1
|
Kumar A, Kumar R, Kumar G, Kumar K, Chayal NK, Aryal S, Kumar M, Srivastava A, Ali M, Raj V, Bishwapriya A, Manjari M, Kumar D, Kumar S, Singh M, Ghosh AK. Manganese pollution in eastern India causing cancer risk. Sci Rep 2024; 14:28588. [PMID: 39562770 PMCID: PMC11576912 DOI: 10.1038/s41598-024-78478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Groundwater poisoning by heavy metals has caused serious health hazards in the exposed population globally. Manganese (Mn) poisoning causing human health hazards is very meagerly reported worldwide. The present research elucidates for the first time the catastrophic effect of manganese causing cancer in the Gangetic plains of Bihar (India). The blood samples of n = 1146 cancer patients were voluntarily obtained for the study, after their consent. Their household water samples were also collected for the study. All the samples were analysed for Mn contamination by Atomic Absorption Spectrophotometer. The study indicates high Mn contamination in the cancer patient blood samples with highest content as 6022 µg/L. Moreover, the cancer patient's household handpump water samples also contained elevated Mn contamination. The correlation coefficient study finds significant association between Mn contamination in blood of cancer patients and their handpump water. The carcinoma group of cancer patients mostly in Stage III & IV had significant Mn contamination in their blood (above WHO/BIS permissible limit). The geospatial study depicts Mn contamination in handpump water in the state of Bihar in correlation with cancer patient's blood samples. This novel finding is being reported in India for the first time, which correlates cancer with handpump drinking water. The long-term Mn exposure could be one of the causative agents for elevating cancer incidences. However, other confounding risk factors cannot be denied.
Collapse
Affiliation(s)
- Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India.
| | - Rajiv Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Govind Kumar
- Indian Institute of Technology- Bombay, Mumbai, Maharashtra, India
| | - Kanhaiya Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | | | - Siddhant Aryal
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Mukesh Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Abhinav Srivastava
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Mohammad Ali
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | | | | | - Muskan Manjari
- CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Deepak Kumar
- Shoolini University, Solan, Himachal Pradesh, India
| | | | - Manisha Singh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Ashok Kumar Ghosh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| |
Collapse
|
2
|
Li S, Zhua Y, Liu X. Parkinsonism in liver diseases or dysfunction. Med Clin (Barc) 2024; 163:461-468. [PMID: 38955605 DOI: 10.1016/j.medcli.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Parkinsonism in liver diseases or dysfunction, mainly including neurological manifestations in hereditary liver diseases and neurological complications of advanced liver diseases, occur in isolation or in combination with other movement disorders, and progress along disease course. Prominent akinetic-rigidity syndrome, various onset and progression, poor levodopa response and metabolism abnormalities reflected by serum biomarkers and neuroimaging, make this atypical parkinsonism recognizable and notable in clinical practice. Different susceptibility of brain areas, especially in basal ganglia, to manganese, iron, copper, ammonia overload, together with subsequent oxidative stress, neurotransmitter alterations, disturbed glia-neuron homeostasis and eventually neurotoxicity, contribute to parkinsonism under the circumstances of insufficient liver clearance ability. These mechanisms are interrelated and may interact collectively, adding to the complexity of clinical manifestations and treatment responses. This review summarizes shared clinical features of parkinsonism in liver diseases or dysfunction, depicts their underlying mechanisms and suggests practical flowchart for differential diagnosis.
Collapse
Affiliation(s)
- Sichen Li
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxia Zhua
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
McCabe SM, Zhao N. Expression of Manganese Transporters ZIP8, ZIP14, and ZnT10 in Brain Barrier Tissues. Int J Mol Sci 2024; 25:10342. [PMID: 39408669 PMCID: PMC11476488 DOI: 10.3390/ijms251910342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Manganese (Mn) is an essential trace mineral for brain function, but excessive accumulation can cause irreversible nervous system damage, highlighting the need for proper Mn balance. ZIP14, ZnT10, and ZIP8 are key transporters involved in maintaining Mn homeostasis, particularly in the absorption and excretion of Mn in the intestine and liver. However, their roles in the brain are less understood. The blood-cerebrospinal fluid barrier and the blood-brain barrier, formed by the choroid plexus and brain blood vessels, respectively, are critical for brain protection and brain metal homeostasis. This study identified ZIP14 on the choroid plexus epithelium, and ZIP8 and ZnT10 in brain microvascular tissue. We show that despite significant Mn accumulation in the CSF of Znt10 knockout mice, ZIP14 expression levels in the blood-cerebrospinal fluid barrier remain unchanged, indicating that ZIP14 does not have a compensatory mechanism for regulating Mn uptake in the brain in vivo. Additionally, Mn still enters the CSF without ZIP14 when systemic levels rise. This indicates that alternative transport mechanisms or compensatory pathways ensure Mn balance in the CSF, shedding light on potential strategies for managing Mn-related disorders.
