1
|
Yang PL, Kamp KJ, Tu Q, Chen LJ, Cain K, Heitkemper MM, Burr RL. Relationship Between High Frequency Component of Heart Rate Variability and Delta EEG Power During Sleep in Women With Irritable Bowel Syndrome Compared to Healthy Women. Biol Res Nurs 2024:10998004241288791. [PMID: 39378890 DOI: 10.1177/10998004241288791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To explore the relationship between the high frequency (HF) heart rate variability (HRV) and electroencephalogram (EEG) delta band power in women with irritable bowel syndrome (IBS) versus healthy control women. MATERIALS AND METHODS Twenty women with IBS and twenty healthy controls were studied over three consecutive nights using polysomnography in a sleep laboratory. To avoid the first night effect, only second-night data were analyzed. Power spectral analysis was applied to HRV and EEG recordings. The linear system coherence/phase analysis assessed the relationship between normalized HF power of HRV and normalized delta band power of EEG during the first four NREM-REM sleep cycles. RESULTS Women with IBS exhibited a significantly higher percentage of NREM sleep, higher normalized HF, lower normalized low frequency (LF) and decreased LF/HF ratio of HRV in the first four NREM-REM sleep cycles compared to controls. Additionally, their normalized delta band power was significantly lower in these sleep cycles and over the whole night. The phase shift between HF and delta band power was significantly longer in the IBS group. While the coherence between normalized HF and normalized delta band power was lower in the IBS group, the difference was not statistically significant. CONCLUSIONS The coherence/phase analysis showed a dysregulated interaction between autonomic and central nervous systems in women with IBS, manifested by increased lag time between cardiac and EEG delta band power compared to healthy controls. Whether this dysregulation contributes to the pathophysiology of IBS remains to be determined.
Collapse
Affiliation(s)
- Pei-Lin Yang
- School of Nursing, National Defense Medical Center, Taipei, Taiwan (R.O.C.)
| | - Kendra J Kamp
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
| | - Qian Tu
- MultiCare Health System, Pulmonary Specialists, Auburn, WA, USA
| | - Li Juen Chen
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
- UW Medicine Valley Medical Center, Renton, WA, USA
| | - Kevin Cain
- Center for Biomedical Statistics, University of Washington, Seattle, WA, USA
| | - Margaret M Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
| | - Robert L Burr
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Rzeszutek M, Kowalkowska J, Drabarek K, Van Hoy A, Schier K, Lis-Turlejska M, Dragan M, Holas P, Maison D, Litwin E, Wawrzyniak J, Znamirowska W, Szumiał S, Desmond M. Adverse childhood experiences and alexithymia intensity as predictors of temporal dynamics of functioning in individuals with irritable bowel syndrome: A three-wave latent transition analysis. J Psychosom Res 2024; 187:111904. [PMID: 39298867 DOI: 10.1016/j.jpsychores.2024.111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Despite high prevalence of irritable bowel syndrome (IBS) and its significant negative impact on individuals' quality of life, its etiology remains poorly understood. This prospective study explored whether early life factors (adverse childhood experiences; ACEs) and alexithymia intensity, could explain IBS symptom severity and its effects on psychological functioning over time. We also compared the studied variables between an IBS sample and a healthy control group. METHOD Based on the Rome III Diagnostic Criteria for IBS, 245 individuals with a diagnosis of IBS were recruited from a national sample of Poles. The IBS sample completed the following psychometric questionaries in three waves, one month apart: Adverse Childhood Experiences Questionnaire, Toronto Alexithymia Scale, IBS Symptom Severity Score, Short Form Perceived Stress Scale, and Ultra-Brief Patient Health Questionnaire for Anxiety and Depression. Latent transition analysis was used to identify distinct profiles of IBS symptom dynamics. RESULTS The IBS group reported a significantly higher number of ACEs, greater alexithymia severity, and more intense levels of stress, anxiety, and depressive symptoms compared to the healthy controls. Four profiles of IBS individuals with distinct dynamics of IBS symptoms, stress, anxiety, and depressive symptoms were extracted, which correlated with the baseline number of ACEs and alexithymia intensity among participants. CONCLUSION Childhood adversity and associated problems in emotional processing affect IBS symptom severity. ACEs should be included in IBS screening and considered in the design of individualized multidisciplinary treatment approaches for IBS patients.
