1
|
Straface M, Koussai MA, Makwana R, Crawley E, Palmer A, Cai W, Gharibans A, Adebibe M, Loy J, O’Grady G, Andrews PLR, Sanger GJ. A multi-parameter approach to measurement of spontaneous myogenic contractions in human stomach: Utilization to assess potential modulators of myogenic contractions. Pharmacol Res 2022; 180:106247. [DOI: 10.1016/j.phrs.2022.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
2
|
Makrane H, Aziz M, Berrabah M, Mekhfi H, Ziyyat A, Bnouham M, Legssyer A, Elombo FK, Gressier B, Eto B. Myorelaxant Activity of essential oil from Origanum majorana L. on rat and rabbit. JOURNAL OF ETHNOPHARMACOLOGY 2019; 228:40-49. [PMID: 30205180 DOI: 10.1016/j.jep.2018.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L. (Lamiaceae) was usually used in Moroccan folk medicine to treat infantile colic and abdominal discomfort. MATERIALS AND METHODS The essential oil from the aerial part of the dry Origanum majorana L. (EOOM) was obtained through hydro distillation and analyzed by gas chromatography/mass spectrometry (GC/MS). The effect of EOOM on muscle relaxation was measured on rabbit and rat intestinal smooth muscle mounted in an isotonic transducer. RESULTS 1) The main compounds obtained from the aqueous extract of this plant were alpha Terpineol, L-terpinen-4-ol and Beta.-Linalool. 2) EOOM inhibited in a concentration-dependent manner spontaneous contraction of rabbit jejunum, with an IC50 = 64.08 ± 2.42 μg/mL. 3) In rat intestine, EOOM induced the relaxation of the tissue in concentration-dependent manner with an IC50 = 39.70 ± 2.29 μg/mL when the tissue was pre-contracted with CCh 10-6 M, and 48.70 ± 2.26 μg/mL when the tissue was pre-contracted with 25 mM KCl. 4) The relaxation effect induced by EOOM was more important than that obtained in the presence of atropine, hexamethonium, Nifedipine, L-NAME and Blue of methylene. CONCLUSION the present result indicates that essential oil of Origanum majorana L. exhibit an effect on intestinal relaxation in vitro. This effect further validates the traditional use of Origanum majorana L. to treat infantile colic and abdominal discomfort.
Collapse
Affiliation(s)
- Hanane Makrane
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed the First University, PB 717, 60000 Oujda, Morocco
| | - Mohammed Aziz
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed the First University, PB 717, 60000 Oujda, Morocco
| | - Mohamed Berrabah
- Laboratory of Chemistry, Mineral and Analytical Solid, Department of Chemistry, Faculty of Sciences, Mohammed the First University, PB 717, 60000 Oujda, Morocco
| | - Hassane Mekhfi
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed the First University, PB 717, 60000 Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed the First University, PB 717, 60000 Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed the First University, PB 717, 60000 Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed the First University, PB 717, 60000 Oujda, Morocco
| | - Ferdinand Kouoh Elombo
- Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France; Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, Lille, France
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France
| | - Bruno Eto
- Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France; Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, Lille, France.
| |
Collapse
|
3
|
Kobayashi M, Khalil HA, Lei NY, Wang Q, Wang K, Wu BM, Dunn JCY. Bioengineering functional smooth muscle with spontaneous rhythmic contraction in vitro. Sci Rep 2018; 8:13544. [PMID: 30202095 PMCID: PMC6131399 DOI: 10.1038/s41598-018-31992-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Oriented smooth muscle layers in the intestine contract rhythmically due to the action of interstitial cells of Cajal (ICC) that serve as pacemakers of the intestine. Disruption of ICC networks has been reported in various intestinal motility disorders, which limit the quality and expectancy of life. A significant challenge in intestinal smooth muscle engineering is the rapid loss of function in cultured ICC and smooth muscle cells (SMC). Here we demonstrate a novel approach to maintain the function of both ICC and SMC in vitro. Primary intestinal SMC mixtures cultured on feeder cells seeded electrospun poly(3-caprolactone) scaffolds exhibited rhythmic contractions with directionality for over 10 weeks in vitro. The simplicity of this system should allow for wide usage in research on intestinal motility disorders and tissue engineering, and may prove to be a versatile platform for generating other types of functional SMC in vitro.
