1
|
Collier CA, Salikhova A, Sabir S, Foncerrada S, Raghavan SA. Crisis in the gut: navigating gastrointestinal challenges in Gulf War Illness with bioengineering. Mil Med Res 2024; 11:45. [PMID: 38978144 PMCID: PMC11229309 DOI: 10.1186/s40779-024-00547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Gulf War Illness (GWI) is characterized by a wide range of symptoms that manifests largely as gastrointestinal symptoms. Among these gastrointestinal symptoms, motility disorders are highly prevalent, presenting as chronic constipation, stomach pain, indigestion, diarrhea, and other conditions that severely impact the quality of life of GWI veterans. However, despite a high prevalence of gastrointestinal impairments among these veterans, most research attention has focused on neurological disturbances. This perspective provides a comprehensive overview of current in vivo research advancements elucidating the underlying mechanisms contributing to gastrointestinal disorders in GWI. Generally, these in vivo and in vitro models propose that neuroinflammation alters gut motility and drives the gastrointestinal symptoms reported in GWI. Additionally, this perspective highlights the potential and challenges of in vitro bioengineering models, which could be a crucial contributor to understanding and treating the pathology of gastrointestinal related-GWI.
Collapse
Affiliation(s)
- Claudia A Collier
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Aelita Salikhova
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sufiyan Sabir
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Steven Foncerrada
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Kim M, Oh BY, Lee JS, Yoon D, Kim YR, Chun W, Kim JW, Son IT. Differentiation of Adipose-Derived Stem Cells into Smooth Muscle Cells in an Internal Anal Sphincter-Targeting Anal Incontinence Rat Model. J Clin Med 2023; 12:jcm12041632. [PMID: 36836167 PMCID: PMC9959483 DOI: 10.3390/jcm12041632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE Studies on development of an anal incontinence (AI) model targeting smooth muscle cells (SMCs) of the internal anal sphincter (IAS) have not been reported. The differentiation of implanted human adipose-derived stem cells (hADScs) into SMCs in an IAS-targeting AI model has also not been demonstrated. We aimed to develop an IAS-targeting AI animal model and to determine the differentiation of hADScs into SMCs in an established model. MATERIALS AND METHODS The IAS-targeting AI model was developed by inducing cryoinjury at the inner side of the muscular layer via posterior intersphincteric dissection in Sprague-Dawley rats. Dil-stained hADScs were implanted at the IAS injury site. Multiple markers for SMCs were used to confirm molecular changes before and after cell implantation. Analyses were performed using H&E, immunofluorescence, Masson's trichrome staining, and quantitative RT-PCR. RESULTS Impaired smooth muscle layers accompanying other intact layers were identified in the cryoinjury group. Specific SMC markers, including SM22α, calponin, caldesmon, SMMHC, smoothelin, and SDF-1 were significantly decreased in the cryoinjured group compared with levels in the control group. However, CoL1A1 was increased significantly in the cryoinjured group. In the hADSc-treated group, higher levels of SMMHC, smoothelin, SM22α, and α-SMA were observed at two weeks after implantation than at one week after implantation. Cell tracking revealed that Dil-stained cells were located at the site of augmented SMCs. CONCLUSIONS This study first demonstrated that implanted hADSc restored impaired SMCs at the injury site, showing stem cell fate corresponding to the established IAS-specific AI model.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Surgery, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
| | - Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Dogeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - You-Rin Kim
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Wook Chun
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
- Department of Surgery, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Jong Wan Kim
- Department of Surgery, Dontan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong-si 18450, Republic of Korea
| | - Il Tae Son
- Department of Surgery, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
- Institute for Regenerative Medicine, Hallym Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
| |
Collapse
|
3
|
Kim M, Oh BY, Lee JS, Yoon D, Chun W, Son IT. A systematic review of translation and experimental studies on internal anal sphincter for fecal incontinence. Ann Coloproctol 2022; 38:183-196. [PMID: 35678021 PMCID: PMC9263305 DOI: 10.3393/ac.2022.00276.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 12/05/2022] Open
Abstract