Collapse
Affiliation(s)
| | - Joanna Kowalkowska
- Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Poland
| | | | | | | | - Maja Lis-Turlejska
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | | | - Paweł Holas
- Faculty of Psychology, University of Warsaw, Poland
| | | | | | | | | | | | - Małgorzata Desmond
- Great Ormond Street Institute of Child Health, University College London, United Kingdom
| |
Collapse
|
3
|
Luo QQ, Cheng L, Wang B, Chen X, Li WT, Chen SL. ZBTB20 mediates stress-induced visceral hypersensitivity via activating the NF-κB/transient receptor potential channel pathway. Neurogastroenterol Motil 2024; 36:e14718. [PMID: 38009899 DOI: 10.1111/nmo.14718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Psychological stress is a major trigger for visceral hypersensitivity (VH) in irritable bowel syndrome. The zinc finger protein ZBTB20 (ZBTB20) is implicated in somatic nociception via modulating transient receptor potential (TRP) channels, but its role in the development of VH is unclear. This study aimed to investigate the role of ZBTB20/TRP channel axis in stress-induced VH. METHODS Rats were subjected to water avoidance stress (WAS) for 10 consecutive days. Small interfering RNA (siRNA) targeting ZBTB20 was intrathecally administered. Inhibitors of TRP channels, stress hormone receptors, and nuclear factor kappa-B (NF-κB) were administered. Visceromotor response to colorectal distension was recorded. Dorsal root ganglia (DRGs) were dissected for Western blot, coimmunoprecipitation, and chromatin immunoprecipitation. The DRG-derived neuron cell line was applied for specific research. KEY RESULTS WAS-induced VH was suppressed by the inhibitor of TRPV1, TRPA1, or TRPM8, with enhanced expression of these channels in L6-S2 DRGs. The inhibitor of glucocorticoid receptor or β2-adrenergic receptor counteracted WAS-induced VH and TRP channel expression. Concurrently, WAS-induced stress hormone-dependent ZBTB20 expression and NF-κB activation in DRGs. Intrathecally injected ZBTB20 siRNA or an NF-κB inhibitor repressed WAS-caused effect. In cultured DRG-derived neurons, stress hormones promoted nuclear translocation of ZBTB20, which preceded p65 nuclear translocation. And, ZBTB20 siRNA suppressed stress hormone-caused NF-κB activation. Finally, WAS enhanced p65 binding to the promoter of TRPV1, TRPA1, or TRPM8 in rat DRGs. CONCLUSIONS AND INFERENCES ZBTB20 mediates stress-induced VH via activating NF-κB/TRP channel pathway in nociceptive sensory neurons.
Collapse
Affiliation(s)
- Qing-Qing Luo
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Cheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xin Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wen-Ting Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Sheng-Liang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
4
|
Eva L, Pleș H, Covache-Busuioc RA, Glavan LA, Bratu BG, Bordeianu A, Dumitrascu DI, Corlatescu AD, Ciurea AV. A Comprehensive Review on Neuroimmunology: Insights from Multiple Sclerosis to Future Therapeutic Developments. Biomedicines 2023; 11:2489. [PMID: 37760930 PMCID: PMC10526343 DOI: 10.3390/biomedicines11092489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This review delves into neuroimmunology, focusing on its relevance to multiple sclerosis (MS) and potential treatment advancements. Neuroimmunology explores the intricate relationship between the immune system and the central nervous system (CNS). Understanding these mechanisms is vital for grasping the pathophysiology of diseases like MS and for devising innovative treatments. This review introduces foundational neuroimmunology concepts, emphasizing the role of immune cells, cytokines, and blood-brain barrier in CNS stability. It highlights how their dysregulation can contribute to MS and discusses genetic and environmental factors influencing MS susceptibility. Cutting-edge research methods, from omics techniques to advanced imaging, have revolutionized our understanding of MS, offering valuable diagnostic and prognostic tools. This review also touches on the intriguing gut-brain axis, examining how gut microbiota impacts neuroimmunological processes and its potential therapeutic implications. Current MS treatments, from immunomodulatory drugs to disease-modifying therapies, are discussed alongside promising experimental approaches. The potential of personalized medicine, cell-based treatments, and gene therapy in MS management is also explored. In conclusion, this review underscores neuroimmunology's significance in MS research, suggesting that a deeper understanding could pave the way for more tailored and effective treatments for MS and similar conditions. Continued research and collaboration in neuroimmunology are essential for enhancing patient outcomes.