Collapse
Affiliation(s)
- Masae Kobayashi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hassan A Khalil
- Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nan Ye Lei
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qianqian Wang
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ke Wang
- Department of Computer Science, University of North Carolina Chapel Hill, North Carolina, NC, 27514, USA
| | - Benjamin M Wu
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Division of Advanced Prosthodontics & Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - James C Y Dunn
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Mastropaolo M, Zizzo MG, Auteri M, Mulè F, Serio R. Arginine vasopressin, via activation of post-junctional V1 receptors, induces contractile effects in mouse distal colon. ACTA ACUST UNITED AC 2013; 187:29-34. [DOI: 10.1016/j.regpep.2013.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
|
5
|
El-Yazbi AF, Cho WJ, Schulz R, Daniel EE. Calcium extrusion by plasma membrane calcium pump is impaired in caveolin-1 knockout mouse small intestine. Eur J Pharmacol 2008; 591:80-7. [PMID: 18634779 DOI: 10.1016/j.ejphar.2008.06.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/14/2008] [Accepted: 06/22/2008] [Indexed: 12/12/2022]
Abstract
Plasma membrane calcium ATPase (PMCA) is an important calcium extrusion mechanism in smooth muscle cells. PMCA4 is the predominant isoform operating in conditions of high intracellular calcium during contraction. PMCA appears to be localized in lipid rafts and caveolae. In this study we examined the effects of the PMCA4-selective inhibitor caloxin 1c2 (5 microM) in intestine of caveolin-1 knockout mice and in bovine tracheal smooth muscle after caveolae disruption on PMCA4 function. Small intestinal tissues from control mice treated with caloxin 1c2 showed a higher contractile response of the longitudinal smooth muscle to Carbachol (10 microM) when compared to control tissues treated with a similar concentration of a control peptide. This effect of caloxin 1c2 was not found in tissues from caveolin-1 knockout mice. Immunohistochemistry and Western blotting of membrane fractions showed that PMCA was co-localized with caveolin-1 in smooth muscle plasma membrane in control tissues. One of the PMCA4 splice variant bands was missing in the lipid raft-enriched fraction prepared from caveolin-1 knockout tissue. In bovine tracheal smooth muscle tissue, caveolae disruption by cholesterol depletion led to the diminution of caveolin-1 and PMCA4b immunoreactivities, previously co-localized in the smooth muscle plasma membrane, and to the loss of the increase in Carbachol-induced contraction by caloxin 1c2. Our results suggest that the calcium removal function of PMCA4 in smooth muscle cells is dependent on its presence in intact caveolae. We suggest that this is due to the close spatial arrangement that allows calcium extrusion from a privileged cytosolic space between caveolae and sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
6
|
Sevcencu C. Gastrointestinal Mechanisms Activated by Electrical Stimulation to Treat Motility Dysfunctions in the Digestive Tract: A Review. Neuromodulation 2007; 10:100-12. [DOI: 10.1111/j.1525-1403.2007.00098.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Hashitani H, Yanai Y, Kohri K, Suzuki H. Heterogeneous CPA sensitivity of spontaneous excitation in smooth muscle of the rabbit urethra. Br J Pharmacol 2006; 148:340-9. [PMID: 16582935 PMCID: PMC1751569 DOI: 10.1038/sj.bjp.0706729] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. To investigate the role of intracellular Ca stores in generating spontaneous excitation of the urethra, the effects of cyclopiazonic acid (CPA) on spontaneous contractions, transient increases in intracellular calcium concentration ([Ca2+]i; Ca transients) and depolarizations were examined in smooth muscles of the rabbit urethra. 2. In about 90% of circular smooth muscle (CSM) preparations, CPA (10 microM) increased the amplitude of spontaneous contractions by about 180% and reduced their frequency to some 25% of control values (CPA-resistant), while it readily abolished the contractions in the remaining preparations. 3. In about 70% of CSM preparations, CPA prevented the generation of spontaneous depolarizations termed slow waves, but increased their amplitude and duration in the remainder. CPA also prevented the generation of spontaneous Ca transients in about 40% of CSM preparations, while increasing their amplitude and duration in the remaining preparations. In CPA-resistant preparations that had been exposed to nicardipine (1 microM), subsequent CPA invariably abolished residual spontaneous depolarizations or Ca transients. CPA abolished caffeine-induced Ca transients in Ca-free solutions, suggesting that it effectively depleted intracellular Ca stores. 