1
|
Aviel G, Elkahal J, Umansky KB, Bueno-Levy H, Petrover Z, Kotlovski Y, Lendengolts D, Kain D, Shalit T, Zhang L, Miyara S, Kramer MP, Merbl Y, Kozlovski S, Alon R, Aharoni R, Arnon R, Mishali D, Katz U, Nachman D, Asleh R, Amir O, Tzahor E, Sarig R. Repurposing of glatiramer acetate to treat cardiac ischemia in rodent models. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1049-1066. [PMID: 39215106 DOI: 10.1038/s44161-024-00524-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes. Glatiramer acetate (GA) is an immunomodulatory drug prescribed for patients with multiple sclerosis. Here, we report that short-term GA treatment improves cardiac function and reduces scar area in a mouse model of acute myocardial infarction and a rat model of ischemic HF. We provide mechanistic evidence indicating that, in addition to its immunomodulatory functions, GA exerts beneficial pleiotropic effects, including cardiomyocyte protection and enhanced angiogenesis. Overall, these findings highlight the potential repurposing of GA as a future therapy for a myriad of heart diseases.
Collapse
Affiliation(s)
- Gal Aviel
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Elkahal
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir Baruch Umansky
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hanna Bueno-Levy
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zachary Petrover
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yulia Kotlovski
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Kain
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- Bioinformatics Unit, G-INCPM, Weizmann Institute of Science, Rehovot, Israel
| | - Lingling Zhang
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shoval Miyara
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P Kramer
- The Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yifat Merbl
- The Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Kozlovski
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Aharoni
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Mishali
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Uriel Katz
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dean Nachman
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Rabea Asleh
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Offer Amir
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eldad Tzahor
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Rachel Sarig
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Zhao Y, Yu Y, Wang S, Li J, Teng L. Small extracellular vesicles encapsulating lefty1 mRNA inhibit hepatic fibrosis. Asian J Pharm Sci 2022; 17:630-640. [PMID: 36382306 PMCID: PMC9640367 DOI: 10.1016/j.ajps.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/04/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022] Open
Abstract
Liver fibrosis is the deposition of extracellular matrix (ECM) in the liver caused by persistent chronic injury, which can lead to more serious diseases such as cirrhosis or cancer. Blocking the effect of transforming growth factor β1 (TGF-β1), one of the most important cytokines in liver fibrosis, may be one of the effective ways to inhibit liver fibrosis. As a kind of natural nano-scale vesicles, small extracellular vesicles (sEvs) have displayed excellent delivery vehicle properties. Herein, we prepared hepatic stellate cell (HSC)-derived sEvs loading left-right determination factor 1 (lefty1) mRNA (sEvLs) and we wanted to verify whether they can inhibit fibrosis by blocking the TGF-β1 signaling pathway. The results showed that sEvLs had effective cell uptake and reduced activation of HSCs. Rats that were injected with CCl4 by intraperitoneal injection for 6 weeks exhibited obvious symptoms of liver fibrosis and were treated with systemically administered sEvLs and free sEvs for 4 weeks. Rats injected with olive oil alone served as sham controls. Administration of sEvLs significantly reduced the area of fibrosis compared with free sEvs. We demonstrated that sEvLs inhibited HSCs activation and ECM production, and promote ECM degradation by downregulating α-smooth muscle actin (α-SMA), collagen I, tissue inhibitor of metalloproteinase (TIMP) -1 and upregulating matrix metalloprotease (MMP) -1. In summary, as an endogenous delivery vehicle, sEvs could deliver mRNA to attenuate hepatic fibrosis by blocking the TGF-β/Smad signaling pathway.