The complexity in the molecular mechanism of the internal anal sphincter (IAS) limits preclinical or clinical outcomes of fecal incontinence (FI) treatment. So far, there are no systematic reviews of IAS translation and experimental studies that have been reported. This systematic review aims to provide a comprehensive understanding of IAS critical role in FI. Previous studies revealed the key pathway for basal tone and relaxation of IAS in different properties as follows; calcium, Rho-associated, coiled-coil containing serine/threonine kinase, aging-associated IAS dysfunction, oxidative stress, renin-angiotensin-aldosterone, cyclooxygenase, and inhibitory neurotransmitters. Previous studies have reported improved functional outcomes of cellular treatment for regeneration of dysfunctional IAS, using various stem cells, but did not demonstrate the interrelationship between those results and basal tone or relaxation-related molecular pathway of IAS. Furthermore, these results have lower specificity for IAS-incontinence due to the included external anal sphincter or nerve injury regardless of the cell type. An acellular approach using bioengineered IAS showed a physiologic response of basal tone and relaxation response similar to human IAS. However, in both cellular and acellular approaches, the lack of human IAS data still hampers clinical application. Therefore, the IAS regeneration presents more challenges and warrants more advances.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Dogeon Yoon
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Wook Chun
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea.,Department of Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Il Tae Son
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea.,Institute for Regenerative Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
4
|
Balaphas A, Meyer J, Meier RPH, Liot E, Buchs NC, Roche B, Toso C, Bühler LH, Gonelle-Gispert C, Ris F. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021; 10:2086. [PMID: 34440855 PMCID: PMC8394955 DOI: 10.3390/cells10082086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Anal sphincter incontinence is a chronic disease, which dramatically impairs quality of life and induces high costs for the society. Surgery, considered as the best curative option, shows a disappointing success rate. Stem/progenitor cell therapy is pledging, for anal sphincter incontinence, a substitute to surgery with higher efficacy. However, the published literature is disparate. Our aim was to perform a review on the development of cell therapy for anal sphincter incontinence with critical analyses of its pitfalls. Animal models for anal sphincter incontinence were varied and tried to reproduce distinct clinical situations (acute injury or healed injury with or without surgical reconstruction) but were limited by anatomical considerations. Cell preparations used for treatment, originated, in order of frequency, from skeletal muscle, bone marrow or fat tissue. The characterization of these preparations was often incomplete and stemness not always addressed. Despite a lack of understanding of sphincter healing processes and the exact mechanism of action of cell preparations, this treatment was evaluated in 83 incontinent patients, reporting encouraging results. However, further development is necessary to establish the correct indications, to determine the most-suited cell type, to standardize the cell preparation method and to validate the route and number of cell delivery.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
- Department of Surgery, Geneva Medical School, University of Geneva, 1205 Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Raphael P. H. Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Emilie Liot
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Nicolas C. Buchs
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Bruno Roche
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Christian Toso
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Leo H. Bühler
- Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.H.B.); (C.G.-G.)
| | - Carmen Gonelle-Gispert
- Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.H.B.); (C.G.-G.)
| | - Frédéric Ris
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| |
Collapse
|
5
|
Speer AL, Ren X, McNeill EP, Aziz JM, Muir SM, Marino DI, Dadhich P, Sawant K, Ciccocioppo R, Asthana A, Bitar KN, Orlando G. Bioengineering of the digestive tract: approaching the clinic. Cytotherapy 2021; 23:381-389. [PMID: 33840629 DOI: 10.1016/j.jcyt.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
The field of regenerative medicine is developing technologies that, in the near future, will offer alternative approaches to either cure diseases affecting the gastrointestinal tract or slow their progression by leveraging the intrinsic ability of our tissues and organs to repair after damage. This article will succinctly illustrate the three technologies that are closer to clinical translation-namely, human intestinal organoids, sphincter bioengineering and decellularization, whereby the cellular compartment of a given segment of the digestive tract is removed to obtain a scaffold consisting of the extracellular matrix. The latter will be used as a template for the regeneration of a functional organ, whereby the newly generated cellular compartment will be obtained from the patient's own cells. Although clinical application of this technology is approaching, product development challenges are being tackled to warrant safety and efficacy.