4. Longitudinal smooth muscles generated spontaneous action potentials, which had a shape distinct from that of slow waves in CSM. Spontaneous action potentials were abolished by nicardipine but not CPA. 5. Transmural nerve stimulation increased the frequency of Ca transients to give a sustained rise in [Ca2+]i, but inhibited their generation after blocking alpha-adrenoceptors with phentolamine (1 microM). These nerve-evoked responses were preserved in preparations that had been exposed to CPA. Similarly, both in control and CPA-treated CSM preparations, spontaneous Ca transients were accelerated by noradrenaline (NAd, 1 microM) and were suppressed by 3-morpholino-sydnonimine (SIN-1, 10 microM), a nitric oxide (NO) donor. 6. In conclusion, CSM of the urethra generates spontaneous activity, which depends on Ca release from intracellular Ca stores. However, after blocking this primary pacemaking mechanism, L-type Ca channel-dependent action potentials may drive CSM. Irrespective of the origin of pacemaking, neurally-released NAd and NO are capable of modulating spontaneous excitation.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Regulatory Cell Physiology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | |
Collapse
|
8
|
Abstract
BACKGROUND Over the past 20 years, gastric electrical stimulation has received increasing attention among researchers and clinicians. AIM To give a systematic review on the effects, mechanisms and applications of gastric electrical stimulation. METHODS Medline was used to identify the articles to be included in this review. Key words used for the search included gastric electrical stimulation, gastric pacing, electrical stimulation, stomach, gastrointestinal motility, central nervous system, gastroparesis, nausea and vomiting; obesity and weight loss. Combinational uses of these keywords were made to identify relevant articles. Most of the articles included in this review ranged from 1985 to 2006. RESULTS Based on the general search, the review was structured as follows: (i) peripheral and central effects and mechanisms of gastric electrical stimulation; (ii) clinical applications of gastric electrical stimulation for gastroparesis and obesity and (iii) future development of gastric electrical stimulation. CONCLUSIONS Great progress has been made during the past decades. Gastric electrical stimulation has been shown to be effective in normalizing gastric dysrhythmia, accelerating gastric emptying and improving nausea and vomiting. Implantable device has been made available for treating gastroparesis as well as obesity. However, development of a new device and controlled clinical studies are required to further prove clinical efficacy of gastric electrical stimulation.
Collapse
Affiliation(s)
- J Zhang
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA
| | | |
Collapse
|
9
|
Yin J, Hou X, Chen JDZ. Roles of interstitial cells of Cajal in intestinal transit and exogenous electrical pacing. Dig Dis Sci 2006; 51:1818-23. [PMID: 16957993 DOI: 10.1007/s10620-006-9313-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 03/12/2006] [Indexed: 12/27/2022]
Abstract
The aims of this study were to investigate the role of interstitial cells of Cajal (ICCs) on small intestinal transit and its responses to exogenous pacing in W/W(v) mice. Eleven W/W(v) mice and their controls implanted with four pairs of gastrointestinal electrodes were used for testing the entrainment of slow waves. Another 20 W/W(v) mice and their controls equipped with a duodenal catheter and one pair of intestinal electrodes were used to test small intestinal transit represented by the geometric center (GC). Results were as follows. (1) The effect of pacing on slow wave frequency was sustained only in controls, and not in W/W(v) mice. (2) Both gastric and intestinal slow waves were completely entrained in controls and W/W(v) mice. Higher energy was required for pacing the stomach than the small intestine. (3) There was no significant difference in small intestinal transit between the controls and the W/W(v) mice (GC: 5.4 vs. 5.5). (4) Pacing showed no effects on small intestinal transit in either wild-type (GC: 5.4 vs. 5.6) or W/W(v) mice (GC: 5.5 vs. 5.7). We conclude that myenteric ICCs may not play an important role in the regulation of small intestinal transit in conscious mice. Gastric and intestinal pacing can be achieved without ICCs.