Collapse
|
3
|
Integrative omics analysis identifies macrophage migration inhibitory factor signaling pathways underlying human hepatic fibrogenesis and fibrosis. JOURNAL OF BIO-X RESEARCH 2019; 2:16-24. [PMID: 32953199 PMCID: PMC7500331 DOI: 10.1097/jbr.0000000000000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genetic basis underlying liver fibrosis remains largely unknown. We conducted a study to identify genetic alleles and underlying pathways associated with hepatic fibrogenesis and fibrosis at the genome-wide level in 121 human livers. By accepting a liberal significance level of P<1e-4, we identified 73 and 71 candidate loci respectively affecting the variability in alpha-smooth muscle actin (α-SMA) levels (fibrogenesis) and total collagen content (fibrosis). The top genetic loci associated with the two markers were BAZA1 and NOL10 for α-SMA expression and FAM46A for total collagen content (P<1e-6). We further investigated the relationship between the candidate loci and the nearby gene transcription levels (cis-expression quantitative trait loci) in the same liver samples. We found that 44 candidate loci for α-SMA expression and 44 for total collagen content were also associated with the transcription of the nearby genes (P<0.05). Pathway analyses of these genes indicated that macrophage migration inhibitory factor (MIF) related pathway is significantly associated with fibrogenesis and fibrosis, though different genes were enriched for each marker. The association between the single nucleotide polymorphisms, MIF and α-SMA showed that decreased MIF expression is correlated with increased α-SMA expression, suggesting that variations in MIF locus might affect the susceptibility of fibrogenesis through controlling MIF gene expression. In summary, our study identified candidate alleles and pathways underlying both fibrogenesis and fibrosis in human livers. Our bioinformatics analyses suggested MIF pathway as a strong candidate involved in liver fibrosis, thus further investigation for the role of the MIF pathway in liver fibrosis is warranted. The study was reviewed and approved by the Institutional Review Board (IRB) of Wayne State University (approval No. 201842) on May 17, 2018.
Collapse
|
4
|
Corey-Bloom J, Aikin AM, Gutierrez AM, Nadhem JS, Howell TL, Thomas EA. Beneficial effects of glatiramer acetate in Huntington's disease mouse models: Evidence for BDNF-elevating and immunomodulatory mechanisms. Brain Res 2017; 1673:102-110. [PMID: 28823953 DOI: 10.1016/j.brainres.2017.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 10/24/2022]
Abstract
Huntington's disease (HD) is a fatal, neurodegenerative movement disorder that has no cure and few treatment options. In these preclinical studies, we tested the effects of chronic treatment of glatiramer acetate (GA; Copaxone®), an FDA-approved drug used as first-line therapy for MS, in two different HD mouse models, and explored potential mechanisms of action of drug efficacy. Groups of CAG140 knock-in and N171-82Q transgenic mice were treated with GA for up to 1year of age (CAG140 knock-in mice) or 20weeks (N171-82Q mice). Various behavioral assays were measured over the course of drug treatment whereby GA treatment delayed the onset and reduced the severity of HD behavioral symptoms in both mouse models. The beneficial actions of GA were associated with elevated levels of promoter I- and IV-driven brain-derived neurotrophic factor (Bdnf) expression and reduced levels of cytokines, in particular, interleukins IL4 and IL12, in the brains of HD mice. In addition, the GA-induced effects on BDNF, IL4 and IL12 levels were detected in plasma from drug-treated mice and rats, suggesting utility as a peripheral biomarker of treatment effectiveness. These preclinical studies support the use of GA as a relevant clinical therapy for HD patients.
Collapse
Affiliation(s)
- Jody Corey-Bloom
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Alaina M Aikin
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley M Gutierrez
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Jwan S Nadhem
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Taylor L Howell
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Abstract
Liver fibrosis resulting from chronic liver injury are major causes of morbidity and mortality worldwide. Among causes of hepatic fibrosis, viral infection is most common (hepatitis B and C). In addition, obesity rates worldwide have accelerated the risk of liver injury due to nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Also liver fibrosis is associated with the consumption of alcohol, or autoimmune hepatitis and chronic cholangiophaties. The response of hepatocytes to inflammation plays a decisive role in the physiopathology of hepatic fibrosis, which involves the recruitment of both pro- and anti-inflammatory cells such as monocytes and macrophages. As well as the production of other cytokines and chemokines, which increase the stimulus of hepatic stellate cells by activating proinflammatory cells. The aim of this review is to identify the therapeutic options available for the treatment of the liver fibrosis, enabling the prevention of progression when is detected in time.