Collapse
Affiliation(s)
- Allison L Speer
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Eoin P McNeill
- McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Justine M Aziz
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sean M Muir
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Domenica I Marino
- College of Arts and Sciences, Ohio State University, Columbus, Ohio, USA
| | | | - Ketki Sawant
- Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, Giambattista Rossi University Hospital, University Hospital Integrated Trust of Verona, University of Verona, Verona, Italy
| | - Amish Asthana
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Khalil N Bitar
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Cellf Bio LLC, Winston-Salem, North Carolina, USA
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
6
|
Singh J, Mohanty I, Addya S, Phillips B, Mee Yong H, An SS, Penn RB, Rattan S. Role of differentially expressed microRNA-139-5p in the regulation of phenotypic internal anal sphincter smooth muscle tone. Sci Rep 2017; 7:1477. [PMID: 28469189 PMCID: PMC5431208 DOI: 10.1038/s41598-017-01550-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
The present study focused on the role of microRNA-139-5p (miRNA-139-5p) in the regulation of basal tone in internal anal sphincter (IAS). Applying genome-wide miRNA microarrays on the phenotypically distinct smooth muscle cells (SMCs) within the rat anorectrum, we identified miRNA-139-5p as differentially expressed RNA repressor with highest expression in the purely phasic smooth muscle of anococcygeus (ASM) vs. the truly tonic smooth muscle of IAS. This pattern of miRNA-139-5p expression, previously shown to target ROCK2, was validated by target prediction using ingenuity pathway (IPA) and by qPCR analyses. Immunoblotting, immunocytochemistry (ICC), and functional assays using IAS tissues and cells subjected to overexpression/knockdown of miRNA-139-5p confirmed the inverse relationship between miRNA-139-5p and ROCK2 expressions/IAS tone. Overexpression of miRNA-139-5p caused a decrease, while knockdown by anti-miRNA-139-5p caused an increase in the IAS tone; these tissue contractile responses were confirmed by single-cell contraction using magnetic twisting cytometry (MTC). These findings suggest miRNA-139-5p is capable of significantly influencing the phenotypic tonicity in smooth muscle via ROCK2: a lack of tone in ASM may be associated with the suppression of ROCK2 by high expression of miRNA-139-5p, whereas basal IAS tone may be associated with the persistence of ROCK2 due to low expression of miRNA-139-5p.
Collapse
Affiliation(s)
- Jagmohan Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Ipsita Mohanty
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Sankar Addya
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin Phillips
- Department of Surgery, Division of Colorectal Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Raymond B Penn
- Center for Translational Medicine (RP), Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Rattan S. Ca2+/calmodulin/MLCK pathway initiates, and RhoA/ROCK maintains, the internal anal sphincter smooth muscle tone. Am J Physiol Gastrointest Liver Physiol 2017; 312:G63-G66. [PMID: 27932502 PMCID: PMC5283903 DOI: 10.1152/ajpgi.00370.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Kumar L, Emmanuel A. Internal anal sphincter: Clinical perspective. Surgeon 2016; 15:211-226. [PMID: 27881288 DOI: 10.1016/j.surge.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/05/2016] [Accepted: 10/23/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To summarise current knowledge of Internal anal sphincter. BACKGROUND The internal anal sphincter (IAS) is the involuntary ring of smooth muscle in the anal canal and is the major contributor to the resting pressure in the anus. Structural injury or functional weakness of the muscle results in passive incontinence of faeces and flatus. With advent of new assessment and treatment modalities IAS has become an important topic for surgeons. This review was undertaken to summarise our current knowledge of internal anal sphincter and highlight the areas that need further research. METHOD The PubMed database was used to identify relevant studies relating to internal anal sphincter. RESULTS The available evidence has been summarised and advantages and limitations highlighted for the different diagnostic and therapeutic techniques. CONCLUSION Our understanding of the physiology and pharmacology of IAS has increased greatly in the last three decades. Additionally, there has been a rise in diagnostic and therapeutic techniques specifically targeting the IAS. Although these are promising, future research is required before these can be incorporated into the management algorithm.