Collapse
Affiliation(s)
- Jieyun Yin
- Veterans Research and Education Foundation, VA Medical Center Transneuronix Inc, Oklahoma City, Oklahoma, USA
| | | | | |
Collapse
|
10
|
Abstract
Caveolae are associated with molecules crucial for calcium handling. This review considers the roles of caveolae in calcium handling for smooth muscle and interstitial cells of Cajal (ICC). Structural studies showed that the plasma membrane calcium pump (PMCA), a sodium-calcium exchanger (NCX1), and a myogenic nNOS appear to be colocalized with caveolin I, the main constituent of these caveolae. Voltage dependent calcium channels (VDCC) are associated but not co-localized with caveolin 1, as are proteins of the peripheral sarcoplasmic reticulum (SR) such as calreticulin. Only the nNOS is absent from caveolin 1 knockout animals. Functional studies in calcium free media sugest that a source of calcium in tonic smooth muscles exists, partly sequestered from extracellular EGTA. This source supported sustained contractions to carbachol using VDCC and dependent on activity of the SERCA pump. This source is postulated to be caveolae, near peripheral SR. New evidence, presented here, suggests that a similar source exists in phasic smooth muscle of the intestine and its ICC. These results suggest that caveolae and peripheral SR are a functional unit recycling calcium through VDCC and controlling its local concentration. Calcium handling molecules associated with caveolae in smooth muscle and ICC were identified and their possible functions also reviewed.
Collapse
Affiliation(s)
- E E Daniel
- Department Of Pharmacology, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
11
|
El-Yazbi AF, Schulz R, Daniel EE. Differential inhibitory control of circular and longitudinal smooth muscle layers of Balb/C mouse small intestine. Auton Neurosci 2006; 131:36-44. [PMID: 16844426 DOI: 10.1016/j.autneu.2006.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 06/02/2006] [Accepted: 06/08/2006] [Indexed: 12/27/2022]
Abstract
We examined the inhibitory mediators acting on each of the longitudinal (LM) and circular muscle (CM) layers of mouse small intestine in the presence of atropine, prazosin and timolol. Nitric oxide (NO) and apamin-sensitive mediators exerted an inhibitory tone on pacing frequency in CM, observed as an increased frequency upon treatment with N-omega-nitro-l-arginine (LNNA) or apamin. This effect was not seen in LM. 1H-(1,2,4)oxadiazolo(4,3-A)quinazoline-1-one (ODQ) abolished the relaxation in response to electric field stimulation (EFS) in LM in a manner similar to LNNA indicating that the inhibitory mediator in this layer in NO acting via soluble guanylate cyclase. On the other hand, in CM neither LNNA nor apamin was capable of reducing the inhibition in response to EFS and their combination left a residual relaxation of 25%. ODQ reduced the EFS-evoked relaxation more effectively than LNNA at higher frequencies indicating that another ODQ-sensitive mediator was active in CM. ODQ also blocked the relaxation to exogenous vasoactive intestinal peptide in CM. In LM, the relaxation due to sodium nitroprusside was equally blocked by ODQ and apamin, while in CM, its effects were only reduced by ODQ and not apamin. These results indicate that there are differences in the inhibitory mediators and the mechanisms of action involved in LM and CM relaxation.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, 9-10 Medical Sciences Building, University of Alberta, Edmonton, Canada AB T6G 2H7
