lung Diseases: A Narrative Review of Impacts from Womb to Tomb. J Nutr 2024:S0022-3166(24)01105-2. [PMID: 39424068 DOI: 10.1016/j.tjnut.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The lungs are a mucosal organ constantly exposed to potentially harmful compounds and pathogens. Beyond their role in gas exchange, they must perform a well-orchestrated protective response against foreign invaders. The lungs identify these foreign compounds, respond to them by eliciting an inflammatory response, and restore tissue homeostasis after inflammation to ensure the lungs continue to function. In addition, lung function can be affected by genetics, environmental exposures, and age, leading to pulmonary diseases that infringe on quality of life. Recent studies indicate that diet can influence pulmonary health including the incidence and/or severity of lung diseases. Specifically, long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have gained attention because of their potential to reduce inflammation and promote resolution of inflammation. Docosahexaenoic acid and eicosapentaenoic acid are 2 potentially beneficial n-3 PUFAs primarily acquired through dietary intake. Here we review current literature examining the role of n-3 PUFAs and the biological mechanisms by which these fatty acids alter the incidence and pathologies of chronic lung diseases including asthma, chronic obstructive pulmonary disease, and interstitial lung disease. We also highlight the role of n-3 PUFAs in vulnerable populations such as pre/postnatal children, those with obesity, and the elderly. Lastly, we review the impact of n-3 PUFA intake and supplementation to evaluate if increasing consumption can mitigate mechanisms driving chronic lung diseases.
Collapse
Affiliation(s)
- Michael J Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| | - Laura Leuenberger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
2
|
Amano H, Eshima K, Ito Y, Nakamura M, Kitasato H, Ogawa F, Hosono K, Iwabuchi K, Uematsu S, Akira S, Narumiya S, Majima M. The microsomal prostaglandin E synthase-1/prostaglandin E2 axis induces recovery from ischaemia via recruitment of regulatory T cells. Cardiovasc Res 2023; 119:1218-1233. [PMID: 35986688 PMCID: PMC10411941 DOI: 10.1093/cvr/cvac137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Microsomal prostaglandin E synthase-1 (mPGES-1)/prostaglandin E2 (PGE2) induces angiogenesis through the prostaglandin E2 receptor (EP1-4). Among immune cells, regulatory T cells (Tregs), which inhibit immune responses, have been implicated in angiogenesis, and PGE2 is known to modulate the function and differentiation of Tregs. We hypothesized that mPGES-1/PGE2-EP signalling could contribute to recovery from ischaemic conditions by promoting the accumulation of Tregs. METHODS AND RESULTS Wild-type (WT), mPGES-1-deficient (mPges-1-/-), and EP4 receptor-deficient (Ep4-/-) male mice, 6-8 weeks old, were used. Hindlimb ischaemia was induced by femoral artery ligation. Recovery from ischaemia was suppressed in mPges-1-/- mice and compared with WT mice. The number of accumulated forkhead box protein P3 (FoxP3)+ cells in ischaemic muscle tissue was decreased in mPges-1-/- mice compared with that in WT mice. Expression levels of transforming growth factor-β (TGF-β) and stromal cell derived factor-1 (SDF-1) in ischaemic tissue were also suppressed in mPges-1-/- mice. The number of accumulated FoxP3+ cells and blood flow recovery were suppressed when Tregs were depleted by injecting antibody against folate receptor 4 in WT mice but not in mPges-1-/- mice. Recovery from ischaemia was significantly suppressed in Ep4-/- mice compared with that in WT mice. Furthermore, mRNA levels of Foxp3 and Tgf-β were suppressed in Ep4-/- mice. Moreover, the number of accumulated FoxP3+ cells in ischaemic tissue was diminished in Ep4-/- mice compared with that in Ep4+/+ mice. CONCLUSION These findings suggested that mPGES-1/PGE2 induced neovascularization from ischaemia via EP4 by promoting the accumulation of Tregs. Highly selective EP4 agonists could be useful for the treatment of peripheral artery disease.
