1
|
Wang T, Qiao W, Xie Y, Ma J, Hu W, Yang L, Li X, Duan C, Wu S, Wang Y, Cheng K, Zhang Y, Zhuang R. CD226 deficiency exacerbated intestinal immune dysregulation in mice with dinitrochlorobenzene-induced atopic dermatitis. Immunology 2023. [PMID: 36938934 DOI: 10.1111/imm.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 03/21/2023] Open
Abstract
Intestinal mucosal immunity plays a pivotal role in host defence. In this study, we found that cluster of differentiation 226 (CD226) gene knockout (KO) led to more severe atopic dermatitis (AD)-related skin pathologies and bowel abnormalities in a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like mouse model. Following DNCB administration, the expression of CD226 was elevated in intestinal mucosal tissues, including group 3 innate lymphoid cells (ILC3s) and CD4+ T cells of Peyer's patches (PPs). CD226 deficiency led to an overactive intestinal immune response in the AD-like mice, as evidenced by increased inflammation and Th1/Th2-related cytokine levels as well as increased Paneth cell numbers and antimicrobial peptide (AMP) expression, which was likely due to the higher interleukin (IL)-22 production in the lamina propria. Additionally, CD226 deficiency increased the production of IL-4 and IL-17 in mesenteric lymph nodes as well as the number of PPs and expression of immunoglobulin (Ig) A in B cells. Moreover, insufficient expression of CD226 affected the characterization of intraepithelial and lamina propria lymphocytes in the intestinal mucosa. Finally, the number of PPs was increased in CD4+ T cell-specific CD226 KO and regulatory T (Treg) cell-specific CD226 KO mice; thus, loss of CD226 in Treg cells resulted in impaired Treg cell-suppressive function. Therefore, our findings indicate that CD226 deficiency alters intestinal immune functionality in inflammatory diseases.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Qiao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang Xie
- Department of Otolaryngological, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Hu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Sakai H, Kobayashi N, Kure T, Okuda C. Translational research of hemoglobin vesicles as a transfusion alternative. Curr Med Chem 2021; 29:591-606. [PMID: 33845721 DOI: 10.2174/0929867328666210412130035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
Clinical situations arise in which blood for transfusion becomes scarce or unavailable. Considerable demand for a transfusion alternative persists because of various difficulties posed by blood donation and transfusion systems. Hemoglobin-vesicles (HbV) are artificial oxygen carriers being developed for use as a transfusion alternative. Just as biomembranes of red blood cells (RBCs) do, phospholipid vesicles (liposomes) for Hb encapsulation can protect the human body from toxic effects of molecular Hb. The main HbV component, Hb, is obtained from discarded human donated blood. Therefore, HbV can be categorized as a biologic agent targeting oxygen for peripheral tissues. The purification procedure strictly eliminates the possibility of viral contamination. It also removes all concomitant unstable enzymes present in RBC for utmost safety from infection. The deoxygenated HbVs, which are storable for over years at ambient temperature, can function as an alternative to blood transfusion for resuscitation from hemorrhagic shock and O2 therapeutics. Moreover, a recent study clarified beneficial effects for anti-oxidation and anti-inflammation by carbon monoxide (CO)-bound HbVs. Autoxidation of HbV (HbO2 → metHb + O2-.) is unavoidable after intravenous administration. Co-injection of methylene blue can extract the intraerythrocytic glycolytic electron energy effectively and reduce metHb. Other phenothiazine dyes can also function as electron mediators to improve the functional life span of HbV. This review paper summarizes recent progress of the research and development of HbV, aimed at clinical applications.
Collapse
Affiliation(s)
- Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Naoko Kobayashi
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Chie Okuda
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| |
Collapse
|
3
|
Yin M, Li ZH, Wang C, Li Y, Zhang H, Du HB, Zhao ZA, Niu CY, Zhao ZG. Stellate Ganglion Blockade repairs Intestinal Mucosal Barrier through suppression of Endoplasmic Reticulum Stress following Hemorrhagic Shock. Int J Med Sci 2020; 17:2147-2154. [PMID: 32922175 PMCID: PMC7484657 DOI: 10.7150/ijms.47662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Hemorrhagic shock-induced ischemia and hypoxia elicit endoplasmic reticulum stress (ERS) that leads to cell apoptosis, tissue structural damage and organ dysfunction and failure. Stellate ganglion blockade (SGB) has been demonstrated to improve intestinal barrier dysfunction induced by hemorrhagic shock. The present study sought to investigate whether the beneficial effect of SGB on the intestinal mucosal barrier function is via suppression of ERS. Materials and methods: A conscious rat model of hemorrhagic shock (40 ±2 mmHg for 1 hour, followed by resuscitation) was established. The parameters reflecting intestinal morphology and intestinal mucosal barrier function including wet-dry ratio (W/D), intestinal permeability, D-lactic acid (D-LA) and intestinal fatty acid binding protein (I-FABP) in plasma, and expressions of ATF6α, PERK, and IRE1α in intestinal tissues were then observed. Furthermore, the effects of either SGB or ERS inhibitor, 4-phenylbutyric acid (4-PBA), on these parameters in rats with hemorrhagic shock were assessed. The effect of ERS agonist tunicamycin (TM) on the rats subjected with both SGB and hemorrhagic shock was also determined. Results: Either SGB or administration of ERS inhibitor, 4-PBA, alleviated hemorrhagic shock-induced adverse effects such as intestinal mucosal barrier dysfunction and excessive autophagy, which were characterized by damaged intestinal tissue, enhanced intestinal permeability and D-LA and I-FABP levels in plasma, and increased expressions of ATF6α, PERK, IRE1α in intestinal tissue. In contrast, administration of ERS agonist, TM, suppressed the beneficial effects of SGB on intestinal tissue and function during hemorrhagic shock. Conclusion: The SGB repairs intestinal mucosal barrier through suppression of ERS following hemorrhagic shock.