| | | | | |
Collapse
|
12
|
Boddy G, Willis A, Galante G, Daniel EE. Sodium-, chloride-, and mibefradil-sensitive calcium channels in intestinal pacing in wild-type and W/WV mice. Can J Physiol Pharmacol 2006; 84:589-99. [PMID: 16900243 DOI: 10.1139/y06-009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pacing of intestinal smooth muscle is driven by a network of cells found in the myenteric plexus called the interstitial cells of Cajal (ICC-MP), which produce a rhythmic pacemaker current. Using intact segments of circular (CM) and longitudinal (LM) muscle from wild-type and W/WV mice, we found that sodium-, chloride-, and mibefradil-sensitive ion channel currents are required for normal pacing to occur. Application of 30 µmol/L and 300 µmol/L lidocaine, 1 mmol/L 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), 50 nmol/L and 500 nmol/L mibefradil, or low sodium Krebs significantly reduced pacing frequency in LM and CM. However, simultaneously applying DIDS and lidocaine or low sodium Krebs solution did not completely block pacing nor did it have an additive effect. Lidocaine and low sodium Krebs solution also abolished the gradient of pacing frequencies (higher proximally) found throughout the intestine, resulting in a uniform contraction frequency of 30–40/min. In W/WV mice, which lack ICC-MP, application of DIDS and lidocaine had no effect on the robust pacing in LM segments. In conclusion we found that sodium-, chloride-, and mibefradil-sensitive channel activities were required for normal pacing and to maintain the pacing gradient found throughout the intestines in wild-type but not W/WV mice.
Collapse
Affiliation(s)
- Geoffrey Boddy
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | |
Collapse
|
13
|
Wegener JW, Schulla V, Koller A, Klugbauer N, Feil R, Hofmann F. Control of intestinal motility by the Ca(v)1.2 L-type calcium channel in mice. FASEB J 2006; 20:1260-2. [PMID: 16636102 DOI: 10.1096/fj.05-5292fje] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Ca(v)1.2 L-type Ca2+ channel is the dominant voltage-activated Ca2+ channel in heart and smooth muscle. The functional significance of this channel was studied in intestinal smooth muscle from mice carrying a smooth muscle-specific, conditional inactivation of the Ca(v)1.2 gene (Ca(v)1.2SMACKO mice). Inactivation was complete within 4 wk after tamoxifen treatment and confirmed by RT-PCR, Western blot and functional analysis. Ca(v)1.2SMACKO mice show reduced feces excretion, absence of rhythmic contractions in small and large intestinal muscle and signs of paralytic ileus. Extracellular field stimulation evoked smaller contractions in jejunum muscles from Ca(v)1.2SMACKO than from CTR mice, whereas carbachol-induced contractions of similar magnitude in both muscles. The Ca2+ needed for contraction in jejunum was provided mainly by Ca(v)1.2 channels and by store-operated channels in muscles from CTR and Ca(v)1.2SMACKO mice, respectively. In conclusion, the Ca(v)1.2 channel is essential for electromechanical coupling and important for pharmaco-mechanical coupling in intestinal smooth muscle and cannot be substituted functionally by other Ca2+ entry pathways.