Collapse
Affiliation(s)
- Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Masaki Nakamura
- Department of Microbiology, Kitasato University School of Allied Health Science, Kanagawa, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Science, Kanagawa, Japan
| | - Fumihiro Ogawa
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Department of Medical Therapeutics, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| |
Collapse
|
3
|
Majima M, Hosono K, Ito Y, Amano H, Nagashima Y, Matsuda Y, Watanabe SI, Nishimura H. A biologically active lipid, thromboxane, as a regulator of angiogenesis and lymphangiogenesis. Biomed Pharmacother 2023; 163:114831. [PMID: 37150029 DOI: 10.1016/j.biopha.2023.114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Thromboxane (TX) and prostaglandins are metabolites of arachidonic acid, a twenty-carbon unsaturated fatty acid, and have a variety of actions that are exerted via specific receptors. Angiogenesis is defined as the formation of new blood vessels from pre-existing vascular beds and is a critical component of pathological conditions, including inflammation and cancer. Lymphatic vessels play crucial roles in the regulation of interstitial fluid, immune surveillance, and the absorption of dietary fat from the intestine; and they are also involved in the pathogenesis of various diseases. Similar to angiogenesis, lymphangiogenesis, the formation of new lymphatic vessels, is a critical component of pathological conditions. The TP-dependent accumulation of platelets in microvessels has been reported to enhance angiogenesis under pathological conditions. Although the roles of some growth factors and cytokines in angiogenesis and lymphangiogenesis have been well characterized, accumulating evidence suggests that TX induces the production of proangiogenic and prolymphangiogenic factors through the activation of adenylate cyclase, and upregulates angiogenesis and lymphangiogenesis under disease conditions. In this review, we discuss the role of TX as a regulator of angiogenesis and lymphangiogenesis, and its emerging importance as a therapeutic target.
Collapse
Affiliation(s)
- Masataka Majima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan.
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Yoshinao Nagashima
- Department of Medical Therapeutics, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan; Tokyo Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Yasuhiro Matsuda
- Department of Life Support Engineering, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Shin-Ichi Watanabe
- Department of Exercise Physiology and Health Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Hironobu Nishimura
- Department of Biological Information, Faculty of Health and Medical Sciences, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
4
|
Yamane S, Amano H, Ito Y, Betto T, Matsui Y, Koizumi W, Narumiya S, Majima M. The role of thromboxane prostanoid receptor signaling in gastric ulcer healing. Int J Exp Pathol 2022; 103:4-12. [PMID: 34655121 PMCID: PMC8781669 DOI: 10.1111/iep.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/10/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
The process of gastric ulcer healing includes cell migration, proliferation, angiogenesis and re-epithelialization. Platelets contain angiogenesis stimulating factors that induce angiogenesis. Thromboxane A2 (TXA2 ) not only induces platelet activity but also angiogenesis. This study investigated the role of TXA2 in gastric ulcer healing using TXA2 receptor knockout (TPKO) mice. Gastric ulcer healing was suppressed by treatment with the TXA2 synthase inhibitor OKY-046 and the TXA2 receptor antagonist S-1452 compared with vehicle-treated mice. TPKO showed delayed gastric ulcer healing compared with wild-type mice (WT). The number of microvessels and CD31 expression were lower in TPKO than in WT mice, and TPKO suppressed the expression of transforming growth factor beta (TGF-β) and vascular endothelial growth factor A (VEGF-A) in areas around gastric ulcers. Immunofluorescence assays showed that TGF-β and VEGF-A co-localized with platelets. Gastric ulcer healing was significantly reduced in WT mice transplanted with TPKO compared with WT bone marrow. These results suggested that TP signalling on platelets facilitates gastric ulcer healing through TGF-β and VEGF-A.