Collapse
Affiliation(s)
- Lucian Eva
- Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania;
| | - Horia Pleș
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (L.A.G.); (B.-G.B.); (A.B.); (D.-I.D.); (A.D.C.); (A.V.C.)
| |
Collapse
|
5
|
Hanning N, Verboven R, De Man JG, Ceuleers H, De Schepper HU, Smet A, De Winter BY. Single-day and multi-day exposure to orogastric gavages does not affect intestinal barrier function in mice. Am J Physiol Gastrointest Liver Physiol 2023; 324:G281-G294. [PMID: 36749571 DOI: 10.1152/ajpgi.00203.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023]
Abstract
Animals involved in common laboratory procedures experience minor levels of stress. The direct effect of limited amounts of stress on gastrointestinal function has not been reported yet. Therefore, this study aimed to assess the effect of single-day and multi-day orogastric gavages on gut physiology in mice. To this end, 12-wk-old female C57Bl6/J mice were randomized to receive treatment with sterile water (200 µL) delivered by orogastric gavages twice daily for a total of 1 or 10 day(s). Control animals did not receive any treatment. Subsequently, gastrointestinal function was assessed by measuring fecal pellet production. Furthermore, ex vivo intestinal barrier and secretory function of the distal colon, proximal colon, and terminal ileum were quantified in Ussing chambers. In mice, single-day gavages did neither influence corticosterone levels nor gastrointestinal function. In mice exposed to multi-day gavages, corticosterone levels were slightly but significantly increased compared with controls after 10 days of treatment. Gastrointestinal motor function was altered, as evidenced by increased fecal pellet counts and a small increase in fecal water content. However, exposure to repeated gavages did not lead to detectable alterations in gastrointestinal barrier function as quantified by the paracellular flux of the probe 4 kDa FITC-dextran as well as transepithelial resistance measurements. Thus, the administration of drugs via single-day or multi-day orogastric gavages leads to no or minor stress in mice, respectively. In both cases, it does not hamper the study of the intestinal barrier function and therefore remains a valuable administration route in preclinical pharmacological research.NEW & NOTEWORTHY Exposure of mice to serial orogastric gavages over the course of 10 days leads to a small but significant increase in plasma corticosterone levels, indicating the presence of a limited amount of stress that is absent after a single-day treatment. This minor stress after multi-day gavages results in increased fecal pellet production and fecal water content in exposed compared with nontreated mice but does not affect the intestinal barrier function in the distal colon, proximal colon, or terminal ileum.
Collapse
Affiliation(s)
- Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Rosanne Verboven
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Heiko U De Schepper
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
6
|
Chen W, Liao L, Huang Z, Lu Y, Lin Y, Pei Y, Yi S, Huang C, Cao H, Tan B. Patchouli alcohol improved diarrhea-predominant irritable bowel syndrome by regulating excitatory neurotransmission in the myenteric plexus of rats. Front Pharmacol 2022; 13:943119. [PMID: 36452228 PMCID: PMC9703083 DOI: 10.3389/fphar.2022.943119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/31/2022] [Indexed: 09/07/2023] Open
Abstract
Background and Purpose: Irritable bowel syndrome (IBS) is usually associated with chronic gastrointestinal disorders. Its most common subtype is accompanied with diarrhea (IBS-D). The enteric nervous system (ENS) modulates major gastrointestinal motility and functions whose aberration may induce IBS-D. The enteric neurons are susceptible to long-term neurotransmitter level alterations. The patchouli alcohol (PA), extracted from Pogostemonis Herba, has been reported to regulate neurotransmitter release in the ENS, while its effectiveness against IBS-D and the underlying mechanism remain unknown. Experimental Approach: In this study, we established an IBS-D model in rats through chronic restraint stress. We administered the rats with 5, 10, and 20 mg/kg of PA for intestinal and visceral examinations. The longitudinal muscle myenteric plexus (LMMP) neurons were further immunohistochemically stained for quantitative, morphological, and neurotransmitters analyses. Key Results: We found that PA decreased visceral sensitivity, diarrhea symptoms and intestinal transit in the IBS-D rats. Meanwhile, 10 and 20 mg/kg of PA significantly reduced the proportion of excitatory LMMP neurons in the distal colon, decreased the number of acetylcholine (Ach)- and substance P (SP)-positive neurons in the distal colon and restored the levels of Ach and SP in the IBS-D rats. Conclusion and Implications: These findings indicated that PA modulated LMMP excitatory neuron activities, improved intestinal motility and alleviated IBS-induced diarrheal symptoms, suggesting the potential therapeutic efficacy of PA against IBS-D.