Collapse
Affiliation(s)
- Jörg W Wegener
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Biedersteiner Str. 29, München 80802, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
El-Yazbi AF, Cho WJ, Boddy G, Schulz R, Daniel EE. Impact of caveolin-1 knockout on NANC relaxation in circular muscles of the mouse small intestine compared with longitudinal muscles. Am J Physiol Gastrointest Liver Physiol 2006; 290:G394-403. [PMID: 16166342 DOI: 10.1152/ajpgi.00321.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, we showed that caveolin-1 (cav1) knockout mice (Cav1(-/-) mice) have impaired nitric oxide (NO) function in the longitudinal muscle (LM) layer of the small intestine. The defect was a reduced responsiveness of the muscles to NO compensated by an increase in the function of apamin-sensitive, nonadrenergic, noncholinergic (NANC) mediators. In the present study, we examined similarly the effects of cav1 knockout on the relaxation in circular muscle (CM) of the mouse small intestine. CM of Cav1(-/-) mice also showed defective NO function, but less than in LM, as well as more activation of apamin-sensitive NANC mediators. CM of Cav1(-/-) mice, like LM, lacked cav1 but retained small amounts of cav3 and caveolae in the outer CM layer. In addition, we also examined the effects of a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo-[4,3-alpha]quinazolin-1-one (ODQ), on electric field stimulation (EFS)-mediated relaxation in both LM and CM. ODQ had an effect similar to the block of NO synthesis. Moreover, we compared the actions of two NO donors in the LM and CM of control and Cav1(-/-) mice. Similar to LM, CM of Cav1(-/-) mice showed a reduced responsiveness to the NO donors sodium nitroprusside and S-nitroso-N-acetyl penicillamine. However, both ODQ and apamin blocked the inhibitory effects of the NO donors in LM, whereas apamin had no effect in CM. In conclusion, cav1 knockout affects NO function in both LM and CM, but its effects in CM differ significantly.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H
| | | | | | | | | |
Collapse
|
15
|
Abstract
The aim was to investigate whether there are regular gastric and intestinal slow waves in conscious W/WV mice. Eleven W/WV mice and 11 wild-type mice were implanted with two pairs of electrodes in the stomach and small intestine. Gastrointestinal slow waves were recorded both under anesthesia and in the conscious state. Atropine and verapamil were given separately to an additional 10 W/WV mice. Results were as follows. (1) The conscious W/WV mice showed lower rhythmic slow waves in the small intestine (77.1 vs 93.5%; P < 0.001). However, the frequency (10.7 vs 18.8 cpm; P < 0.0001) and the antregrade propagation of intestinal slow waves in W/Wv mice were significantly lower than in the controls. In the stomach, regular slow waves were recorded in both groups, with no difference between the two groups. (2) Anesthesia significantly impaired both gastric and intestinal slow waves in both groups. (3) Atropine and verapamil had no effects on the rhythmicity of intestinal slow waves. We conclude that ICC-MY may not be the sole pacemaker cells for slow waves in the small intestine. There may be some abnormality of smooth muscle cells in W/WV mice that causes a reduction in the frequency, rhythmicity, and antegrade propagation of slow waves.
Collapse
Affiliation(s)
- Xiaohua Hou
- Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas 77555-0764, USA
| | | | | | | | | |
Collapse
|
16
|
Daniel EE, Willis A, Cho WJ, Boddy G. Comparisons of neural and pacing activities in intestinal segments from W/W++ and W/W(V) mice. Neurogastroenterol Motil 2005; 17:355-65. [PMID: 15916623 DOI: 10.1111/j.1365-2982.2005.00639.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied pacing and neurotransmission in longitudinal (LM) and circular muscle (CM) in intestine of W/W++ and W/W(V) mice. Electrical field-stimulation (EFS) of nerves in LM segments was more inhibitory in W/W(V) mice than in W/W++ mice. No inhibitory input to CM segments of W/W(V) mice was found. The EFS, after nerve block, entrained segments of both W/W++ and mutant mice with 10 ms pulses, and entrained those of mutant mice more readily at 1 and 3 ms pulses. Pacing with external electrodes did not depend on interstitial cells of Cajal in the myenteric plexus (ICC-MP). 2-Aminoethoxydiphenyl borate (2-APB), putative antagonist at IP3 receptors, store-operated channels and the Sacro-endoplasmic reticulum Ca2+ ATPase pump, reduced frequency and amplitudes of pacing of LM segments from W/W(V) mice as it did in BALB/c mice. Thus, its actions may not require ICC-MP. SKF 96365, a putative inhibitor of store-operated channels, reduced frequencies and amplitudes of intestinal segments in W/W++ mice at 10 or 30 micromol L-1. This resulted from blocking L-Ca2+-channels. Thus, no evidence was found that store-operated channels play a role in pacing. In LM segments of W/W(V), SKF 96365 had no effects on frequency of contractions. We conclude, results from models of severely reduced systems may not be applicable to intact ICC networks.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