Collapse
Affiliation(s)
- Sakiko Yamane
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
- Department of GastroenterologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Hideki Amano
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Yoshiya Ito
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Tomohiro Betto
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
- Department of GastroenterologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Yoshio Matsui
- Department of GastroenterologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Wasaburo Koizumi
- Department of GastroenterologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| | - Shuh Narumiya
- Department of GastroenterologyDrug Discovery MedicineKyoto University Graduate School of MedicineKyotoJapan
| | - Masataka Majima
- Department of PharmacologyThoracic Surgery Kitasato University School of MedicineKanagawaJapan
| |
Collapse
|
5
|
Marentette JO, Anderson CC, Prutton KM, Jennings EQ, Rauniyar AK, Galligan JJ, Roede JR. Trisomy 21 impairs PGE2 production in dermal fibroblasts. Prostaglandins Other Lipid Mediat 2021; 153:106524. [PMID: 33418267 PMCID: PMC7965340 DOI: 10.1016/j.prostaglandins.2020.106524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
The triplication of human chromosome 21 results in Down syndrome (DS), the most common genetic form of intellectual disability. This aneuploid condition also results in an enhanced risk of a spectrum of comorbid conditions, such as leukemia, early onset Alzheimer's disease, and diabetes. Individuals with DS also display an increased incidence of wound healing complications and resistance to solid tumor development. Due to this unique phenotype and the involvement of eicosanoids in key comorbidities like poor healing and tumor development, we hypothesized that cells from DS individuals would display altered eicosanoid production. Using age- and sex-matched dermal fibroblasts we interrogated this hypothesis. Briefly, assessment of over 90 metabolites derived from cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome p450 systems revealed a possible deficiency in the COX system. Basal gene expression and Western blotting experiments showed significantly decreased gene expression of COX1 and 2, and COX2 protein abundance in DS fibroblasts compared to euploid controls. Further, using two different stressors, scratch wound or LPS, we found that DS fibroblasts could not upregulate COX2 abundance and prostaglandin E2 production. Together, these findings show that dermal fibroblasts from DS individuals have a deficient COX2 response, which may contribute to wound healing complications and tumor resistance in DS.
Collapse
Affiliation(s)
- John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Colin C Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Kendra M Prutton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Erin Q Jennings
- Skaggs School of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Abhishek K Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - James J Galligan
- Skaggs School of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, USA; Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA.
| |
Collapse
|
6
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
7
|
Stucky EC, Erndt-Marino J, Schloss RS, Yarmush ML, Shreiber DI. Prostaglandin E 2 Produced by Alginate-Encapsulated Mesenchymal Stromal Cells Modulates the Astrocyte Inflammatory Response. NANO LIFE 2017; 7:1750005. [PMID: 29682085 PMCID: PMC5903452 DOI: 10.1142/s1793984417500052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astroglia are well known for their role in propagating secondary injury following brain trauma. Modulation of this injury cascade, including inflammation, is essential to repair and recovery. Mesenchymal stromal cells (MSCs) have been demonstrated as trophic mediators in several models of secondary CNS injury, however, there has been varied success with the use of direct implantation due to a failure to persist at the injury site. To achieve sustained therapeutic benefit, we have encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate neuro-inflammation. In this study, astroglial cultures were administered lipopolysaccharide (LPS) to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. Cultures were assayed for the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) produced by astroglia, MSC-produced prostaglandin E2, and expression of neurotrophin-associated genes. We found that encapsulated MSCs significantly reduced TNF-α produced by LPS-stimulated astrocytes, more effectively than monolayer MSCs, and this enhanced benefit commences earlier than that of monolayer MSCs. Furthermore, in support of previous findings, encapsulated MSCs constitutively produced high levels of PGE2, while monolayer MSCs required the presence of inflammatory stimuli to induce PGE2 production. The early, constitutive presence of PGE2 significantly reduced astrocyte-produced TNF-α, while delayed administration had no effect. Finally, MSC-produced PGE2 was not only capable of modulating inflammation, but appears to have an additional role in stimulating astrocyte neurotrophin production. Overall, these results support the enhanced benefit of encapsulated MSC treatment, both in modulating the inflammatory response and providing neuroprotection.