Collapse
Affiliation(s)
- Lalit Kumar
- GI Physiology Unit, University College Hospital, London, UK.
| | - Anton Emmanuel
- GI Physiology Unit, University College Hospital, London, UK; University College London, UK.
| |
Collapse
|
9
|
Singh J, Boopathi E, Addya S, Phillips B, Rigoutsos I, Penn RB, Rattan S. Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a. Am J Physiol Gastrointest Liver Physiol 2016; 311:G964-G973. [PMID: 27634012 PMCID: PMC5130548 DOI: 10.1152/ajpgi.00290.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/13/2016] [Indexed: 01/31/2023]
Abstract
A comprehensive genomic and proteomic, computational, and physiological approach was employed to examine the (previously unexplored) role of microRNAs (miRNAs) as regulators of internal anal sphincter (IAS) smooth muscle contractile phenotype and basal tone. miRNA profiling, genome-wide expression, validation, and network analyses were employed to assess changes in mRNA and miRNA expression in IAS smooth muscles from young vs. aging rats. Multiple miRNAs, including rno-miR-1, rno-miR-340-5p, rno-miR-185, rno-miR-199a-3p, rno-miR-200c, rno-miR-200b, rno-miR-31, rno-miR-133a, and rno-miR-206, were found to be upregulated in aging IAS. qPCR confirmed the upregulated expression of these miRNAs and downregulation of multiple, predicted targets (Eln, Col3a1, Col1a1, Zeb2, Myocd, Srf, Smad1, Smad2, Rhoa/Rock2, Fn1, Tagln v2, Klf4, and Acta2) involved in regulation of smooth muscle contractility. Subsequent studies demonstrated an aging-associated increase in the expression of miR-133a, corresponding decreases in RhoA, ROCK2, MYOCD, SRF, and SM22α protein expression, RhoA-signaling, and a decrease in basal and agonist [U-46619 (thromboxane A2 analog)]-induced increase in the IAS tone. Moreover, in vitro transfection of miR-133a caused a dose-dependent increase of IAS tone in strips, which was reversed by anti-miR-133a. Last, in vivo perianal injection of anti-miR-133a reversed the loss of IAS tone associated with age. This work establishes the important regulatory effect of miRNA-133a on basal and agonist-stimulated IAS tone. Moreover, reversal of age-associated loss of tone via anti-miR delivery strongly implicates miR dysregulation as a causal factor in the aging-associated decrease in IAS tone and suggests that miR-133a is a feasible therapeutic target in aging-associated rectoanal incontinence.