Collapse
Affiliation(s)
| | - Beatriz Barranco-Fragoso
- Department of Gastroenterology, National Medical Center "20 Noviembre", 03229 Mexico, DF, Mexico
| | | |
Collapse
|
6
|
CD4+CD25+Foxp3+ regulatory T cells contribute in liver fibrosis improvement with interferon alpha. Inflammation 2014; 36:1374-82. [PMID: 23813328 DOI: 10.1007/s10753-013-9677-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study is to investigate the optimal dose, treatment time, and possible immunologic mechanisms of interferon alpha (IFN-α) in the treatment of liver fibrosis. Mice were injected intraperitoneally with 10 % carbon tetrachloride to induce liver fibrosis, except in the normal control group. The experimental mice were randomly divided into four groups: physiological saline group, 20 U/gb wt IFN-α group, 40 U/gb wt IFN-α group, and 60 U/gb wt IFN-α group. After 3 and 6 weeks, type I collagen was detected in liver by hematoxylin and eosin (HE) stain, Masson's trichrome stain, and immunohistochemical staining. The number of CD8(+) T cells, the number of CD4(+)CD25(+)Foxp3(+) Tregs and the activation of CD4(+) T cells were detected in liver and spleen. Beneficial effects were observed in the 40 U/gb wt IFN-α group by pathological analysis. The number of CD8(+) T cells in the liver was significantly lower in mice receiving middle-dose IFN-α therapy as compared to mice receiving physiological saline (P < 0.05), while CD4(+)CD25(+)Foxp3(+) Tregs and activation of CD4(+) T cells in the liver were significantly higher in the therapeutic group than in the physiological saline group (P < 0.05). CD8(+) T cells (r = 0.3796) and activated CD4(+) T cells (r = 0.2437) were found to be positively correlated with the degree of liver fibrosis. CD4(+)CD25(+)Foxp3(+) Tregs (r = -0.7932) was found to be negatively correlated with the degree of liver fibrosis. IFN-α can inhibit liver fibrosis following 6 weeks of middle-dose IFN-α therapy by upregulating CD4(+)CD25(+)Foxp3(+) Tregs and suppressing CD8(+) T cells.
Collapse
|
7
|
Natural killer cell-dependent anti-fibrotic pathway in liver injury via Toll-like receptor-9. PLoS One 2013; 8:e82571. [PMID: 24340043 PMCID: PMC3858328 DOI: 10.1371/journal.pone.0082571] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/24/2013] [Indexed: 01/07/2023] Open
Abstract
The toll-like receptor-9 (TLR9) agonist cytosine phosphate guanine (CpG), activates hepatic stellate cells (HSCs) and mediates fibrosis. We investigated the TLR9 effects on lymphocyte/HSCs interactions. Liver fibrosis was induced in wild-type (WT) mice by intra-peritoneal carbon-tetrachloride (CCl4) induction for 6 weeks. Fibrotic groups were intravenously treated by a vehicle versus CpG along last 2 weeks. Compared to vehicle-treated fibrotic WT, the in-vivo CpG-treatment significantly attenuated hepatic fibrosis and inflammation, associated with decreased CD8 and increased NK liver cells. In-vitro, co-cultures with vehicle-treated fibrotic NK cells increased HSCs proliferation (P<0.001) while their CpG-treated counterparts achieved a significant decrease. To investigate the role of lymphocytes, TLR9-/- mice induced-hepatic fibrosis were used. Although TLR9-/- mice manifested lower fibrotic profile as compared to their wild-type (WT) counterparts, senescence (SA-β-Gal activity) in the liver and ALT serum levels were significantly greater. In an adoptive transfer model; irradiated WT and TLR9-/- recipients were reconstituted with naïve WT or TLR9-/- lymphocytes. The adoptive transfer of TLR9-/- versus WT lymphocytes led to increased fibrosis of WT recipients. TLR9-/- fibrotic recipients reconstituted with TLR9-/- or WT lymphocytes showed no changes in hepatic fibrosis severity or ALT serum levels. TLR9 activation had inconsistent effects on lymphocytes and HSCs. The net balance of TLR9 activation in WT, displayed significant anti-fibrotic activity, accompanied by CD8 suppression and increased NK-cells, activity and adherence to HSCs. The pro-fibrotic and pro-inflammatory properties of TLR9-/- lymphocytes fail to activate HSCs with an early senescence in TLR9-/- mice.
Collapse
|
8
|
CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8+ T cells aid progression of environment-linked nonalcoholic steatohepatitis. Toxicol Appl Pharmacol 2013; 274:42-54. [PMID: 24211274 DOI: 10.1016/j.taap.2013.10.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
Abstract
Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radical formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8+CD57+ cytotoxic T cells but not CD4+CD57+ cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1β, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8+CD57+ T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH.