Collapse
Affiliation(s)
- Elizabeth C Stucky
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Joshua Erndt-Marino
- Department of Biomedical Engineering, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
8
|
HARA S. Prostaglandin terminal synthases as novel therapeutic targets. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:703-723. [PMID: 29129850 PMCID: PMC5743848 DOI: 10.2183/pjab.93.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) exert their anti-inflammatory and anti-tumor effects by reducing prostaglandin (PG) production via the inhibition of cyclooxygenase (COX). However, the gastrointestinal, renal and cardiovascular side effects associated with the pharmacological inhibition of the COX enzymes have focused renewed attention onto other potential targets for NSAIDs. PGH2, a COX metabolite, is converted to each PG species by species-specific PG terminal synthases. Because of their potential for more selective modulation of PG production, PG terminal synthases are now being investigated as a novel target for NSAIDs. In this review, I summarize the current understanding of PG terminal synthases, with a focus on microsomal PGE synthase-1 (mPGES-1) and PGI synthase (PGIS). mPGES-1 and PGIS cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis. mPGES-1 and PGIS are expected to be attractive alternatives to COX as therapeutic targets for several diseases, including inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Shuntaro HARA
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
9
|
Hosono K, Isonaka R, Kawakami T, Narumiya S, Majima M. Signaling of Prostaglandin E Receptors, EP3 and EP4 Facilitates Wound Healing and Lymphangiogenesis with Enhanced Recruitment of M2 Macrophages in Mice. PLoS One 2016; 11:e0162532. [PMID: 27711210 PMCID: PMC5053515 DOI: 10.1371/journal.pone.0162532] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
Lymphangiogenesis plays an important role in homeostasis, metabolism, and immunity, and also occurs during wound-healing. Here, we examined the roles of prostaglandin E2 (PGE2) receptor (EP) signaling in enhancement of lymphangiogenesis in wound healing processes. The hole-punch was made in the ears of male C57BL/6 mice using a metal ear punch. Healing process and lymphangiogenesis together with macrophage recruitment were analyzed in EP knockout mice. Lymphangiogenesis was up-regulated in the granulation tissues at the margins of punched-hole wounds in mouse ears, and this increase was accompanied by increased expression levels of COX-2 and microsomal prostaglandin E synthase-1. Administration of celecoxib, a COX-2 inhibitor, suppressed lymphangiogenesis in the granulation tissues and reduced the induction of the pro-lymphangiogenic factors, vascular endothelial growth factor (VEGF) -C and VEGF-D. Topical applications of selective EP receptor agonists enhanced the expressions of lymphatic vessel endothelial hyaluronan receptor-1 and VEGF receptor-3. The wound-healing processes and recruitment of CD11b-positive macrophages, which produced VEGF-C and VEGF-D, were suppressed under COX-2 inhibition. Mice lacking either EP3 or EP4 exhibited reduced wound-healing, lymphangiogenesis and recruitment of M2 macrophages, compared with wild type mice. Proliferation of cultured human lymphatic endothelial cells was not detected under PGE2 stimulation. Lymphangiogenesis and recruitment of M2 macrophages that produced VEGF-C/D were suppressed in mice treated with a COX-2 inhibitor or lacking either EP3 or EP4 during wound healing. COX-2 and EP3/EP4 signaling may be novel targets to control lymphangiogenesis in vivo.
Collapse
MESH Headings
- Animals
- CD11b Antigen/metabolism
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Ear/physiology
- Gene Knockout Techniques
- Lymphangiogenesis/drug effects
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Prostaglandin-E Synthases/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/deficiency
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/deficiency
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction/drug effects
- Up-Regulation/drug effects
- Vascular Endothelial Growth Factor C/biosynthesis
- Vascular Endothelial Growth Factor D/biosynthesis
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Risa Isonaka
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tadashi Kawakami
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Majima
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
10
|
Liu L, Chiu PWY, Lam PK, Poon CCY, Lam CCH, Ng EKW, Lai PBS. Effect of local injection of mesenchymal stem cells on healing of sutured gastric perforation in an experimental model. Br J Surg 2015; 102:e158-68. [PMID: 25627130 DOI: 10.1002/bjs.9724] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/03/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mesenchymal stem cells are proposed to facilitate repair of organ injuries. The aim of this study was to investigate whether local injection of mesenchymal stem cells could accelerate healing of sutured gastric perforations. METHODS Sutured gastric perforations in rats were treated either with local injection of mesenchymal stem cells (injected MSC group) or by topically spraying with fibrin glue containing mesenchymal stem cells (sprayed MSC group). Controls were treated by local