Collapse
Affiliation(s)
| | - Ningning Zhao
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
4
|
Luo XY, Ying SQ, Cao Y, Jin Y, Jin F, Zheng CX, Sui BD. Liver-based inter-organ communication: A disease perspective. Life Sci 2024; 351:122824. [PMID: 38862061 DOI: 10.1016/j.lfs.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Inter-organ communication through hormones, cytokines and extracellular vesicles (EVs) has emerged to contribute to the physiological states and pathological processes of the human body. Notably, the liver coordinates multiple tissues and organs to maintain homeostasis and maximize energy utilization, with the underlying mechanisms being unraveled in recent studies. Particularly, liver-derived EVs have been found to play a key role in regulating health and disease. As an endocrine organ, the liver has also been found to perform functions via the secretion of hepatokines. Investigating the multi-organ communication centered on the liver, especially in the manner of EVs and hepatokines, is of great importance to the diagnosis and treatment of liver-related diseases. This review summarizes the crosstalk between the liver and distant organs, including the brain, the bone, the adipose tissue and the intestine in noticeable situations. The discussion of these contents will add to a new dimension of organismal homeostasis and shed light on novel theranostics of pathologies.
Collapse
Affiliation(s)
- Xin-Yan Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Si-Qi Ying
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Hutchens S, Melkote A, Jursa T, Shawlot W, Trasande L, Smith DR, Mukhopadhyay S. Elevated thyroid manganese reduces thyroid iodine to induce hypothyroidism in mice, but not rats, lacking SLC30A10 transporter. Metallomics 2024; 16:mfae029. [PMID: 38866719 PMCID: PMC11216084 DOI: 10.1093/mtomcs/mfae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Elevated manganese (Mn) accumulates in the brain and induces neurotoxicity. SLC30A10 is an Mn efflux transporter that controls body Mn levels. We previously reported that full-body Slc30a10 knockout mice (1) recapitulate the body Mn retention phenotype of humans with loss-of-function SLC30A10 mutations and (2) unexpectedly develop hypothyroidism induced by Mn accumulation in the thyroid, which reduces intra-thyroid thyroxine. Subsequent analyses of National Health and Nutrition Examination Survey data identified an association between serum Mn and subclinical thyroid changes. The emergence of thyroid deficits as a feature of Mn toxicity suggests that changes in thyroid function may be an underappreciated, but critical, modulator of Mn-induced disease. To better understand the relationship between thyroid function and Mn toxicity, here we further defined the mechanism of Mn-induced hypothyroidism using mouse and rat models. Slc30a10 knockout mice exhibited a profound deficit in thyroid iodine levels that occurred contemporaneously with increases in thyroid Mn levels and preceded the onset of overt hypothyroidism. Wild-type Mn-exposed mice also exhibited increased thyroid Mn levels, an inverse correlation between thyroid Mn and iodine levels, and subclinical hypothyroidism. In contrast, thyroid iodine levels were unaltered in newly generated Slc30a10 knockout rats despite an increase in thyroid Mn levels, and the knockout rats were euthyroid. Thus, Mn-induced thyroid dysfunction in genetic or Mn exposure-induced mouse models occurs due to a reduction in thyroid iodine subsequent to an increase in thyroid Mn levels. Moreover, rat and mouse thyroids have differential sensitivities to Mn, which may impact the manifestations of Mn-induced disease in these routinely used animal models.
Collapse
Affiliation(s)
- Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Ashvini Melkote
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - William Shawlot
- Mouse Genetic Engineering Facility, The University of Texas at Austin, Austin, TX, USA
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics and Departments of Population Health and Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
- New York University Wagner School of Public Service, New York, NY, USA
- New York University College of Global Public Health, New York, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Yanjun Y, Jing Z, Yifei S, Gangzhao G, Chenxin Y, Qiang W, Qiang Y, Shuwen H. Trace elements in pancreatic cancer. Cancer Med 2024; 13:e7454. [PMID: 39015024 PMCID: PMC11252496 DOI: 10.1002/cam4.7454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PCA) is an extremely aggressive malignant cancer with an increasing incidence and a low five-year survival rate. The main reason for this high mortality is that most patients are diagnosed with PCA at an advanced stage, missing early treatment options and opportunities. As important nutrients of the human body, trace elements play an important role in maintaining normal physiological functions. Moreover, trace elements are closely related to many diseases, including PCA. REVIEW This review systematically summarizes the latest research progress on selenium, copper, arsenic, and manganese in PCA, elucidates their application in PCA, and provides a new reference for the prevention, diagnosis and treatment of PCA. CONCLUSION Trace elements such as selenium, copper, arsenic and manganese are playing an important role in the risk, pathogenesis, diagnosis and treatment of PCA. Meanwhile, they have a certain inhibitory effect on PCA, the mechanism mainly includes: promoting ferroptosis, inducing apoptosis, inhibiting metastasis, and inhibiting excessive proliferation.