Collapse
|
9
|
Abstract
Although the etiology of multiple sclerosis (MS) is not known, the consensus is that Th1 cells sensitized to myelin proteins in the periphery are recruited into the CNS and damage the myelin sheath. Natural killers (NK) are cells that spontaneously lyse tumor target cells and have immunoregulatory activity secreting multiple cytokines and chemokines, as well as interacting with cells of innate and adaptive immune systems. A great discovery in the field is the cloning of several inhibitory and activating receptors. Another important contribution is the discovery that these cells express many seven-transmembrane-spanning domain receptors which aid them in extravasations into injured tissues. Despite all this progress, the role of NK cells in autoimmune diseases including MS is still not quite clear. In this paper, I will summarize recent findings related to the effects of these cells in both MS and the animal model of experimental autoimmune encephalomyelitis (EAE). Hence, I will discuss the effects of drugs used to treat MS/EAE and then explain their effects on NK cells. These include anti-CD25 or daclizumab, interferon-β (IFN-β), natalizumab, glatiramer acetate (GA), and fingolimod (FTY720). Finally, I will explain the contribution of the recently discovered NK17/NK1 cells in MS disease.
Collapse
Affiliation(s)
- A. A. Maghazachi
- Department of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, POB 1103, 0317 Oslo, Norway
| |
Collapse
|
10
|
Sela Y, Freiman M, Dery E, Edrei Y, Safadi R, Pappo O, Joskowicz L, Abramovitch R. fMRI-Based Hierarchical SVM Model for the Classification and Grading of Liver Fibrosis. IEEE Trans Biomed Eng 2011; 58:2574-81. [DOI: 10.1109/tbme.2011.2159501] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Allina J, Grabowski J, Doherty-Lyons S, Fiel MI, Jackson CE, Zelikoff JT, Odin JA. Maternal allergy acts synergistically with cigarette smoke exposure during pregnancy to induce hepatic fibrosis in adult male offspring. J Immunotoxicol 2011; 8:258-64. [PMID: 21718087 DOI: 10.3109/1547691x.2011.589412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Maternal environmental exposures during pregnancy are known to affect disease onset in adult offspring. For example, maternal asthma exacerbations during pregnancy can worsen adult asthma in the offspring. Cigarette smoking during pregnancy is associated with future onset of cardiovascular disease, obesity and diabetes. However, little is known about the effect of maternal environmental exposures on offspring susceptibility to liver disease. This pilot study examined the long-term effect of maternal allergen challenge and/or cigarette smoking during pregnancy on hepatic inflammation and fibrosis in adult mouse offspring. Ovalbumin (OVA) or phosphate-buffered saline (PBS)-sensitized/challenged CD-1 dams were exposed to mainstream cigarette smoke (MCS) or filtered air from gestational day 4 until parturition. Eight weeks postnatally, offspring were sacrificed for comparison of hepatic histology and mRNA expression. Adult male offspring of OVA-sensitized/challenged dams exposed to MCS (OSM) displayed significantly increased liver fibrosis (9.2% collagen content vs. <4% for all other treatment groups). These mice also had 1.8-fold greater collagen 1A1 mRNA levels. From the results here, we concluded that maternal allergen challenge in combination with cigarette smoke exposure during pregnancy may be an important risk factor for liver disease in adult male offspring.
Collapse
Affiliation(s)
- Jorge Allina
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Improved muscle strength and mobility in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy treated with Glatiramer acetate. Neuromuscul Disord 2010; 20:267-72. [PMID: 20304648 DOI: 10.1016/j.nmd.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 01/01/2023]
Abstract
The therapeutic effect of Glatiramer acetate, an immune modulating agent, was evaluated in the dy(2J)/dy(2J) mouse with merosin deficient congenital muscular dystrophy, which is a milder variant of the dy/dy mouse. The treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter and in motor performance quantified by video detection software. Glatiramer acetate treatment was associated with significantly increased expression of regeneration transcription factors MyoD and myogenin, and attenuation of the fibrosis markers vimentin and fibronectin. No effective treatment is currently available in congenital muscular dystrophy and Glatiramer acetate may present a new potential treatment for this disorder.