injection of saline or topical spray of fibrin glue without mesenchymal stem cells. Healing of sutured gastric perforations was assessed on days 3, 5 and 7. RESULTS Local injection of mesenchymal stem cells significantly promoted the healing of gastric perforations, with the highest pneumatic bursting pressure (mean(s.e.m.) 112·3(30·2) mmHg on day 5 versus 71·2(17·4) mmHg in saline controls; P = 0·001), minimal wound adhesions, and lowest incidence of wound dehiscence (3, 6, 5 and 1 animal on day 5 in control, fibrin, sprayed MSC and injected MSC groups respectively; n = 10 per group) and abdominal abscess (2, 2, 1 and no animals respectively on day 5). Histological examination showed that gastric perforations in the injected MSC group displayed reduced inflammation, and increased granulation and re-epithelialization. Sutured gastric perforations in the injected MSC group showed decreased expression of interleukin 6, and increased expression of transforming growth factor β1 and epithelial proliferating cell nuclear antigen, compared with the other groups. CONCLUSION Local injection of mesenchymal stem cells was more effective than topical application, and enhanced the healing of sutured gastric perforations by an anti-inflammatory process, enhanced cellular proliferation and earlier onset of granulation. Surgical relevance Abnormal healing of gastric perforation may cause morbidity and increase the risk of death. Adipose tissue-derived mesenchymal stem cells have been found to promote the healing of organ injuries through cellular differentiation and secretion of cytokines that stimulate cellular proliferation and angiogenesis, and suppress inflammation. This study explored the therapeutic potential of such mesenchymal stem cells for promotion of the healing of sutured gastric perforations. Mesenchymal stem cells delivered by local injection significantly enhanced the healing of gastric perforations with reduced severity of wound adhesion, and a decreased incidence of wound dehiscence and abdominal abscess. The increased expression of transforming growth factor β1, proliferating cell nuclear antigen and reduced level of interleukin 6 provide evidence for enhancement of the healing process. Engrafted mesenchymal stem cells expressed α-smooth muscle actin as a marker of myofibroblasts. This preclinical study indicates that local injection of allogeneic adipose tissue-derived mesenchymal stem cells may have a potential therapeutic role in enhancing the healing of peptic ulcer disease and prevention of ulcer-related complications.
Collapse
Affiliation(s)
- L Liu
- Department of Surgery, Hong Kong; Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Centre, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong; Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Jeon JW, Lee JI, Shin HP, Cha JM, Joo KR, Kim SH, Ko IG, Jin JJ, Kim SE, Kim CJ. Adenosine A2A-receptor agonist polydeoxyribonucleotide promotes gastric ulcer healing in Mongolian gerbils. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.983968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
Oba K, Hosono K, Amano H, Okizaki SI, Ito Y, Shichiri M, Majima M. Downregulation of the proangiogenic prostaglandin E receptor EP3 and reduced angiogenesis in a mouse model of diabetes mellitus. Biomed Pharmacother 2014; 68:1125-33. [PMID: 25465154 DOI: 10.1016/j.biopha.2014.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/18/2014] [Indexed: 11/18/2022] Open
Abstract
Vascular complications such as foot ulcers are a hallmark of diabetes mellitus (DM), although the molecular mechanisms that underlie vascular dysfunction remain unclear. Herein, we show that angiogenesis, which is indispensable to the healing of ulcers, is suppressed in polyurethane sponge implants in mice with DM and reduced proangiogenic signaling. DM was induced in male C57BL/6 mice by intraperitoneal injection of streptozotocin (100mg/kg). Polyurethane sponge disks were implanted into subcutaneous tissues on the backs of mice, and angiogenesis and expression of related factors were analyzed in sponge granulation tissues. Densities of platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive vascular structures and PECAM-1 expression in sponge granulation tissues were increased over time in control mice and reduced in diabetic mice. The reductions in diabetic mice were accompanied by reduced expression of inducible cyclo-oxygenase-2 and microsomal prostaglandin E synthase-1. The prostaglandin E receptor subtype EP3 was downregulated in sponge granulation tissues in diabetic mice, whereas EP1, EP2, and EP4 were not. The expression of the proangiogenic growth factor vascular endothelial growth factor (VEGF)-A and the chemokine stromal cell-derived factor-1 (SDF-1) were both reduced in diabetic mice. Treatment of diabetic mice with a selective agonist of EP3, ONO-AE 248 (30 nmol/site/day, topical injection), reversed suppression of angiogenesis in diabetic mice. These results indicate that proangiogenic EP3 signaling is suppressed in diabetic mice with reduced expression of VEGF and SDF-1. Stimulation of EP3 signaling restored angiogenesis in a sponge implant model in mice with DM. This suggests that topical application of an EP3 agonist could be a novel strategy to treat foot ulcers in patients with DM.
