1
|
Son I, Kim M, Lee JS, Yoon D, Kim YR, Park JH, Oh BY, Chun W, Kang SB. 3D spheroids versus 2D-cultured human adipose stem cells to generate smooth muscle cells in an internal anal sphincter-targeting cryoinjured mouse model. Stem Cell Res Ther 2024; 15:360. [PMID: 39396044 PMCID: PMC11470548 DOI: 10.1186/s13287-024-03978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The efficacy of cell implantation via 3D-spheroids to treat basal tone in fecal incontinence remains unclear. To address this, in this study, we aimed to identify cell differentiation and assess the development of a contractile phenotype corresponding to smooth muscle cells (SMCs) following implantation of 3D-spheroid and 2D-cultured human adipose stem cells (hASCs) in an in vivo internal anal sphincter (IAS)-targeted mouse model. METHODS We developed an IAS-targeted in vivo model via rapid freezing (at - 196 °C) of the dorsal layers of the region of interest (ROI) of the IAS ring posterior quarter, between the submucosal and muscular layers, following submucosal dissection (n = 60 rats). After implantation of tetramethylindocarbocyanine perchlorate (Dil)-stained 3D and 2D-cells into randomly allocated cryoinjured rats, the entire sphincter ring or only the cryoinjured ROI was harvested. Expression of SMC markers, RhoA/ROCKII and its downstream molecules, and fibrosis markers was analyzed. Dil, α-smooth muscle actin (α-SMA), and RhoA signals were used for cell tracking. RESULTS In vitro, 3D-spheroids exhibited higher levels of SMC markers and RhoA/ROCKII-downstream molecules than 2D-hASCs. The IAS-targeted cryoinjured model exhibited substantial loss of SMC layers of the squamous epithelium lining of the anal canal, as well as reduced expression of SMC markers and RhoA-related downstream molecules. In vivo, 3D-spheroid implantation induced SMC markers and contractile molecules weakly at 1 week. At 2 weeks, the mRNA expression of aSma, Sm22a, Smoothelin, RhoA, Mypt1, Mlc20, Cpi17, and Pp1cd increased, whereas that of fibrosis markers reduced significantly in the 3D-spheroid implanted group compared to those in the sham, non-implanted, and 2D-hASC implanted groups. Protein levels of RhoA, p-MYPT1, and p-MLC20 were higher in the 3D-spheroid-implanted group than in the other groups. At 2 weeks, in the implanted groups, the cryoinjured tissues (which exhibited Dil, α-SMA, and RhoA signals) were restored, while they remained defective in the sham and non-implanted groups. CONCLUSIONS These findings demonstrate that, compared to 2D-cultured hASCs, 3D-spheroids more effectively induce a contractile phenotype that is initially weak but subsequently improves, inducing expression of RhoA/ROCKII-downstream molecules and SMC differentiation associated with IAS basal tone.
Collapse
Affiliation(s)
- Iltae Son
- Department of Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 22 Gwanpyeong-Ro 170 Beon-Gil, Pyeongan-Dong, Dongan-Gu, Anyang, Gyeonggi-Do, Republic of Korea.
- Institute for Regenerative Medicine, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| | - Minsung Kim
- Department of Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 22 Gwanpyeong-Ro 170 Beon-Gil, Pyeongan-Dong, Dongan-Gu, Anyang, Gyeonggi-Do, Republic of Korea
| | - Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Dogeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - You-Rin Kim
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ji Hye Park
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 22 Gwanpyeong-Ro 170 Beon-Gil, Pyeongan-Dong, Dongan-Gu, Anyang, Gyeonggi-Do, Republic of Korea
| | - Wook Chun
- Department of Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, 166 Gumi-Ro, Bundang-Gu, 463-707, Seongnam, Republic of Korea.
| |
Collapse
|
2
|
Palomo I, Wehinger S, Andrés V, García‐García FJ, Fuentes E. RhoA/rho kinase pathway activation in age-associated endothelial cell dysfunction and thrombosis. J Cell Mol Med 2024; 28:e18153. [PMID: 38568071 PMCID: PMC10989549 DOI: 10.1111/jcmm.18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 04/05/2024] Open
Abstract
The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.