Collapse
|
13
|
Tan HH, Fiel MI, Sun Q, Guo J, Gordon RE, Chen LC, Friedman SL, Odin JA, Allina J. Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J Immunotoxicol 2010. [PMID: 19908945 DOI: 10.3109/15476910903241704] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Owing to increased obesity, non-alcoholic fatty liver disease (NAFLD) is now the most prevalent liver disease in the United States. NAFLD is considered a component of metabolic syndrome, a cluster of disorders that also includes diabetes mellitus, dyslipidemia, arteriosclerosis, and hypertension. Exposure to ambient air particulate matter with aerodynamic diameters < 2.5 microm (PM(2.5)) is a risk factor for arteriosclerosis and lung disease, but its effect on NAFLD is unknown. PM(2.5) induces pulmonary dysfunction via Toll-like receptor (TLR) activation on alveolar macrophages. TLR activation of Kupffer cells, resident hepatic macrophages, and subsequent pro-inflammatory cytokine production have been shown to play a key role in NAFLD progression. We hypothesized that PM(2.5) exposure is a significant risk factor for the progression of NAFLD. Thus, following exposure of male C57BL/6 mice fed high fat chow (HFC) to concentrated air particulate matter (CAPs) or filtered air for 6 weeks, progression of NAFLD was evaluated by standardized histological assessment of hepatic inflammation and fibrosis. In mice fed HFC, the hepatic inflammatory grade (3.00 +/- 0.00 vs. 1.50 +/- 0.71, P < 0.001) and fibrosis stage (1.00 +/- 0.00 vs. 0.60 +/- 0.52, P = 0.023) were both significantly higher in mice exposed to CAPs versus filtered air, respectively. Increased numbers of Kupffer cells contained PM in CAPs-exposed mice scores of (2.00 +/- 0.94 vs. 0.20 +/- 0.42, respectively, P < 0.001). PM exposure increased IL-6 secretion up to seven-fold in a dose-dependent manner by isolated wild-type but not TLR4(-/-) Kupffer cells (P < 0.050). In conclusion, ambient PM(2.5) exposure may be a significant risk factor for NAFLD progression.
Collapse
Affiliation(s)
- Hui-Hui Tan
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tan HH, Fiel MI, Sun Q, Guo J, Gordon RE, Chen LC, Friedman SL, Odin JA, Allina J. Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J Immunotoxicol 2010; 6:266-75. [PMID: 19908945 DOI: 10.1080/15476910903241704] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Owing to increased obesity, non-alcoholic fatty liver disease (NAFLD) is now the most prevalent liver disease in the United States. NAFLD is considered a component of metabolic syndrome, a cluster of disorders that also includes diabetes mellitus, dyslipidemia, arteriosclerosis, and hypertension. Exposure to ambient air particulate matter with aerodynamic diameters < 2.5 microm (PM(2.5)) is a risk factor for arteriosclerosis and lung disease, but its effect on NAFLD is unknown. PM(2.5) induces pulmonary dysfunction via Toll-like receptor (TLR) activation on alveolar macrophages. TLR activation of Kupffer cells, resident hepatic macrophages, and subsequent pro-inflammatory cytokine production have been shown to play a key role in NAFLD progression. We hypothesized that PM(2.5) exposure is a significant risk factor for the progression of NAFLD. Thus, following exposure of male C57BL/6 mice fed high fat chow (HFC) to concentrated air particulate matter (CAPs) or filtered air for 6 weeks, progression of NAFLD was evaluated by standardized histological assessment of hepatic inflammation and fibrosis. In mice fed HFC, the hepatic inflammatory grade (3.00 +/- 0.00 vs. 1.50 +/- 0.71, P < 0.001) and fibrosis stage (1.00 +/- 0.00 vs. 0.60 +/- 0.52, P = 0.023) were both significantly higher in mice exposed to CAPs versus filtered air, respectively. Increased numbers of Kupffer cells contained PM in CAPs-exposed mice scores of (2.00 +/- 0.94 vs. 0.20 +/- 0.42, respectively, P < 0.001). PM exposure increased IL-6 secretion up to seven-fold in a dose-dependent manner by isolated wild-type but not TLR4(-/-) Kupffer cells (P < 0.050). In conclusion, ambient PM(2.5) exposure may be a significant risk factor for NAFLD progression.
Collapse
Affiliation(s)
- Hui-Hui Tan
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The immunology of fibrosis: innate and adaptive responses. Trends Immunol 2010; 31:110-9. [PMID: 20106721 DOI: 10.1016/j.it.2009.12.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 12/22/2022]
Abstract
Fibrosis is an important health problem, and its pathogenetic principles are still largely unknown. It can develop either spontaneously, or, more frequently, as a consequence of various underlying diseases. Irrespective of the primary cause, however, fibrotic tissue is always infiltrated by mononuclear immune cells. In most instances the reason for the attraction of these cells to fibrotic tissue and their proliferation remains to be determined; however their cytokine profile shows clear-cut proinflammatory and profibrotic characteristics. In this review, we discuss the innate and adaptive immune reactions associated with the development of fibrosis and the molecular basis of the profibrotic mechanisms taking place in systemic sclerosis (scleroderma), arteriosclerosis and peri-silicone mammary implant fibrosis.
