1
|
Gomez-Frittelli J, Devienne G, Travis L, Kyloh MA, Duan X, Hibberd TJ, Spencer NJ, Huguenard JR, Kaltschmidt JA. Synaptic cell adhesion molecule Cdh6 identifies a class of sensory neurons with novel functions in colonic motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606748. [PMID: 39149241 PMCID: PMC11326146 DOI: 10.1101/2024.08.06.606748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here we investigated synaptic cell adhesion molecules as novel cell type markers in the ENS. Our work identifies two Type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and I H current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current I H disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons, and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.
Collapse
Affiliation(s)
- Julieta Gomez-Frittelli
- Department of Chemical Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Gabrielle Devienne
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Melinda A Kyloh
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco; San Francisco, CA, USA
| | - Tim J Hibberd
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University; Adelaide, Australia
| | - John R Huguenard
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Julia A Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
2
|
Blaeser AS, Zhao J, Sugden AU, Carneiro-Nascimento S, Andermann ML, Levy D. Sensitization of meningeal afferents to locomotion-related meningeal deformations in a migraine model. eLife 2024; 12:RP91871. [PMID: 38329894 PMCID: PMC10942541 DOI: 10.7554/elife.91871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Migraine headache is hypothesized to involve the activation and sensitization of trigeminal sensory afferents that innervate the cranial meninges. To better understand migraine pathophysiology and improve clinical translation, we used two-photon calcium imaging via a closed cranial window in awake mice to investigate changes in the responses of meningeal afferent fibers using a preclinical model of migraine involving cortical spreading depolarization (CSD). A single CSD episode caused a seconds-long wave of calcium activation that propagated across afferents and along the length of individual afferents. Surprisingly, unlike previous studies in anesthetized animals with exposed meninges, only a very small afferent population was persistently activated in our awake mouse preparation, questioning the relevance of this neuronal response to the onset of migraine pain. In contrast, we identified a larger subset of meningeal afferents that developed augmented responses to acute three-dimensional meningeal deformations that occur in response to locomotion bouts. We observed increased responsiveness in a subset of afferents that were already somewhat sensitive to meningeal deformation before CSD. Furthermore, another subset of previously insensitive afferents also became sensitive to meningeal deformation following CSD. Our data provides new insights into the mechanisms underlying migraine, including the emergence of enhanced meningeal afferent responses to movement-related meningeal deformations as a potential neural substrate underlying the worsening of migraine headache during physical activity.
Collapse
Affiliation(s)
- Andrew S Blaeser
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Simone Carneiro-Nascimento
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
3
|
Blaeser AS, Zhao J, Sugden AU, Carneiro-Nascimento S, Andermann ML, Levy D. Sensitization of meningeal afferents to locomotion-related meningeal deformations in a migraine model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.549838. [PMID: 37577675 PMCID: PMC10418100 DOI: 10.1101/2023.07.31.549838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Migraine headache is hypothesized to involve the activation and sensitization of trigeminal sensory afferents that innervate the cranial meninges. To better understand migraine pathophysiology and improve clinical translation, we used two-photon calcium imaging via a closed cranial window in awake mice to investigate changes in the responses of meningeal afferent fibers using a preclinical model of migraine involving cortical spreading depolarization (CSD). A single CSD episode caused a seconds-long wave of calcium activation that propagated across afferents and along the length of individual afferents. Surprisingly, unlike previous studies in anesthetized animals with exposed meninges, only a very small afferent population was persistently activated in our awake mouse preparation, questioning the relevance of this neuronal response to the onset of migraine pain. In contrast, we identified a larger subset of meningeal afferents that developed augmented responses to acute three-dimensional meningeal deformations that occur in response to locomotion bouts. We observed increased responsiveness in a subset of afferents that were already somewhat sensitive to meningeal deformation before CSD. Furthermore, another subset of previously insensitive afferents also became sensitive to meningeal deformation following CSD. Our data provides new insights into the mechanisms underlying migraine, including the emergence of enhanced meningeal afferent responses to movement-related meningeal deformations as a potential neural substrate underlying the worsening of migraine headache during physical activity.