Collapse
Affiliation(s)
- Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| | - Sergio Wehinger
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Francisco J. García‐García
- Department of Geriatric MedicineHospital Universitario de Toledo, Instituto de Investigación de Castilla La Mancha (IDISCAM), CIBERFES (ISCIII)ToledoSpain
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| |
Collapse
|
3
|
Cheng C, Li Q, Lin G, Opara EC, Zhang Y. Neurobiological insights into lower urinary tract dysfunction: evaluating the role of brain-derived neurotrophic factor. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:559-577. [PMID: 38148930 PMCID: PMC10749380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Lower urinary tract dysfunction (LUTD) encompasses a range of debilitating conditions that affect both sexes and different age groups. Understanding the underlying neurobiological mechanisms contributing to LUTD has emerged as a critical avenue for the development of targeted therapeutic strategies. Brain-derived neurotrophic factor (BDNF), a prominent member of the neurotrophin family, has attracted attention due to its multiple roles in neural development, plasticity, and maintenance. This review examines the intricate interplay between neurobiological factors and LUTD, focusing on the central involvement of BDNF. The review emphasizes the bidirectional relationship between LUTD and BDNF and explores how LUTD-induced neural changes may affect BDNF dynamics and vice versa. Growth factor therapy and the combined administration of controlled release growth factors and stem cells are minimally invasive treatment strategies for neuromuscular injury. Among the many growth factors and cytokines, brain-derived neurotrophic factor (BDNF) plays a prominent role in neuromuscular repair. As an essential neurotrophin, BDNF is involved in the modulation of neuromuscular regeneration through tropomyosin receptor kinase B (TrkB). Increasing BDNF levels facilitates the regeneration of the external urethral sphincter and contributes to the regulation of bladder contraction. Treatments targeting the BDNF pathway and sustained release of BDNF may become novel treatment options for urinary incontinence and other forms of lower urinary tract dysfunction. This review discusses the applications of BDNF and the theoretical basis for its use in the treatment of lower urinary tract dysfunction, including urinary incontinence (UI), overactive bladder (OAB), and benign prostatic hyperplasia (BPH), and in the clinical diagnosis of bladder dysfunction.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of CaliforniaSan Francisco, CA 94143, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health SciencesWinston-Salem, NC 27101, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health SciencesWinston-Salem, NC 27101, USA
| |
Collapse
|
4
|
Singh A. Brain-derived neurotrophic factor - a key player in the gastrointestinal system. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:380-392. [PMID: 38572454 PMCID: PMC10985741 DOI: 10.5114/pg.2023.132957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 04/05/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed throughout the gastrointestinal (GI) tract and plays a critical role in the regulation of intestinal motility, secretion, sensation, immunity, and mucosal integrity. Dysregulation of BDNF signalling has been implicated in the pathophysiology of various GI disorders including inflammatory bowel disease, irritable bowel syndrome, functional dyspepsia, and diabetic gastroenteropathy. This review provides a comprehensive overview of BDNF localization, synthesis, receptors, and signalling mechanisms in the gut. In addition, current evidence on the diverse physiologic and pathophysiologic roles of BDNF in the control of intestinal peristalsis, mucosal transport processes, visceral sensation, neuroimmune interactions, gastrointestinal mucosal healing, and enteric nervous system homeostasis are discussed. Finally, the therapeutic potential of targeting BDNF for the treatment of functional GI diseases is explored. Advancing knowledge of BDNF biology and mechanisms of action may lead to new therapies based on harnessing the gut trophic effects of this neurotrophin.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Molecular Pharmacology Program and Chemistry, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
5
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Sani A, Zununi Vahed S, Ardalan M. Ischemic tubular injury: Oxygen-sensitive signals and metabolic reprogramming. Inflammopharmacology 2023:10.1007/s10787-023-01232-x. [PMID: 37131045 DOI: 10.1007/s10787-023-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
The kidneys are the most vulnerable organs to severe ischemic insult that results in cellular hypoxia under pathophysiological conditions. Large amounts of oxygen are consumed by the kidneys, mainly to produce energy for tubular reabsorption. Beyond high oxygen demand and the low oxygen supply, different other factors make kidneys vulnerable to ischemia which is deemed to be a major cause of acute kidney injury (AKI). On the other hand, kidneys are capable of sensing and responding to oxygen alternations to evade harms resulting from inadequate oxygen. The hypoxia-inducible factor (HIF) is the main conserved oxygen-sensing mechanism that maintains homeostasis under hypoxia through direct/indirect regulation of several genes that contribute to metabolic adaptation, angiogenesis, energy conservation, erythropoiesis, and so on. In response to oxygen availability, prolyl-hydroxylases (PHDs) control the HIF stability. This review focuses on the oxygen-sensing mechanisms in kidneys, particularly in proximal tubular cells (PTCs) and discusses the molecules involved in ischemic response and metabolic reprogramming. Moreover, the possible roles of non-coding RNAs (microRNAs and long non-coding RNAs) in the development of ischemic AKI are put forward.