Collapse
|
16
|
Ginsburg I, Koren E, Horani A, Mahamid M, Doron S, Muhanna N, Amer J, Safadi R. Amelioration of hepatic fibrosis via Padma Hepaten is associated with altered natural killer T lymphocytes. Clin Exp Immunol 2009; 157:155-64. [PMID: 19659781 DOI: 10.1111/j.1365-2249.2009.03936.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is the end-stage consequence of chronic liver disease, affecting many people worldwide. Unlike the anti-fibrotic effect of natural killer (NK) cells, CD8 and NK T subsets are considered as profibrogenic subsets. Padma Hepaten is a multi-compound herbal preparation derived from Tibetan medicine and has proven efficacy in some clinical trials and tests at the cellular level. In this study, we evaluate the immune efficacy of Padma Hepaten administered intraperitoneally (i.p.) and/or orally in a mice model of hepatic fibrosis. Hepatic fibrosis was induced by 6 weeks of biweekly i.p. carbon tetrachloride (CCl4) injections in male C57Bl6 mice. There were four groups, including naive mice, non-treated fibrotic mice and fibrotic mice treated by Padma Hepaten at weeks 5-6 of fibrosis induction either orally or by i.p. injections. Padma Hepaten was prepared at 10 mg/ml in saline and 250 microl (2.5 mg) were administered four times per week. After week 6, animals were killed. To isolate a Padma Hepaten-associated effect on lymphocytes, splenocytes were harvested from either naive or Padma Hepaten-treated non-fibrotic donors. Isolated splenocytes were therefore reconstituted into two groups of irradiated recipients. Recipients were then administered the same CCl4 regimen. Hepatic fibrosis was determined by sirius red staining of liver sections and by assessment of alpha smooth muscle actin expression compared with beta-actin (both by mRNA as well as the protein liver extract western blotting). Hepatic fibrosis and alanine aminotransferase serum levels were decreased significantly in both Padma Hepaten-treated groups compared with the non-treated fibrotic group. Padma Hepaten treatment was associated with attenuation of lymphocyte subsets in both treated groups. Using a chemiluminescence technique to assess total anti-oxidant capacities (TAC), it was found that both the plasmas and livers of mice treated by CCl4 had significantly higher TAC compared with controls. However, the levels of TAC in animals treated either by CCl4 alone or CCl4 with Padma Hepaten were similar. Adoptive transfer of Padma Hepaten-treated lymphocytes was associated with fibrosis amelioration compared with recipients with naive lymphocytes. CCl4 generates higher levels of anti-oxidant capacities, probably as a response to oxidative stress. Padma Hepaten administration attenuated hepatic fibrogenesis significantly, accompanied by attenuation of lymphocyte but not anti-oxidant capacities.
Collapse
Affiliation(s)
- I Ginsburg
- Institute of Dental Research, Faculty of Dental Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang X, Yang J, Li J. Sensitization of human hepatic stellate cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by leflunomide. Biol Pharm Bull 2009; 32:963-7. [PMID: 19483299 DOI: 10.1248/bpb.32.963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the resolution phase of hepatic fibrosis, a crucial mechanism is the apoptosis of activated hepatic stellate cells (HSCs). It is necessary to find more anti-fibrosis drugs that would modulate HSCs to be more susceptible to apoptotic stimuli. Here we showed that A771726, the active metabolite of leflunomide, markedly enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in the human hepatic stellate cell line LX-2. A771726 could increase caspase activity in LX-2 cells in a dose-dependent manner. A771726 did not increase the expression of TRAIL receptors in LX-2 cells but could inhibit activation of the c-Jun NH2-terminal kinase (JNK) pathway through decreasing TRAIL-induced JNK and c-Jun phosphorylation. Moreover, A771726 could accelerate TRAIL-induced apoptosis via inhibiting nuclear factor-kappaB (NF-kappaB) activation in LX-2 cells. In conclusion, our results indicated leflunomide could enhance the sensitivity of LX-2 cells to TRAIL-induced apoptosis via inhibiting the survival pathways and provided a promising approach to anti-fibrotic therapy with leflunomide.