Collapse
Affiliation(s)
- Wanyu Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liao
- Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Guangzhou, China
| | - Zitong Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yulin Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yukang Lin
- College of Integrated Chinese and Western Medicines, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Pei
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shulin Yi
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Mróz M, Czub M, Brytek-Matera A. Heart Rate Variability-An Index of the Efficacy of Complementary Therapies in Irritable Bowel Syndrome: A Systematic Review. Nutrients 2022; 14:3447. [PMID: 36014953 PMCID: PMC9416471 DOI: 10.3390/nu14163447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/30/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Irritable bowel syndrome (IBS), as a functional and psychosomatic disease, reduces the quality of life and increases the risk of developing mental disorders. Deregulation of the autonomic nervous system (ANS) is one of the main causes of the disease. The objective of the present study was to identify the studies in which measurements of heart rate variability (HRV) were performed before and after therapeutic intervention, and to evaluate the effectiveness of IBS therapy in terms of a reduction of IBS symptoms and changes in autonomic tone. A systematic review of the literature was carried out in accordance with PRISMA standards. Six databases were searched for articles published before 2022: PubMed®, MEDLINE®, EBSCO, Cochrane, Scopus, and Web of Science. Inclusion criteria were experimental design, diagnosis of IBS (medical and/or diagnosis in accordance with the Rome Criteria), non-pharmacological intervention, and HRV measurement before and after the intervention. The quality of the studies was assessed by JBI Critical appraisal. In total, 455 studies were identified, of which, sixwere included in the review. Expected changes in HRV (increase in parasympathetic activity) were observed in four of the six studies (interventions studied: ear acupressure, transcutaneous auricular vagusnerve stimulation, cognitive behavioral therapy with relaxation elements, yoga). In the same studies, therapeutic interventions significantly reduced the symptoms of IBS. The present review indicated that interventions under investigation improve the efficiency of the ANS and reduce the symptoms of IBS. It is advisable to include HRV measurements as a measure of the effectiveness of interventions in IBS therapy, and to assess autonomic changes as a moderator of the effectiveness of IBS therapy.
Collapse
Affiliation(s)
- Magdalena Mróz
- Institute of Psychology, University of Wrocław, 50-527 Wrocław, Poland
| | | | | |
Collapse
|
8
|
Massot-Cladera M, Rigo-Adrover MDM, Herrero L, Franch À, Castell M, Vulevic J, Pérez-Cano FJ, Lagunas MJR. A Galactooligosaccharide Product Decreases the Rotavirus Infection in Suckling Rats. Cells 2022; 11:1669. [PMID: 35626706 PMCID: PMC9139879 DOI: 10.3390/cells11101669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of gastroenteritis among young children worldwide is the Group A rotaviruses (RV), which produce a wide range of symptoms, from a limited diarrhea to severe dehydration and even death. After an RV infection, immunity is not complete and less severe re-infections usually occur. These infections could be ameliorated by nutritional interventions with bioactive compounds, such as prebiotics. The aim of this research was to study the impact of a particular galactooligosaccharide (B-GOS) on the RV symptomatology and immune response during two consecutive infections. Lewis neonatal rats were inoculated with SA11 (first RV infection) on day 6 of life and with EDIM (second RV infection) on day 17 of life. B-GOS group was administered by oral gavage with a daily dose of B-GOS between days three to nine of life. Clinical and immunological variables were assessed during both infective processes. In the first infection, after the prebiotic intervention with B-GOS, a lower incidence, duration, and overall severity of the diarrhea (p < 0.05) was observed. In addition, it improved another severity indicator, the fecal weight output, during the diarrhea period (p < 0.05). The second RV infection failed in provoking diarrhea in the groups studied. The immune response during first infection with SA11 was not affected by B-GOS administration and had no impact on second infection, but the prebiotic intervention significantly increased IFN-γ and TNF-α intestinal production after the second infection (p < 0.05). In summary, B-GOS supplementation is able to reduce the incidence and severity of the RV-associated diarrhea and to influence the immune response against RV infections.