Collapse
Affiliation(s)
| | | | - Anis Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
6
|
Protective effects of amoxicillin and probiotics on colon disorders in an experimental model of acute diverticulitis disease. Inflammopharmacology 2022; 30:2153-2165. [DOI: 10.1007/s10787-022-01093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
AbstractAcute diverticulitis disease is associated with inflammation and infection in the colon diverticula and may lead to severe morbidity. This study aimed to evaluate and compare the protective effects of amoxicillin antibiotic, either alone or in combination with probiotics (Lactobacillus acidophilus and Bifidobacterium lactis), in a rat model of acute diverticulitis disease. Acute diverticulitis was induced, in albino rats, by adding 3% weight/volume of dextran sulfate sodium (DSS) to the rats’ drinking water; daily for 7 days, in addition to injecting lipopolysaccharide (LPS) enema (4 mg/kg). The impact of treatments was assessed by measuring the physiological and immunological parameters and evaluating colon macroscopic and microscopic lesions. The results showed that both treatments (especially probiotics with amoxicillin) alleviated the adverse effects of DSS and LPS. This was obvious through the modulation of the rats’ body weight and the colon weight-to-length ratio. Also, there was a significant (p < 0.001) decrease in the colon macroscopic lesion score. The pro-inflammatory cytokines [(TNF)-α, (IL)-1β, (IFN)-γ, and (IL)-18]; in the colon tissue; were significantly (p < 0.001) decreased. Also, both treatments significantly ameliorated the elevation of myeloperoxidase activity and C-reactive protein levels, in addition to improving the histopathological alterations in the colon tissue. In conclusion, amoxicillin and probiotics–amoxicillin were effective in preventing the development of experimentally induced acute diverticulitis, through their anti-inflammatory and immunomodulatory effects. Furthermore, this study has explored the role of probiotics in preventing DSS/LPS-induced acute diverticulitis, so it can be applied as a promising treatment option for acute diverticulitis disease.
Collapse
|
7
|
Hu S, Zhao M, Li W, Wei P, Liu Q, Chen S, Zeng J, Ma X, Tang J. Preclinical evidence for quercetin against inflammatory bowel disease: a meta-analysis and systematic review. Inflammopharmacology 2022; 30:2035-2050. [PMID: 36227442 DOI: 10.1007/s10787-022-01079-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, potentially cancerous disease with limited treatment options. Quercetin may be a novel treatment for IBD. However, its efficacy and safety are unknown. Our goal was to conduct a systematic evaluation to summarize the preclinical effects of quercetin, which may help guide future studies. METHODS The literature was drawn from three English databases (PubMed, Embase, and Web of Science), and the quality of the included literature was assessed using the SYRCLE list (10 items). The meta-analysis was performed using STATA 15.1 software. RESULTS A total of 11 animal studies with 199 animals were involved. The current meta-analysis showed that quercetin could reduce histological score (HS), Disease Activity Index (DAI), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), nitric oxide(NO), malondialdehyde (MDA), myeloperoxidase (MPO) activity and increase colon length (CL), weight change degree (WCD), interleukin-10 (IL-10), glutathione (GSH), superoxide dismutase (SOD) activity and catalase (CAT) activity, which may involve anti-inflammatory, anti-oxidative stress, cytoprotective, barrier protection, flora regulation. CONCLUSIONS In conclusion, preclinical evidence suggests that quercetin is an ideal agent for IBD treatment. However, the validity of the findings may be compromised by the low methodological quality and the small number of studies included. There may be some discrepancies between the results of the current analysis and the real situation. More rigorous experimental designs and more comprehensive studies are needed to test the protection of quercetin against IBD.
Collapse
Affiliation(s)
- Shuangyuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyaun Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Wei
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuanglan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
8
|
Pterostilbene improves CFA-induced arthritis and peripheral neuropathy through modulation of oxidative stress, inflammatory cytokines and neurotransmitters in Wistar rats. Inflammopharmacology 2022; 30:2285-2300. [PMID: 36138303 DOI: 10.1007/s10787-022-01069-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
Abstract
Pterostilbene is a stilbene flavonoid that occurs naturally in various plants as well as produced by genetic engineering. It exhibits anti-inflammatory, analgesic, anti-oxidant and neuroprotective activities. This research was aimed to determine the potential of pterostilbene against arthritis and peripheral neuropathy in Complete Freund's Adjuvant (CFA) induced arthritis. Rat hind paw was injected with 0.1 ml CFA to induce arthritis. Standard control animals received oral methotrexate (3 mg/kg/week). Pterostilbene at 12.5, 25 and 50 mg/kg was given orally to different groups of arthritic rats from day 7-28 for 21 days. Pterostilbene significantly reduced paw diameter and retarded the decrease in body weight of arthritic rats. It profoundly (p < 0.05-0.0001) reduced lipid peroxidation and nitrites, while increased superoxide dismutase (SOD) in the liver tissue. Pterostilbene treatment significantly (p < 0.0001) reduced TNF-α and IL-6 levels. Pterostilbene markedly improved (p < 0.05-0.001) motor activity and showed analgesic effect in arthritic rats at 25 and 50 mg/kg as compared to disease control rats. Furthermore, it notably (p < 0.05-0.0001) increased SOD activity, nitrites, noradrenaline and serotonin levels in the sciatic nerve of arthritic rats. Treatment with pterostilbene also ameliorated the CFA-induced pannus formation, cartilage damage and synovial hyperplasia in the arthritic rat paws. It is determined from the current study that pterostilbene was effective in reducing CFA-induced arthritis in rats through amelioration of oxidative stress and inflammatory mediators. It was also effective to treat peripheral neuropathy through modulation of oxidative stress and neurotransmitters in sciatic nerves.