Collapse
Affiliation(s)
- Xiaoming Tang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | | | | |
Collapse
|
18
|
Mononuclear cells in liver fibrosis. Semin Immunopathol 2009; 31:345-58. [PMID: 19533130 DOI: 10.1007/s00281-009-0169-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 02/07/2023]
Abstract
Fibrosis is a multicellular wound healing process, where myofibroblasts that express extracellular matrix components extensively cross-talk with other cells resident in the liver or recruited from the bloodstream. Macrophages and infiltrating monocytes participate in the development of fibrosis via several mechanisms, including secretion of cytokines and generation of oxidative stress-related products. However, macrophages are also pivotal in the process of fibrosis resolution, where they contribute to matrix degradation. T lymphocytes modulate the fibrogenic process by direct interaction with myofibroblasts and secreting cytokines. In general, Th2 polarized responses promote fibrosis, while Th1 cytokines may be antifibrogenic. NK cells limit the development of fibrosis and favor its resolution, at least in part via killing of fibrogenic cells. The possible role of NKT cells and B cells is emerging in recent studies. Thus, mononuclear cells represent a critical regulatory system during fibrogenesis and may become an appealing target for therapy.
Collapse
|
19
|
Cui G, Zhang Y, Gong Z, Zhang JZ, Zang YQ. Induction of CD4+CD25+Foxp3+ regulatory T cell response by glatiramer acetate in type 1 diabetes. Cell Res 2009; 19:574-83. [DOI: 10.1038/cr.2009.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
20
|
Gieling RG, Burt AD, Mann DA. Fibrosis and cirrhosis reversibility - molecular mechanisms. Clin Liver Dis 2008; 12:915-37, xi. [PMID: 18984474 DOI: 10.1016/j.cld.2008.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The concept that liver fibrosis is a dynamic process with potential for regression as well as progression has emerged in parallel with clinical evidence for remodeling of fibrotic extracellular matrix in patients who can be effectively treated for their underlying cause of liver disease. This article reviews recent discoveries relating to the cellular and molecular mechanisms that regulate fibrosis regression, with emphasis on studies that have used experimental in vivo models of liver disease. Apoptosis of hepatic myofibroblasts is discussed. The functions played by transcription factors, receptor-ligand interactions, and cell-matrix interactions as regulators of the lifespan of hepatic myofibroblasts are considered, as are the therapeutic opportunities for modulating these functions. Growth factors, proteolytic enzymes, and their inhibitors are discussed in detail.
Collapse
Affiliation(s)
- Roben G Gieling
- Liver Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
21
|
Notas G, Kisseleva T, Brenner D. NK and NKT cells in liver injury and fibrosis. Clin Immunol 2008; 130:16-26. [PMID: 18823822 DOI: 10.1016/j.clim.2008.08.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 07/04/2008] [Indexed: 12/23/2022]
Abstract
The innate immune mechanisms of the liver represent an important first line of defense against bacterial products, toxins, and food antigens coming from the intestine. Natural Killer (NK) and Natural Killer T cells (NKT) are components of the innate immune system with increased presence in the liver compared to other organs and have been reported to participate in the inflammatory processes during hepatic diseases. However significant confusion has been noted in this field mainly due to changes in the characterization of these cells as new knowledge accumulates and due to differences in the approaches used for their study. Both cell types can mediate hepatic injury in several models but studies in human liver diseases have not managed to fully explain their functions. However accumulating evidence supports an antifibrotic role of NK cells mainly via an inhibitory effect on hepatic stellate cells by inducing apoptosis and via production of interferon-gamma. Therefore, downregulation of NK cells during most types of liver injury may facilitate liver fibrosis. Data about the role of NKT cells in liver fibrosis are limited. This review will summarize the studies about the role of NK and NKT cells in liver diseases with a special interest in hepatic injury and liver fibrosis.