Collapse
Affiliation(s)
- Malén Massot-Cladera
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - María del Mar Rigo-Adrover
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Laura Herrero
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Àngels Franch
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Margarida Castell
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Francisco J. Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - María J. Rodríguez Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (M.M.-C.); (M.d.M.R.-A.); (L.H.); (À.F.); (M.C.); (M.J.R.L.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), C/Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| |
Collapse
|
9
|
van Thiel IAM, Stavrou AA, de Jong A, Theelen B, Davids M, Hakvoort TBM, Admiraal-van den Berg I, Weert ICM, de Kruijs MAMHV, Vu D, Moissl-Eichinger C, Heinsbroek SEM, Jonkers DMAE, Hagen F, Boekhout T, de Jonge WJ, van den Wijngaard RM. Genetic and phenotypic diversity of fecal Candida albicans strains in irritable bowel syndrome. Sci Rep 2022; 12:5391. [PMID: 35354908 PMCID: PMC8967921 DOI: 10.1038/s41598-022-09436-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common disorder characterized by chronic abdominal pain and changes in bowel movements. Visceral hypersensitivity is thought to be responsible for pain complaints in a subset of patients. In an IBS-like animal model, visceral hypersensitivity was triggered by intestinal fungi, and lower mycobiota α-diversity in IBS patients was accompanied by a shift toward increased presence of Candida albicans and Saccharomyces cerevisiae. Yet, this shift was observed in hypersensitive as well as normosensitive patients and diversity did not differ between IBS subgroups. The latter suggests that, when a patient changes from hyper- to normosensitivity, the relevance of intestinal fungi is not necessarily reflected in compositional mycobiota changes. We now confirmed this notion by performing ITS1 sequencing on an existing longitudinal set of fecal samples. Since ITS1 methodology does not recognize variations within species, we next focused on heterogeneity within cultured healthy volunteer and IBS-derived C. albicans strains. We observed inter- and intra-individual genomic variation and partial clustering of strains from hypersensitive patients. Phenotyping showed differences related to growth, yeast-to-hyphae morphogenesis and gene expression, specifically of the gene encoding fungal toxin candidalysin. Our investigations emphasize the need for strain-specific cause-and-effect studies within the realm of IBS research.
