1
|
Burns GL, Keely S. Understanding food allergy through neuroimmune interactions in the gastrointestinal tract. Ann Allergy Asthma Immunol 2023; 131:576-584. [PMID: 37331592 DOI: 10.1016/j.anai.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Food allergies are adverse immune reactions to food proteins in the absence of oral tolerance, and the incidence of allergies to food, including peanut, cow's milk, and shellfish, has been increasing globally. Although advancements have been made toward understanding the contributions of the type 2 immune response to allergic sensitization, crosstalk between these immune cells and neurons of the enteric nervous system is an area of emerging interest in the pathophysiology of food allergy, given the close proximity of neuronal cells of the enteric nervous system and type 2 effector cells, including eosinophils and mast cells. At mucosal sites, such as the gastrointestinal tract, neuroimmune interactions contribute to the sensing and response to danger signals from the epithelial barrier. This communication is bidirectional, as immune cells express receptors for neuropeptides and transmitters, and neurons express cytokine receptors, allowing for the detection of and response to inflammatory insults. In addition, it seems that neuromodulation of immune cells including mast cells, eosinophils, and innate lymphoid cells is critical for amplification of the type 2 allergic immune response. As such, neuroimmune interactions may be critical targets for future food allergy therapies. This review evaluates the contributions of local enteric neuroimmune interactions to the underlying immune response in food allergy and discusses considerations for future investigations into targeting neuroimmune pathways for treatment of food allergies.
Collapse
Affiliation(s)
- Grace L Burns
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia; National Health and Medical Research Council Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia; Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia; National Health and Medical Research Council Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia; Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
2
|
Pfanzagl B, Pfragner R, Jensen-Jarolim E. Histamine via histamine H1 receptor enhances the muscarinic receptor-induced calcium response to acetylcholine in an enterochromaffin cell model. Clin Exp Pharmacol Physiol 2022; 49:1059-1071. [PMID: 35652717 PMCID: PMC9546423 DOI: 10.1111/1440-1681.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
As a prerequisite for serotonin secretion, the P‐STS ileal enterochromaffin cell line responds to acetylcholine (ACh) stimulation with an increase in intracellular calcium mediated by the muscarinic ACh receptor M3 (M3R). Histamine increases intracellular calcium via histamine H1 receptor (H1R) in P‐STS cells and pre‐incubation with histamine specifically augments the response to ACh but not to epinephrine or nicotine. We aimed to elucidate whether histamine receptors are involved in this synergism. Astonishingly, HEK‐293 T cells—known to express M3R, but only a very low amount of histamine receptor messenger RNA—showed a similar enhancement of the calcium response to ACh by pre‐incubation with histamine. Despite the much lower level of H1R protein detected in HEK‐293 T cells as compared to P‐STS cells, in both cell lines pre‐treatment with H1R antagonists inhibited the synergism between histamine and ACh. No indication for an involvement of histamine H2 or H4 receptors in the synergism was found. Furthermore, pre‐incubation with the cAMP‐inducing compound forskolin had no influence on the intracellular calcium response to ACh. Serotonin secretion from P‐STS cells was increased after challenge with ACh and histamine added simultaneously compared to ACh alone, suggesting that histamine increases ACh‐induced serotonin secretion from enterochromaffin cells. In conclusion, our data suggest that histamine enhances the M3R‐mediated intracellular calcium response to ACh via activation of H1R. This probably increases serotonin secretion from enterochromaffin cells and thereby affects intestinal motility in histamine intolerance, food allergies and irritable bowel syndrome.
Collapse
Affiliation(s)
- Beatrix Pfanzagl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Roswitha Pfragner
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Austria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.,The Interuniversity Messerli Research Institute of the Univ. of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Austria
| |
Collapse
|
3
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
4
|
Schnedl WJ, Enko D. Histamine Intolerance Originates in the Gut. Nutrients 2021; 13:1262. [PMID: 33921522 PMCID: PMC8069563 DOI: 10.3390/nu13041262] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Histamine intolerance (HIT) is assumed to be due to a deficiency of the gastrointestinal (GI) enzyme diamine oxidase (DAO) and, therefore, the food component histamine not being degraded and/or absorbed properly within the GI tract. Involvement of the GI mucosa in various disorders and diseases, several with unknown origin, and the effects of some medications seem to reduce gastrointestinal DAO activity. HIT causes variable, functional, nonspecific, non-allergic GI and extra-intestinal complaints. Usually, evaluation for HIT is not included in differential diagnoses of patients with unexplained, functional GI complaints or in the here-listed disorders and diseases. The clinical diagnosis of HIT is challenging, and the thorough anamnesis of all HIT-linked complaints, using a standardized questionnaire, is the mainstay of HIT diagnosis. So far, DAO values in serum have not been established to correlate with DAO activity in the gut, but the diagnosis of HIT may be supported with determination of a low serum DAO value. A targeted dietary intervention, consisting of a histamine-reduced diet and/or supplementation with oral DAO capsules, is helpful to reduce HIT-related symptoms. This manuscript will present why histamine should also be taken into account in the differential diagnoses of patients with various diseases and disorders of unknown origin, but with association to functional gastrointestinal complaints. In this review, we discuss currently increasing evidence that HIT is primarily a gastrointestinal disorder and that it originates in the gut.
Collapse
Affiliation(s)
- Wolfgang J. Schnedl
- General Internal Medicine Practice, Dr. Theodor Körnerstrasse 19b, A-8600 Bruck, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria;
| |
Collapse
|
5
|
Pretorius L, Smith C. The trace aminergic system: a gender-sensitive therapeutic target for IBS? J Biomed Sci 2020; 27:95. [PMID: 32981524 PMCID: PMC7520957 DOI: 10.1186/s12929-020-00688-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Due to a lack of specific or sensitive biomarkers, drug discovery advances have been limited for individuals suffering from irritable bowel syndrome (IBS). While current therapies provide symptomatic relief, inflammation itself is relatively neglected, despite the presence of chronic immune activation and innate immune system dysfunction. Moreover, considering the microgenderome concept, gender is a significant aetiological risk factor. We believe that we have pinpointed a "missing link" that connects gender, dysbiosis, diet, and inflammation in the context of IBS, which may be manipulated as therapeutic target. The trace aminergic system is conveniently positioned at the interface of the gut microbiome, dietary nutrients and by-products, and mucosal immunity. Almost all leukocyte populations express trace amine associated receptors and significant amounts of trace amines originate from both food and the gut microbiota. Additionally, although IBS-specific data are sparse, existing data supports an interpretation in favour of a gender dependence in trace aminergic signalling. As such, trace aminergic signalling may be altered by fluctuations of especially female reproductive hormones. Utilizing a multidisciplinary approach, this review discusses potential mechanisms of actions, which include hyperreactivity of the immune system and aberrant serotonin signalling, and links outcomes to the symptomology clinically prevalent in IBS. Taken together, it is feasible that the additional level of regulation by the trace aminergic system in IBS has been overlooked, until now. As such, we suggest that components of the trace aminergic system be considered targets for future therapeutic action, with the specific focus of reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa.
| |
Collapse
|