Collapse
Affiliation(s)
- Yao Yanjun
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Gu Gangzhao
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Yan Chenxin
- Shulan International Medical schoolZhejiang Shuren UniversityHangzhouChina
| | - Wei Qiang
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Yan Qiang
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
- Institut Catholique de Lille, Junia (ICL), Université Catholique de Lille, Laboratoire Interdisciplinaire des Transitions de Lille (LITL)LilleFrance
| |
Collapse
|
7
|
Gurol KC, Jursa T, Cho EJ, Fast W, Dalby KN, Smith DR, Mukhopadhyay S. PHD2 enzyme is an intracellular manganese sensor that initiates the homeostatic response against elevated manganese. Proc Natl Acad Sci U S A 2024; 121:e2402538121. [PMID: 38905240 PMCID: PMC11214094 DOI: 10.1073/pnas.2402538121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Intracellular sensors detect changes in levels of essential metals to initiate homeostatic responses. But, a mammalian manganese (Mn) sensor is unknown, representing a major gap in understanding of Mn homeostasis. Using human-relevant models, we recently reported that: 1) the primary homeostatic response to elevated Mn is upregulation of hypoxia-inducible factors (HIFs), which increases expression of the Mn efflux transporter SLC30A10; and 2) elevated Mn blocks the prolyl hydroxylation of HIFs by prolyl hydroxylase domain (PHD) enzymes, which otherwise targets HIFs for degradation. Thus, the mammalian mechanism for sensing elevated Mn likely relates to PHD inhibition. Moreover, 1) Mn substitutes for a catalytic iron (Fe) in PHD structures; and 2) exchangeable cellular levels of Fe and Mn are comparable. Therefore, we hypothesized that elevated Mn directly inhibits PHD by replacing its catalytic Fe. In vitro assays using catalytically active PHD2, the primary PHD isoform, revealed that Mn inhibited, and Fe supplementation rescued, PHD2 activity. However, a mutation in PHD2 (D315E) that selectively reduced Mn binding without substantially impacting Fe binding or enzymatic activity resulted in complete insensitivity of PHD2 to Mn in vitro. Additionally, hepatic cells expressing full-length PHD2D315E were less sensitive to Mn-induced HIF activation and SLC30A10 upregulation than PHD2wild-type. These results: 1) define a fundamental Mn sensing mechanism for controlling Mn homeostasis-elevated Mn inhibits PHD2, which functions as a Mn sensor, by outcompeting its catalytic Fe, and PHD2 inhibition activates HIF signaling to up-regulate SLC30A10; and 2) identify a unique mode of metal sensing that may have wide applicability.
Collapse
Affiliation(s)
- Kerem C. Gurol
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA95064
| | - Eun Jeong Cho
- College of Pharmacy, Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX78712
| | - Walter Fast
- Division of Chemical Biology and Drug Discovery, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Kevin N. Dalby
- College of Pharmacy, Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX78712
- Division of Chemical Biology and Drug Discovery, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA95064
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
8
|
Warden A, Mayfield RD, Gurol KC, Hutchens S, Liu C, Mukhopadhyay S. Loss of SLC30A10 manganese transporter alters expression of neurotransmission genes and activates hypoxia-inducible factor signaling in mice. Metallomics 2024; 16:mfae007. [PMID: 38285613 PMCID: PMC10883138 DOI: 10.1093/mtomcs/mfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
The essential metal manganese (Mn) induces neuromotor disease at elevated levels. The manganese efflux transporter SLC30A10 regulates brain Mn levels. Homozygous loss-of-function mutations in SLC30A10 induce hereditary Mn neurotoxicity in humans. Our prior characterization of Slc30a10 knockout mice recapitulated the high brain Mn levels and neuromotor deficits reported in humans. But, mechanisms of Mn-induced motor deficits due to SLC30A10 mutations or elevated Mn exposure are unclear. To gain insights into this issue, we characterized changes in gene expression in the basal ganglia, the main brain region targeted by Mn, of Slc30a10 knockout mice using unbiased transcriptomics. Compared with littermates, >1000 genes were upregulated or downregulated in the basal ganglia sub-regions (i.e. caudate putamen, globus pallidus, and substantia nigra) of the knockouts. Pathway analyses revealed notable changes in genes regulating synaptic transmission and neurotransmitter function in the knockouts that may contribute to the motor phenotype. Expression changes in the knockouts were essentially normalized by a reduced Mn chow, establishing that changes were Mn dependent. Upstream regulator analyses identified hypoxia-inducible factor (HIF) signaling, which we recently characterized to be a primary cellular response to elevated Mn, as a critical mediator of the transcriptomic changes in the basal ganglia of the knockout mice. HIF activation was also evident in the liver of the knockout mice. These results: (i) enhance understanding of the pathobiology of Mn-induced motor disease; (ii) identify specific target genes/pathways for future mechanistic analyses; and (iii) independently corroborate the importance of the HIF pathway in Mn homeostasis and toxicity.
Collapse
Affiliation(s)
- Anna Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kerem C Gurol
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chunyi Liu
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|