Collapse
Affiliation(s)
- Meng Yin
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China
| | - Zhong-Hua Li
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China
| | - Chen Wang
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China
| | - Ying Li
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China
| | - Chun-Yu Niu
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China.,Hebei Medical University, Shijiazhuang, PR China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou, PR China
| |
Collapse
|
4
|
Zhao Y, Zhang L, Han R, Si Y, Zhao Z. Intravenous injection of post-hemorrhagic shock mesenteric lymph induces multiple organ injury in rats. Exp Ther Med 2018; 17:1449-1455. [PMID: 30680027 DOI: 10.3892/etm.2018.7048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
Post-hemorrhagic shock mesenteric lymph (PHSML) has an important role in the multiple organ injuries caused by severe shock. The current study investigated whether intravenous injection of PHSML induces organ injury in normal rats. Following the establishment of hemorrhagic shock in donor rats (40±2 mmHg, 3 h), PHSML was drained during hypotension at 1-3 h and then injected to normal rats through the femoral vein within 30 min. The mean arterial pressure (MAP) was measured, and samples were obtained for analysis of histology and biochemical indices at 2.5 h post-PHSML administration. PHSML administration resulted in a significant decrease in MAP at the early and late stage of the experiment. Structural damage of the lung, kidney, heart and liver was also observed, and the levels of urea, creatinine, aspartate aminotransferase, total bile acid and creatine kinase MB isoenzyme were increased in the plasma. Additionally, PHSML injection significantly increased the levels of trypsin, tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 and receptor of advanced glycation end-products in the plasma, malondialdehyde in the lung and myocardium, and TNF-α in the lung, kidney, myocardium and liver. Intravenous injection of PHSML induced multiple organ injury in normal rats via increases in trypsin activity, inflammatory factors and free radical production. The findings indicate that PHSML return is an important contributor to organ damage following hemorrhagic shock.
Collapse
Affiliation(s)
- Yifeng Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China.,Department of Oncological Surgery, The Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Limin Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Rui Han
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yonghua Si
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China.,Department of Pediatrics, Cangzhou City People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zigang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
5
|
Yadav VR, Rao G, Houson H, Hedrick A, Awasthi S, Roberts PR, Awasthi V. Nanovesicular liposome-encapsulated hemoglobin (LEH) prevents multi-organ injuries in a rat model of hemorrhagic shock. Eur J Pharm Sci 2016; 93:97-106. [PMID: 27503458 DOI: 10.1016/j.ejps.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
The goals of resuscitation in hemorrhagic shock are to correct oxygen deficit and to maintain perfusion pressure to the vital organs. We created liposome-encapsulated hemoglobin (LEH) as a nanoparticulate oxygen carrier (216±2nm) containing 7.2g/dl hemoglobin, and examined its ability to prevent the systemic manifestations of hemorrhagic shock (45% blood loss) in a rat model. We collected plasma after 6h of shock and LEH resuscitation, and determined the circulating biomarkers of systemic inflammation and functions of liver, gut, heart, and kidney. As is typical of the shock pathology, a significant increase in the plasma levels of cardiac troponin, liver function enzymes, soluble CD163 (macrophage activation), and creatinine, and the liver/gut myeloperoxidase activity was observed in the hemorrhaged rats. The plasma levels of TNF-α, IL-6, IL-1α, CINC-1, and IL-22 also increased after hemorrhagic shock. LEH administration prevented the hemorrhagic shock-induced accumulation of the markers of injury to the critical organs and pro-inflammatory cytokines. LEH also decreased the plasma levels of stress hormone corticosterone in hemorrhaged rats. Although saline also reduced the circulating corticosterone and a few other tissue injury markers, it was not as effective as LEH in restraining the plasma levels of creatinine, alanine transaminase, CD163, TNF-α, IL-6, and IL-1α. These results indicate that resuscitation with nanoparticulate LEH creates a pro-survival phenotype in hemorrhaged rats, and because of its oxygen-carrying capacity, LEH performs significantly better than saline in hemorrhagic shock.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Geeta Rao
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Hailey Houson
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Andria Hedrick
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| | - Pamela R Roberts
- Department of Anesthesiology, University of Oklahoma Health Science Center, 750 N.E. 13th St., Oklahoma City, OK 73104, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA.
| |
Collapse
|