Collapse
Affiliation(s)
- Kazuhito Oba
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Shin-Ichiro Okizaki
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan.
| |
Collapse
|
13
|
|
14
|
Sato T, Amano H, Ito Y, Eshima K, Minamino T, Ae T, Katada C, Ohno T, Hosono K, Suzuki T, Shibuya M, Koizumi W, Majima M. Vascular endothelial growth factor receptor 1 signaling facilitates gastric ulcer healing and angiogenesis through the upregulation of epidermal growth factor expression on VEGFR1+CXCR4 + cells recruited from bone marrow. J Gastroenterol 2014; 49:455-69. [PMID: 23982810 DOI: 10.1007/s00535-013-0869-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 08/01/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Angiogenesis is essential for gastric ulcer healing. Recent results suggest that vascular endothelial growth factor receptor 1 (VEGFR1), which binds to VEGF, promotes angiogenesis. In the present study, we investigated the role of VEGFR1 signaling in gastric ulcer healing and angiogenesis. METHODS Gastric ulcers were induced by serosal application of 100 % acetic acid in wild-type (WT) and tyrosine kinase-deficient VEGFR1 mice (VEGFR1 TK(-/-)). Bone marrow transplantation into irradiated WT mice was carried out using bone marrow cells isolated from WT and VEGFR1 TK(-/-) mice. RESULTS Ulcer healing was delayed in VEGFR1 TK(-/-) mice compared to WT mice and this was accompanied by decreased angiogenesis, as evidenced by reduced mRNA levels of CD31 and decreased microvessel density. Recruitment of cells expressing VEGFR1 and C-X-C chemokine receptor type 4 (CXCR4) was suppressed and epidermal growth factor (EGF) expression in ulcer granulation tissue was attenuated. Treatment of WT mice with neutralizing antibodies against VEGF or CXCR4 also delayed ulcer healing. In WT mice transplanted with bone marrow cells from VEGFR1 TK(-/-) mice, ulcer healing and angiogenesis were suppressed, and this was associated with reduced recruitment of bone marrow cells to ulcer granulation tissue. VEGFR1 TK(-/-) bone marrow chimeras also exhibited downregulation of EGF expression on CXCR4(+)VEGFR1(+) cells recruited from the bone marrow into ulcer lesions. CONCLUSION VEGFR1-mediated signaling plays a critical role in gastric ulcer healing and angiogenesis through enhanced EGF expression on VEGFR1(+)CXCR4(+) cells recruited from the bone marrow into ulcer granulation tissue.
Collapse
Affiliation(s)
- Takehito Sato
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Singh Bahia M, Kumar Katare Y, Silakari O, Vyas B, Silakari P. Inhibitors of Microsomal Prostaglandin E2
Synthase-1 Enzyme as Emerging Anti-Inflammatory Candidates. Med Res Rev 2014; 34:825-55. [DOI: 10.1002/med.21306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Malkeet Singh Bahia
- Molecular Modelling Lab (MML); Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala Punjab 147002 India
| | - Yogesh Kumar Katare
- Radharaman Institute of Pharmaceutical Sciences; Bhopal Madhya Pradesh 462046 India
| | - Om Silakari
- Molecular Modelling Lab (MML); Department of Pharmaceutical Sciences and Drug Research; Punjabi University; Patiala Punjab 147002 India
| | - Bhawna Vyas
- Department of Chemistry; Punjabi University; Patiala Punjab 147002 India
| | - Pragati Silakari
- Adina institute of Pharmaceutical Sciences; Sagar Madhya Pradesh (M.P.) 470001 India
| |
Collapse
|
16
|
NSAID, aspirin delays gastric ulcer healing with reduced accumulation of CXCR4(+)VEGFR1(+) cells to the ulcer granulation tissues. Biomed Pharmacother 2013; 67:607-13. [PMID: 23809370 DOI: 10.1016/j.biopha.2013.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/24/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ulcer healing is a complex process, which involves cell migration, proliferation, angiogenesis and re-epithelialization. Several growth factors have been implicated in this process but the precise mechanism is not well understood. This study examined the involvement of VEGFR1 signaling in the gastric ulcer healing. METHODS Gastric ulcers were induced by the serosal application of 100% acetic acid, and the areas of the ulcers were measured thereafter. RESULTS The healing of acetic acid induced ulcers and the progenitor cells expressing CXCR4(+)VEGFR1(+) cell were significantly delayed in NSAID treated mice. The areas of the ulcer was significantly suppressed in tyrosine kinase-deficient VEGFR1 mice (VEGFR1TKKO) compared with wild type (WT) mice. The plasma level of SDF-1 and stem cell factor (SCF) and bone marrow level of pro-matrix metallopeptidase 9 (pro-MMP-9) were significantly reduced in VEGFR1TKKO mice. In VEGFR1 TKKOmice, the progenitor cells expressing CXCR4(+)VEGFR1(+) cell from bone marrow and the recruitment of these cells in healing ulcer were suppressed. Furthermore, VEGFR1 TKKO mice treated with NSAID did not suppress gastric ulcer healing compared to vehicle mice. These results suggested that NSAID suppressed VEGFR1 TK signaling plays a critical role in ulcer healing through mobilization of CXCR4(+)VEGFR1(+) cells. CONCLUSION VEGFR1 signaling is required for healing of NSAID induced gastric ulcer and angiogenesis with increased recruitment of CXCR4(+)VEGFR1(+) cells to the ulcerative lesion.