Collapse
Affiliation(s)
- Jagmohan Singh
- 1Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| | - Ettickan Boopathi
- 2Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| | - Sankar Addya
- 3Kimmel Cancer Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| | - Benjamin Phillips
- 4Department of Surgery, Division of Colorectal Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Isidore Rigoutsos
- 5Computational Medicine Center, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B. Penn
- 2Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| | - Satish Rattan
- 1Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania;
| |
Collapse
|
10
|
Singh J, Kumar S, Rattan S. Bimodal effect of oxidative stress in internal anal sphincter smooth muscle. Am J Physiol Gastrointest Liver Physiol 2015; 309:G292-300. [PMID: 26138467 PMCID: PMC4556951 DOI: 10.1152/ajpgi.00125.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/29/2015] [Indexed: 01/31/2023]
Abstract
Changes in oxidative stress may affect basal tone and relaxation of the internal anal sphincter (IAS) smooth muscle in aging. We examined this issue by investigating the effects of the oxidative stress inducer 6-anilino-5,8-quinolinedione (LY-83583) in basal as well as U-46619-stimulated tone, and nonadrenergic, noncholinergic (NANC) relaxation in rat IAS. LY-83583, which works via generation of reactive oxygen species in living cells, produced a bimodal effect in IAS tone: lower concentrations (0.1 nM to 10 μM) produced a concentration-dependent increase, while higher concentrations (50-100 μM) produced a decrease in IAS tone. An increase in IAS tone by lower concentrations was associated with an increase in RhoA/Rho kinase (ROCK) activity. This was evident by the increase in RhoA/ROCK in the particulate fractions, in ROCK activity, and in the levels of phosphorylated (p) (Thr696)-myosin phosphatase target subunit 1 and p(Thr18/Ser19)-20-kDa myosin light chain. Conversely, higher concentrations of LY-83583 produced inhibitory effects on RhoA/ROCK. Interestingly, both the excitatory and inhibitory effects of LY-83583 in the IAS were reversed by superoxide dismutase. The excitatory effects of LY-83583 were found to resemble those with neuronal nitric oxide synthase (nNOS) inhibition by l-NNA, since it produced a significant increase in the IAS tone and attenuated NANC relaxation. These effects of LY-83583 and l-NNA were reversible by l-arginine. This suggests the role of nNOS inhibition and RhoA/ROCK activation in the increase in IAS tone by LY-83583. These data have important implications in the pathophysiology and therapeutic targeting of rectoanal disorders, especially associated with IAS dysfunction.
Collapse
Affiliation(s)
- Jagmohan Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sumit Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Chaudhury A. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters! Front Med (Lausanne) 2015; 2:42. [PMID: 26151053 PMCID: PMC4471425 DOI: 10.3389/fmed.2015.00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/02/2015] [Indexed: 01/04/2023] Open
Abstract
Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of “sphincter proteome.” Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled “idiopathic” and facilitating practice of precision medicine.
Collapse
|
12
|
Rattan S, Singh J, Kumar S, Phillips B. Nature of extracellular signal that triggers RhoA/ROCK activation for the basal internal anal sphincter tone in humans. Am J Physiol Gastrointest Liver Physiol 2015; 308:G924-33. [PMID: 25882611 PMCID: PMC4451323 DOI: 10.1152/ajpgi.00017.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extracellular signal that triggers activation of rho-associated kinase (RhoA/ROCK), the major molecular determinant of basal internal anal sphincter (IAS) smooth muscle tone, is not known. Using human IAS tissues, we identified the presence of the biosynthetic machineries for angiotensin II (ANG II), thromboxane A2 (TXA2), and prostaglandin F2α (PGF2α). These end products of the renin-angiotensin system (RAS) (ANG II) and arachidonic acid (TXA2 and PGF2α) pathways and their effects in human IAS vs. rectal smooth muscle (RSM) were studied. A multipronged approach utilizing immunocytochemistry, Western blot analyses, and force measurements was implemented. Additionally, in a systematic analysis of the effects of respective inhibitors along different steps of biosynthesis and those of antagonists, their end products were evaluated either individually or in combination. To further describe the molecular mechanism for the IAS tone via these pathways, we monitored RhoA/ROCK activation and its signal transduction cascade. Data showed characteristically higher expression of biosynthetic machineries of RAS and AA pathways in the IAS compared with the RSM. Additionally, specific inhibition of the arachidonic acid (AA) pathway caused ~80% decrease in the IAS tone, whereas that of RAS lead to ~20% decrease. Signal transduction studies revealed that the end products of both AA and RAS pathways cause increase in the IAS tone via activation of RhoA/ROCK. Both AA and RAS (via the release of their end products TXA2, PGF2α, and ANG II, respectively), provide extracellular signals which activate RhoA/ROCK for the maintenance of the basal tone in human IAS.