Collapse
Affiliation(s)
- Isabelle A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Aimilia A Stavrou
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Auke de Jong
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Mark Davids
- Laboratory of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Iris Admiraal-van den Berg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Isabelle C M Weert
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Martine A M Hesselink-van de Kruijs
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Center for Microbiome Research, Medical University Graz, Graz, Austria
| | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Daisy M A E Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - René M van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands. .,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Mamieva Z, Poluektova E, Svistushkin V, Sobolev V, Shifrin O, Guarner F, Ivashkin V. Antibiotics, gut microbiota, and irritable bowel syndrome: What are the relations? World J Gastroenterol 2022; 28:1204-1219. [PMID: 35431513 PMCID: PMC8968486 DOI: 10.3748/wjg.v28.i12.1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder in which recurrent abdominal pain is associated with defecation or a change in bowel habits (constipation, diarrhea, or both), and it is often accompanied by symptoms of abdominal bloating and distension. IBS is an important health care issue because it negatively affects the quality of life of patients and places a considerable financial burden on health care systems. Despite extensive research, the etiology and underlying pathophysiology of IBS remain incompletely understood. Proposed mechanisms involved in its pathogenesis include increased intestinal permeability, changes in the immune system, visceral hypersensitivity, impaired gut motility, and emotional disorders. Recently, accumulating evidence has highlighted the important role of the gut microbiota in the development of IBS. Microbial dysbiosis within the gut is thought to contribute to all aspects of its multifactorial pathogenesis. The last few decades have also seen an increasing interest in the impact of antibiotics on the gut microbiota. Moreover, antibiotics have been suggested to play a role in the development of IBS. Extensive research has established that antibacterial therapy induces remarkable shifts in the bacterial community composition that are quite similar to those observed in IBS. This suggestion is further supported by data from cohort and case-control studies, indicating that antibiotic treatment is associated with an increased risk of IBS. This paper summarizes the main findings on this issue and contributes to a deeper understanding of the link between antibiotic use and the development of IBS.
Collapse
Affiliation(s)
- Zarina Mamieva
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Elena Poluektova
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Valery Svistushkin
- Department of Ear, Throat and Nose Diseases, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vasily Sobolev
- Department of Ear, Throat and Nose Diseases, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Oleg Shifrin
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Francisco Guarner
- Digestive System Research Unit, Vall d’Hebron Research Institute, Barcelona 08035, Spain
| | - Vladimir Ivashkin
- Department of Internal Disease Propaedeutics, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| |
Collapse
|
11
|
Wilder-Smith C, Lee SH, Olesen SS, Low JY, Kioh DYQ, Ferraris R, Materna A, Chan ECY. Fructose intolerance is not associated with malabsorption in patients with functional gastrointestinal disorders. Neurogastroenterol Motil 2021; 33:e14150. [PMID: 33844393 DOI: 10.1111/nmo.14150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Symptoms following fructose ingestion, or fructose intolerance, are common in patients with functional gastrointestinal disorders (FGID) and are generally attributed to intestinal malabsorption. The relationships between absorption, symptoms, and intestinal gas production following fructose ingestion were studied in patients with FGID. METHODS Thirty FGID patients ingested a single dose of fructose 35 g or water in a randomized, double-blind, crossover study. Blood and breath gas samples were collected, and gastrointestinal symptoms rated. Plasma fructose metabolites and short-chain fatty acids were quantified by targeted liquid chromatography-tandem mass spectrometry. Patients were classified as fructose intolerant or tolerant based on symptoms following fructose ingestion. KEY RESULTS The median (IQR) areas under the curve of fructose plasma concentrations within the first 2 h (AUC0-2 h ) after fructose ingestion were similar for patients with and without fructose intolerance (578 (70) µM·h vs. 564 (240) µM·h, respectively, p = 0.39), as well as for the main fructose metabolites. There were no statistically significant correlations between the AUC0-2 h of fructose or its metabolites concentrations and the AUCs of symptoms, breath hydrogen, and breath methane. However, the AUCs of symptoms correlated significantly and positively with the AUC0-2 h of hydrogen and methane breath concentrations (r = 0.73, r = 0.62, respectively), and the AUCs of hydrogen and methane concentrations were greater in the fructose-intolerant than in the fructose-tolerant patients after fructose ingestion (p ≤ 0.02). CONCLUSIONS & INFERENCES Fructose intolerance in FGID is not related to post-ingestion plasma concentrations of fructose and its metabolites. Factors other than malabsorption, such as altered gut microbiota or sensory function, may be important mechanisms.