Collapse
Affiliation(s)
- Andrew S Blaeser
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Simone Carneiro-Nascimento
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
4
|
Timmermans JP. The autonomic nervous system from a morphofunctional perspective: Historical overview and current concepts over the last two centuries highlighting contributions from Eastern Europe. Anat Rec (Hoboken) 2023; 306:2222-2229. [PMID: 36733228 DOI: 10.1002/ar.25169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
The present contribution comprises both an introductory comment and an overview of the contributions within this special issue on historical and current research on the autonomic nervous system from Eastern European colleagues, particularly focusing on the autonomic innervation of the gastrointestinal tract and of the cardiovascular system. It also gives a selected overview of interesting and seminal papers on these topics that appeared in The Anatomical Record since its foundation in 1906.
Collapse
Affiliation(s)
- Jean-Pierre Timmermans
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Bajnok A, Serény-Litvai T, Temesfői V, Nörenberg J, Herczeg R, Kaposi A, Berki T, Mezosi E. An Optimized Flow Cytometric Method to Demonstrate the Differentiation Stage-Dependent Ca 2+ Flux Responses of Peripheral Human B Cells. Int J Mol Sci 2023; 24:ijms24109107. [PMID: 37240453 DOI: 10.3390/ijms24109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium (Ca2+) flux acts as a central signaling pathway in B cells, and its alterations are associated with autoimmune dysregulation and B-cell malignancies. We standardized a flow-cytometry-based method using various stimuli to investigate the Ca2+ flux characteristics of circulating human B lymphocytes from healthy individuals. We found that different activating agents trigger distinct Ca2+ flux responses and that B-cell subsets show specific developmental-stage dependent Ca2+ flux response patterns. Naive B cells responded with a more substantial Ca2+ flux to B cell receptor (BCR) stimulation than memory B cells. Non-switched memory cells responded to anti-IgD stimulation with a naive-like Ca2+ flux pattern, whereas their anti-IgM response was memory-like. Peripheral antibody-secreting cells retained their IgG responsivity but showed reduced Ca2+ responses upon activation, indicating their loss of dependence on Ca2+ signaling. Ca2+ flux is a relevant functional test for B cells, and its alterations could provide insight into pathological B-cell activation development.
Collapse
Affiliation(s)
- Anna Bajnok
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Timea Serény-Litvai
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Viktória Temesfői
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Laboratory Medicine, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Jasper Nörenberg
- Department of Obstetrics and Gynecology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Medical Microbiology and Immunology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Róbert Herczeg
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, 7624 Pécs, Hungary
| | - Ambrus Kaposi
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Programming Languages and Compilers, Faculty of Informatics, Eötvös Loránd University, 1053 Budapest, Hungary
| | - Timea Berki
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Emese Mezosi
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- First Department of Internal Medicine, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
6
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
7
|
Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon. Biomolecules 2023; 13:biom13010139. [PMID: 36671524 PMCID: PMC9856182 DOI: 10.3390/biom13010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and there is evidence that Group-I metabotropic glutamate receptors (mGlu1 and mGlu5) have established roles in excitatory neurotransmission and synaptic plasticity. While glutamate is abundantly present in the gut, it plays a smaller role in neurotransmission in the enteric nervous system. In this study, we examined the roles of Group-I mGlu receptors in gastrointestinal function. We investigated the expression of Grm1 (mGlu1) and Grm5 (mGlu5) in the mouse myenteric plexus using RNAscope in situ hybridization. Live calcium imaging and motility analysis were performed on ex vivo preparations of the mouse colon. mGlu5 was found to play a role in excitatory enteric neurotransmission, as electrically-evoked calcium transients were sensitive to the mGlu5 antagonist MPEP. However, inhibition of mGlu5 activity did not affect colonic motor complexes (CMCs). Instead, inhibition of mGlu1 using BAY 36-7620 reduced CMC frequency but did not affect enteric neurotransmission. These data highlight complex roles for Group-I mGlu receptors in myenteric neuron activity and colonic function.
Collapse
|