17
|
Boddy G, Daniel EE. Role of l-Ca(2+) channels in intestinal pacing in wild-type and W/W(V) mice. Am J Physiol Gastrointest Liver Physiol 2005; 288:G439-46. [PMID: 15486346 DOI: 10.1152/ajpgi.00255.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhythmic contractions generating transit in the digestive tract are paced by a network of cells called interstitial cells of Cajal (ICC) found in the myenteric plexus (MP). ICC generate cyclic depolarizations termed "slow waves" that are passively transmitted to the smooth muscle to initiate contractions. The opening of l-Ca(2+) channels are believed to be primarily responsible for the influx of calcium generating a contraction in smooth muscle. However, l-Ca(2+) channels are not thought to be important in generating the pacing current found in ICC. Using intact segments of circular (CM) and longitudinal (LM) muscle from wild-type mice and mice lacking c-kit kinase (W/W(V)), we found that l-Ca(2+) channel currents are required for pacing at normal frequencies to occur. Application of 1 muM nicardipine caused a significant decrease in contraction amplitude and frequency in LM and CM that was successfully blocked with BAY K 8644. Nicardipine also abolished the pacing gradient found throughout the intestines, resulting in a uniform contraction frequency of 30-40/minute. Stimulating l-Ca(2+) channels with BAY K 8644 neither removed nor recovered the pacing gradient. W/W(V) mice, which lack ICC-MP, also exhibited a pacing gradient in LM. Application of nicardipine to LM segments of W/W(V) mouse intestine did not reduce pacing frequency, and in jejunum, resulted in a slight increase. BAY K 8644 did not affect pacing frequency in W/W(V) tissue. In conclusion, we found that l-Ca(2+) channel activity was required for normal pacing frequencies and to maintain the pacing frequency gradient found throughout the intestines in wild-type but not in W/W(V) mouse intestine.
Collapse
Affiliation(s)
- Geoffrey Boddy
- Faculty of Medicine and Dentistry, Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | |
Collapse
|
18
|
Cho WJ, Daniel EE. Proteins of interstitial cells of Cajal and intestinal smooth muscle, colocalized with caveolin-1. Am J Physiol Gastrointest Liver Physiol 2005; 288:G571-85. [PMID: 15472013 DOI: 10.1152/ajpgi.00222.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The murine jejunum and lower esophageal sphincter (LES) were examined to determine the locations of various signaling molecules and their colocalization with caveolin-1 and one another. Caveolin-1 was present in punctate sites of the plasma membranes (PM) of all smooth muscles and diffusely in all classes of interstitial cells of Cajal (ICC; identified by c-kit immunoreactivity), ICC-myenteric plexus (MP), ICC-deep muscular plexus (DMP), ICC-serosa (ICC-S), and ICC-intramuscularis (IM). In general, all ICC also contained the L-type Ca(2+) (L-Ca(2+)) channel, the PM Ca(2+) pump, and the Na(+)/Ca(2+) exchanger-1 localized with caveolin-1. ICC in various sites also contained Ca(2+)-sequestering molecules such as calreticulin and calsequestrin. Calreticulin was present also in smooth muscle, frequently in the cytosol, whereas calsequestrin was present in skeletal muscle of the esophagus. Gap junction proteins connexin-43 and -40 were present in circular muscle of jejunum but not in longitudinal muscle or in LES. In some cases, these proteins were associated with ICC-DMP. The large-conductance Ca(2+)-activated K(+) channel was present in smooth muscle and skeletal muscle of esophagus and some ICC but was not colocalized with caveolin-1. These findings suggest that all ICC have several Ca(2+)-handling and -sequestering molecules, although the functions of only the L-Ca(2+) channel are currently known. They also suggest that gap junction proteins are located at sites where ultrastructural gap junctions are know to exist in circular muscle of intestine but not in other smooth muscles. These findings also point to the need to evaluate the function of Ca(2+) sequestration in ICC.