Collapse
Affiliation(s)
- George Notas
- Department of Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive #0702, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
22
|
Zhao XY, Wang BE, Li XM, Wang TL. Newly proposed fibrosis staging criterion for assessing carbon tetrachloride- and albumin complex-induced liver fibrosis in rodents. Pathol Int 2008; 58:580-8. [DOI: 10.1111/j.1440-1827.2008.02274.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Safadi R, Zigmond E, Pappo O, Shalev Z, Ilan Y. Amelioration of hepatic fibrosis via beta-glucosylceramide-mediated immune modulation is associated with altered CD8 and NKT lymphocyte distribution. Int Immunol 2007; 19:1021-9. [PMID: 17698563 DOI: 10.1093/intimm/dxm069] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND While CD8 lymphocytes possess pro-fibrogenic properties and NK (non-T) cells are anti-fibrogenic, the role of NKT lymphocytes in liver fibrosis is still unclear. Beta-glucosylceramide (GC), a naturally occurring glycolipid, exerts modulatory effects on these cells. AIM To explore the role of NKT cells in hepatic fibrosis via GC. METHODS Hepatic fibrosis was induced by biweekly intra-peritoneal (IP) carbon tetrachloride (CCl(4)) administrations for 7 weeks in 5 groups (A-E) of male C57Bl/6 mice. Mice were treated with daily IP GC injections in groups A and C, or daily oral doses in groups B and D. GC was administered either for the duration of the study period (in groups A and B), or for the last 3 weeks of CCl(4) induction (groups C and D). GC-treated mice were compared with non-treated fibrotic controls (group E) and naive rodents (group F). Liver fibrosis, injury parameters and FACS analysis of lymphocytes were assessed. RESULTS Marked amelioration (P < 0.0001) of hepatic fibrosis observed in all GC-treated mice without altering reactive oxygen species production. As determined by Sirius red-stained liver tissue sections and measured by Bioquant morphometry; all CCl(4)-administered groups significantly (P < 0.0001) increased the relative fibrosis area compared with naive animals. The increases were 14.4 +/- 1.03-fold in group A, 7.9 +/- 0.37-fold in group B, 5.2 +/- 0.2-fold in group C, 10.3 +/- 0.4-fold in group D and 23.8 +/- 1.9-fold in group E. Western blot analysis for alpha smooth muscle actin from liver extracts followed a similar pattern, increasing in groups A-E. A significant decrease in liver damage was observed in all GC-treated groups, as noted by a decrease in transaminase serum levels (P < 0.005). The beneficial effect of GC was associated with a significant decrease in the intra-hepatic NKT and CD8 lymphocytes as well as their attenuation of both T(h)1 and T(h)2 cytokines. CONCLUSIONS Administration of GC had a significant anti-fibrotic effect following CCl(4) administration. This effect was associated with an altered NKT and CD8 lymphocyte distribution and a cytokine shift. Immune modulation using GC may have a role in the treatment of fibrosis and other immune-mediated disorders.
Collapse
Affiliation(s)
- Rifaat Safadi
- Liver Unit, Department of Medicine, Haassah Medical Center, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
24
|
Teixeira R, Marcos LA, Friedman SL. Immunopathogenesis of hepatitis C virus infection and hepatic fibrosis: New insights into antifibrotic therapy in chronic hepatitis C. Hepatol Res 2007; 37:579-95. [PMID: 17517074 DOI: 10.1111/j.1872-034x.2007.00085.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fibrosis and cirrhosis represent the consequences of a sustained wound-healing response to chronic liver injury of any cause. Chronic hepatitis C virus (HCV) has emerged as a leading cause of cirrhosis in the USA and throughout the world. HCV may induce fibrogenesis directly by hepatic stellate cell activation or indirectly by promoting oxidative stress and apoptosis of infected cells. The ultimate result of chronic HCV injury is the accumulation of extracellular matrix with high density type I collagen within the subendothelial space of Disse, culminating in cirrhosis with hepatocellular dysfunction. The treatment of hepatitis C with the combination of pegylated interferon and ribavirin is still both problematic and costly, has suboptimal efficacy, serious side effects and a high level of intolerance, and is contraindicated in many patients. Hence, new approaches have assumed greater importance, for which there is an urgent need. The sustained progress in understanding the pathophysiology of hepatic fibrosis in the past two decades has increased the possibility of developing drugs specifically targeting the fibrogenic process. Future efforts should identify genetic markers associated with fibrosis risk in order to tailor the treatment of HCV infection based on genetically regulated pathways of injury and/or fibrosis. Such advances will expand the arsenal to overcome liver fibrosis, particularly in patients with hepatic diseases who have limited treatment options, such as those patients with chronic hepatitis C who have a high risk of fibrosis progression and recurrent HCV disease after liver transplantation.
Collapse
Affiliation(s)
- Rosângela Teixeira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|