Collapse
|
17
|
Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 2012; 35:123-37. [PMID: 22996682 DOI: 10.1007/s00281-012-0342-8] [Citation(s) in RCA: 431] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/31/2012] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) is a bioactive lipid that elicits a wide range of biological effects associated with inflammation and cancer. PGE(2) exerts diverse effects on cell proliferation, apoptosis, angiogenesis, inflammation, and immune surveillance. This review concentrates primarily on gastrointestinal cancers, where the actions of PGE(2) are most prominent, most likely due to the constant exposure to dietary and environmental insults and the intrinsic role of PGE(2) in tissue homeostasis. A discussion of recent efforts to elucidate the complex and interconnected pathways that link PGE(2) signaling with inflammation and cancer is provided, supported by the abundant literature showing a protective effect of NSAIDs and the therapeutic efficacy of targeting mPGES-1 or EP receptors for cancer prevention. However, suppressing PGE(2) formation as a means of providing chemoprotection against all cancers may not ultimately be tenable, undoubtedly the situation for patients with inflammatory bowel disease. Future studies to fully understand the complex role of PGE(2) in both inflammation and cancer will be required to develop novel strategies for cancer prevention that are both effective and safe.
Collapse
|
18
|
Minamino T, Ito Y, Ohkubo H, Hosono K, Suzuki T, Sato T, Ae T, Shibuya A, Sakagami H, Narumiya S, Koizumi W, Majima M. Thromboxane A2 receptor signaling promotes liver tissue repair after toxic injury through the enhancement of macrophage recruitment. Toxicol Appl Pharmacol 2012; 259:104-14. [DOI: 10.1016/j.taap.2011.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/10/2011] [Accepted: 12/12/2011] [Indexed: 01/15/2023]
|
19
|
Lötsch J, Geisslinger G. Low-dose drug combinations along molecular pathways could maximize therapeutic effectiveness while minimizing collateral adverse effects. Drug Discov Today 2011; 16:1001-6. [DOI: 10.1016/j.drudis.2011.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 09/13/2011] [Accepted: 10/07/2011] [Indexed: 02/05/2023]
|
20
|
Abstract
PURPOSE OF REVIEW We have highlighted the recent findings relating to gastroduodenal mucosal defense, including elements that may contribute to the failure of defense systems and factors that enhance mucosal healing, focusing on findings that elucidate new pathophysiological mechanisms. RECENT FINDINGS Bicarbonate secretion is mediated by multiple types of prostaglandin E synthases, including membrane-bound prostaglandin E synthase-1. Mucins, growth factors, and trefoil factors are involved in accelerating gastric injury healing through epithelial reconstruction. A combination of NSAIDs and bile induce greater damage on the mucosa than if the two agents were acting alone. Proton pump inhibitors defend the mucosa from injury by promoting cellular restitution as well as inhibiting gastric acid secretion and reactive oxygen species (ROS) damage. Roxatidine, a novel H2 receptor antagonist, acts through a mechanism that involves nitric oxide. Melatonin enhances angiogenesis through the upregulation of plasma levels of gastrin and matrix metalloproteinase expression. The mucosal protective drug polaprezinc exhibits ROS-quenching activities. Lipopolysaccharides induce oxidative stress mediated by p38 mitogen-activated protein kinase (p38 MAPK). Aging weakens gastroduodenal mucosal defense mechanisms. SUMMARY There is a wide array of pathways leading to gastroduodenal mucosal injury in addition to protective defense mechanisms that counteract them to maintain homeostasis. Increased understanding of these systems may help identify novel molecular targets for the prevention and treatment of mucosal injury.
Collapse
|