Collapse
Affiliation(s)
- Clive Wilder-Smith
- Gastroenterology Group Practice, Brain-Gut Research Group, Bern, Switzerland
| | - Sze Han Lee
- Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| | - Søren Schou Olesen
- Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - Jing Yi Low
- Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| | - Dorinda Yan Qin Kioh
- Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| | - Ronaldo Ferraris
- Department of Pharmacology & Physiology, New Jersey Medical School, Newark, NJ, USA
| | - Andrea Materna
- Gastroenterology Group Practice, Brain-Gut Research Group, Bern, Switzerland
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore City, Singapore.,Singapore Institute of Clinical Sciences, Agency for Science, Technology and Research, Singapore City, Singapore
| |
Collapse
|
12
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Jiang J, Liu H, Wang Z, Tian H, Wang S, Yang J, Ren J. Electroacupuncture could balance the gut microbiota and improve the learning and memory abilities of Alzheimer's disease animal model. PLoS One 2021; 16:e0259530. [PMID: 34748592 PMCID: PMC8575259 DOI: 10.1371/journal.pone.0259530] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD), as one of most common dementia, mainly affects older people from the worldwide. In this study, we intended to explore the possible mechanism of improving cognitive function and protecting the neuron effect by electroacupuncture. METHOD We applied senescence-accelerated mouse prone 8 (SAMP8) mice as AD animal model, used Morris water maze, HE staining, 16S rDNA amplicon sequencing of gut microbiota and ELISA to demonstrate our hypothesis. RESULTS electroacupuncture improved the learning and memory abilities in SAMP8 mice (P<0.05) and could protect the frontal lobe cortex and hippocampus of SAMP8 mice; electroacupuncture significantly decreased the expression of IL-1β (P<0.01), IL-6 (P<0.01) and TNF-α (P<0.01 in hippocampus, P<0.05 in serum) in serum and hippocampus; electroacupuncture balanced the quantity and composition of gut microbiome, especially of the relative abundance in Delta-proteobacteria (P<0.05) and Epsilon-proteobacteria (P<0.05). CONCLUSION electroacupuncture treatment could inhibit the peripheral and central nerve system inflammatory response by balancing the gut microbiota.
Collapse
Affiliation(s)
- Jing Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zidong Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Shun Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiayi Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyu Ren
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
15
|
Cao DY, Hu B, Xue Y, Hanson S, Dessem D, Dorsey SG, Traub RJ. Differential Activation of Colonic Afferents and Dorsal Horn Neurons Underlie Stress-Induced and Comorbid Visceral Hypersensitivity in Female Rats. THE JOURNAL OF PAIN 2021; 22:1283-1293. [PMID: 33887444 PMCID: PMC8500917 DOI: 10.1016/j.jpain.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Chronic Overlapping Pain Conditions, including irritable bowel syndrome (IBS) and temporomandibular disorder (TMD), represent a group of idiopathic pain conditions that likely have peripheral and central mechanisms contributing to their pathology, but are poorly understood. These conditions are exacerbated by stress and have a female predominance. The presence of one condition predicts the presence or development of additional conditions, making this a significant pain management problem. The current study was designed to determine if the duration and magnitude of peripheral sensitization and spinal central sensitization differs between restraint stress-induced visceral hypersensitivity (SIH) and chronic comorbid pain hypersensitivity (CPH; stress during pre-existing orofacial pain). SIH in female rats, as determined by the visceromotor response, persisted at least four but resolved by seven weeks. In contrast, CPH persisted at least seven weeks. Surprisingly, colonic afferents in both SIH and CPH rats were sensitized at seven weeks. CPH rats also had referred pain through seven weeks, but locally anesthetizing the colon only attenuated the referred pain through four weeks, suggesting a transition to colonic afferent independent central sensitization. Different phenotypes of dorsal horn neurons were sensitized in the CPH rats seven weeks post stress compared to four weeks or SIH rats. The current study suggests differential processing of colonic afferent input to the lumbosacral spinal cord contributes to visceral hypersensitivity during comorbid chronic pain conditions. PERSPECTIVE: Chronic Overlapping Pain Conditions represent a unique challenge in pain management. The diverse nature of peripheral organs hinders a clear understanding of underlying mechanisms accounting for the comorbidity. This study highlights a mismatch between the condition-dependent behavior and peripheral and spinal mechanisms that contribute to visceral pain hypersensitivity.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, P. R. China
| | - Bo Hu
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, P. R. China
| | - Yang Xue
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Department of Prosthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, P. R. China
| | - Shelby Hanson
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland
| | - Dean Dessem
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland
| | - Richard J Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; UM Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, Maryland.
| |
Collapse
|
16
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|