Collapse
Affiliation(s)
- Satish Rattan
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Jagmohan Singh
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Sumit Kumar
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Benjamin Phillips
- 2Department of Surgery, Division of Colorectal Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Owaki H, Sadahiro S, Takaki M. Characterizations of the α1-adrenoceptor subtypes mediating contractions of the human internal anal sphincter. J Pharmacol Sci 2015; 127:424-9. [DOI: 10.1016/j.jphs.2015.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 02/03/2023] Open
|
14
|
Whitehead WE, Rao SSC, Lowry A, Nagle D, Varma M, Bitar KN, Bharucha AE, Hamilton FA. Treatment of fecal incontinence: state of the science summary for the National Institute of Diabetes and Digestive and Kidney Diseases workshop. Am J Gastroenterol 2015; 110:138-46; quiz 147. [PMID: 25331348 DOI: 10.1038/ajg.2014.303] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
This is the second of a two-part summary of a National Institutes of Health conference on fecal incontinence (FI) that summarizes current treatments and identifies research priorities. Conservative medical management consisting of patient education, fiber supplements or antidiarrheals, behavioral techniques such as scheduled toileting, and pelvic floor exercises restores continence in up to 25% of patients. Biofeedback, often recommended as first-line treatment after conservative management fails, produces satisfaction with treatment in up to 76% and continence in 55%; however, outcomes depend on the skill of the therapist, and some trials are less favorable. Electrical stimulation of the anal mucosa is ineffective, but continuous electrical pulsing of sacral nerves produces a ≥50% reduction in FI frequency in a median 73% of patients. Tibial nerve electrical stimulation with needle electrodes is promising but remains unproven. Sphincteroplasty produces short-term clinical improvement in a median 67%, but 5-year outcomes are poor. Injecting an inert bulking agent around the anal canal led to ≥50% reductions of FI in up to 53% of patients. Colostomy is used as a last resort because of adverse effects on quality of life. Several new devices are under investigation but not yet approved. FI researchers identify the following priorities for future research: (1) trials comparing the effectiveness, safety, and cost of current therapies; (2) studies addressing barriers to consulting for care; and (3) translational research on regenerative medicine. Unmet patient needs include FI in special populations (e.g., neurological disorders and nursing home residents) and improvements in behavioral treatments.
Collapse
Affiliation(s)
- William E Whitehead
- 1] Division of Gastroenterology and Hepatology, Department of Medicine, Chapel Hill, North Carolina, USA [2] Division of Urogynecology and Reconstructive Pelvic Floor Surgery, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Satish S C Rao
- Department of Gastroenterology, Georgia Regents University, Augusta, Georgia, USA
| | - Ann Lowry
- Colon and Rectal Surgery Associates, Ltd., St. Paul, Minnesota, USA
| | - Deborah Nagle
- Department of Colon and Rectal Surgery, Harvard Medical Faculty Physicians at Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Madhulika Varma
- Section of Colorectal Surgery, University of California, San Francisco, California, USA
| | - Khalil N Bitar
- Department of Regenerative Medicine, Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, USA
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Frank A Hamilton
- National Institutes of Diabetes, Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 2014; 146:1614-24. [PMID: 24681129 PMCID: PMC4035447 DOI: 10.1053/j.gastro.2014.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
The complexity of the gastrointestinal (GI) tract lies in its anatomy as well as in its physiology. Several different cell types populate the GI tract, adding to the complexity of cell sourcing for regenerative medicine. Each cell layer has a specialized function in mediating digestion, absorption, secretion, motility, and excretion. Tissue engineering and regenerative medicine aim to regenerate the specific layers mimicking architecture and recapitulating function. Gastrointestinal motility is the underlying program that mediates the diverse functions of the intestines, as an organ. Hence, the first logical step in GI regenerative medicine is the reconstruction of the tubular smooth musculature along with the drivers of their input, the enteric nervous system. Recent advances in the field of GI tissue engineering have focused on the use of scaffolding biomaterials in combination with cells and bioactive factors. The ability to innervate the bioengineered muscle is a critical step to ensure proper functionality. Finally, in vivo studies are essential to evaluate implant integration with host tissue, survival, and functionality. In this review, we focus on the tubular structure of the GI tract, tools for innervation, and, finally, evaluation of in vivo strategies for GI replacements.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| |
Collapse
|