Collapse
|
9
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
IGF-1 contributes to liver cancer development in diabetes patients by promoting autophagy. Ann Hepatol 2022; 27:100697. [PMID: 35297369 DOI: 10.1016/j.aohep.2022.100697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/20/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Type 2 diabetes mellitus (T2DM) increases the occurrence and mortality of liver cancer. Insulin growth factor (IGF) plays a crucial role in the development of diabetes and liver cancer, and specifically, IGF-1 may be involved in the development of liver cancer with preexisting T2DM. Autophagy contributes to cancer cell survival and apoptosis. However, the relationship between IGF-1 and autophagy has rarely been evaluated. The purpose of this study was to investigate whether IGF-1 promotes the development of liver cancer in T2DM patients by promoting autophagy. MATERIALS AND METHODS Thirty-three hepatocellular carcinoma (HCC) patients with T2DM and 33 age-matched patients with HCC without T2DM were included in this study. We analyzed the expression of IGF-1 and autophagy-related LC3 and p62 mRNA and the prognosis of two groups. In vitro, we stimulated HepG2 cells with IGF-1 and then detected changes in autophagy and cell proliferation, apoptosis, and migration in the presence/absence of wortmannin, an autophagy inhibitor. RESULTS IGF-1 promoted autophagy, resulting in inhibition of apoptosis and induction of growth and migration of HepG2 cells. Inhibition of autophagy by wortmannin impaired IGF-1 function. Higher expression of IGF-1 was detected in HCC patients with T2DM. IGF-1 expression was higher in liver cancer tissue compared to paracancerous tissue. Elevated IGF-1 was associated with a poor prognosis in patients with HCC. CONCLUSIONS IGF-1 participates in the development of liver cancer by inducing autophagy. Elevated IGF-1 was a prognostic factor for patients with HCC, especially when accompanied by T2DM.
Collapse
|
11
|
Kim M, Oh BY, Lee JS, Yoon D, Chun W, Son IT. A systematic review of translation and experimental studies on internal anal sphincter for fecal incontinence. Ann Coloproctol 2022; 38:183-196. [PMID: 35678021 PMCID: PMC9263305 DOI: 10.3393/ac.2022.00276.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 12/05/2022] Open
Abstract
The complexity in the molecular mechanism of the internal anal sphincter (IAS) limits preclinical or clinical outcomes of fecal incontinence (FI) treatment. So far, there are no systematic reviews of IAS translation and experimental studies that have been reported. This systematic review aims to provide a comprehensive understanding of IAS critical role in FI. Previous studies revealed the key pathway for basal tone and relaxation of IAS in different properties as follows; calcium, Rho-associated, coiled-coil containing serine/threonine kinase, aging-associated IAS dysfunction, oxidative stress, renin-angiotensin-aldosterone, cyclooxygenase, and inhibitory neurotransmitters. Previous studies have reported improved functional outcomes of cellular treatment for regeneration of dysfunctional IAS, using various stem cells, but did not demonstrate the interrelationship between those results and basal tone or relaxation-related molecular pathway of IAS. Furthermore, these results have lower specificity for IAS-incontinence due to the included external anal sphincter or nerve injury regardless of the cell type. An acellular approach using bioengineered IAS showed a physiologic response of basal tone and relaxation response similar to human IAS. However, in both cellular and acellular approaches, the lack of human IAS data still hampers clinical application. Therefore, the IAS regeneration presents more challenges and warrants more advances.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Dogeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Wook Chun
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.,Department of Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Il Tae Son
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea.,Institute for Regenerative Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
12
|
Hasanvand A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: a new perspective for treatment and prevention of diseases. Inflammopharmacology 2022; 30:775-788. [PMID: 35419709 PMCID: PMC9007580 DOI: 10.1007/s10787-022-00980-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|