Collapse
Affiliation(s)
- Woo Jung Cho
- Department of Pharmacology, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
19
|
Daniel EE, Bodie G, Mannarino M, Boddy G, Cho WJ. Changes in membrane cholesterol affect caveolin-1 localization and ICC-pacing in mouse jejunum. Am J Physiol Gastrointest Liver Physiol 2004; 287:G202-10. [PMID: 14977635 DOI: 10.1152/ajpgi.00356.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pacing of mouse is dependent on the spontaneous activity of interstitial cells of Cajal in the myenteric plexus (ICC-MP). These ICC, as well as intestinal smooth muscle, contain small membrane invaginations called caveolae. Caveolae are signaling centers formed by insertions of caveolin proteins in the inner aspect of the plasma membrane. Caveolins bind signaling proteins and thereby negatively modulate their signaling. We disrupted caveolae by treating intestinal segments with methyl beta-clodextrin (CD) to remove cholesterol or with water-soluble cholesterol (WSC) to load cholesterol. Both of these treatments reduced pacing frequencies, and these effects were reversed by the other agent. These treatments also inhibited paced contractions, but complete reversal was not observed. To evaluate the specificity of the effects of CD and WSC, additional studies were made of their effects on responses to carbamoyl choline and to stimulation of cholinergic nerves. Neither of these treatments affected these sets of responses compared with their respective time controls. Immunochemical and ultrastructural studies showed that caveolin 1 was present in smooth muscle membranes and ICC-MP. CD depleted both caveolin 1 and caveolae, whereas WSC increased the amount of caveolin 1 immunoreactivity and altered its distribution but failed to increase the number of caveolae. The effects of each agent were reversed in major part by the other. We conclude that signaling through caveolae may play a role in pacing by ICC but does not affect responses to acetylcholine from nerves or when added exogenously.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Rm. 9-10, Medical Sciences Bldg., Edmonton, Alberta T6G 2H7, Canada.
| | | | | | | | | |
Collapse
|
20
|
Boddy G, Bong A, Cho W, Daniel EE. ICC pacing mechanisms in intact mouse intestine differ from those in cultured or dissected intestine. Am J Physiol Gastrointest Liver Physiol 2004; 286:G653-62. [PMID: 14656713 DOI: 10.1152/ajpgi.00382.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pacing of mouse intestine is driven by spontaneous activity of a network of interstitial cells of Cajal in the myenteric plexus (ICC-MP). So far, highly dissected circular muscle (CM) strips from control and mutant mice lacking ICC-MP and isolated, cultured ICC from newborn control mice were used to analyze its properties. Using intact circular and longitudinal segments of intestine, we recently reported that there were both significant similarities and differences between pacing studied in segments and from isolated, dissected tissues. Here, we report additional similarities and differences in our model from those in highly reduced systems. Similar to cultured or dissected intestine, blockade of sarcoplasmic-endoplasmic reticulum Ca(2+) pumps with thapsigargin or cyclopiazonic acid reduced pacing frequency, but thapsigargin was less effective than in isolated, cultured ICC. Moreover, inhibition of inositol 1,4,5-trisphosphate (IP(3)) receptors with xestospongin C, a putative inhibitor of IP(3) receptors, failed to affect pacing but successfully blocked increased pacing frequency by phorbol ester. 2-Aminoethoxy-diphenylborate, a putative blocker of IP(3)-mediated calcium release, caused a significant decrease in the amplitude and frequency of contractions. The mitochondrial uncoupler carbonyl cyanide p-trifluormethoxyphenylhydrazone blocked pacing and KCl-induced contractions at a concentration of 1 microM. The cyclic nucleotide agonists sodium nitroprusside (SNP), forskolin, and 8-bromo-cGMP inhibited pacing in CM. In longitudinal muscle (LM), SNP and forskolin had little effect on pacing. Furthermore, dibutyryl-cAMP did not affect pacing in CM or LM. These results suggest that pacing in intact intestine is under partly similar regulatory control as in more reduced systems. However, pacing in intact intestine is not affected by xestospongin C, which abolishes pacing in isolated, cultured ICC and exhibits attenuated responses to thapsigargin. Also, major differences between LM and CM suggest a separate pacemaker may drive LM.
Collapse
Affiliation(s)
- Geoffrey Boddy
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7Canada
| | | | | | | |
Collapse
|