1
|
Awan S, Lambert M, Imtiaz A, Alpy F, Tomasetto C, Oulad-Abdelghani M, Schaeffer C, Moritz C, Julien-David D, Najib S, Martinez LO, Matz RL, Collet X, Silva-Rojas R, Böhm J, Herz J, Terrand J, Boucher P. Wnt5a Promotes Lysosomal Cholesterol Egress and Protects Against Atherosclerosis. Circ Res 2022; 130:184-199. [PMID: 34886684 PMCID: PMC8776607 DOI: 10.1161/circresaha.121.318881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Impairment of cellular cholesterol trafficking is at the heart of atherosclerotic lesions formation. This involves egress of cholesterol from the lysosomes and 2 lysosomal proteins, the NPC1 (Niemann-Pick C1) and NPC2 that promotes cholesterol trafficking. However, movement of cholesterol out the lysosome and how disrupted cholesterol trafficking leads to atherosclerosis is unclear. As the Wnt ligand, Wnt5a inhibits the intracellular accumulation of cholesterol in multiple cell types, we tested whether Wnt5a interacts with the lysosomal cholesterol export machinery and studied its role in atherosclerotic lesions formation. METHODS We generated mice deleted for the Wnt5a gene in vascular smooth muscle cells. To establish whether Wnt5a also protects against cholesterol accumulation in human vascular smooth muscle cells, we used a CRISPR/Cas9 guided nuclease approach to generate human vascular smooth muscle cells knockout for Wnt5a. RESULTS We show that Wnt5a is a crucial component of the lysosomal cholesterol export machinery. By increasing lysosomal acid lipase expression, decreasing metabolic signaling by the mTORC1 (mechanistic target of rapamycin complex 1) kinase, and through binding to NPC1 and NPC2, Wnt5a senses changes in dietary cholesterol supply and promotes lysosomal cholesterol egress to the endoplasmic reticulum. Consequently, loss of Wnt5a decoupled mTORC1 from variations in lysosomal sterol levels, disrupted lysosomal function, decreased cholesterol content in the endoplasmic reticulum, and promoted atherosclerosis. CONCLUSIONS These results reveal an unexpected function of the Wnt5a pathway as essential for maintaining cholesterol homeostasis in vivo.
Collapse
Affiliation(s)
- Sara Awan
- UMR-S INSERM 1109, University of Strasbourg, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Magalie Lambert
- UMR-S INSERM 1109, University of Strasbourg, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Ali Imtiaz
- UMR-S INSERM 1109, University of Strasbourg, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Christine Schaeffer
- Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France
| | - Chloé Moritz
- Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France
| | - Diane Julien-David
- CNRS, UMR 7178, University of Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France
| | - Souad Najib
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, UMR, 1048, 1 avenue du Professeur Jean Poulhès, 31432 Toulouse, France
| | - Laurent O. Martinez
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, UMR, 1048, 1 avenue du Professeur Jean Poulhès, 31432 Toulouse, France
| | - Rachel L. Matz
- UMR-S INSERM 1109, University of Strasbourg, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Xavier Collet
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, UMR, 1048, 1 avenue du Professeur Jean Poulhès, 31432 Toulouse, France
| | - Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Jérôme Terrand
- UMR-S INSERM 1109, University of Strasbourg, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Philippe Boucher
- UMR-S INSERM 1109, University of Strasbourg, 1, place de l’Hôpital, 67000 Strasbourg, France
| |
Collapse
|
2
|
Lankatillake C, Luo S, Flavel M, Lenon GB, Gill H, Huynh T, Dias DA. Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. PLANT METHODS 2021; 17:3. [PMID: 33407662 PMCID: PMC7789656 DOI: 10.1186/s13007-020-00702-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/19/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Enzyme assays have widespread applications in drug discovery from plants to natural products. The appropriate use of blanks in enzyme assays is important for assay baseline-correction, and the correction of false signals associated with background matrix interferences. However, the blank-correction procedures reported in published literature are highly inconsistent. We investigated the influence of using different types of blanks on the final calculated activity/inhibition results for three enzymes of significance in diabetes and obesity; α-glucosidase, α-amylase, and lipase. This is the first study to examine how different blank-correcting methods affect enzyme assay results. Although assays targeting the above enzymes are common in the literature, there is a scarcity of detailed published protocols. Therefore, we have provided comprehensive, step-by-step protocols for α-glucosidase-, α-amylase- and lipase-inhibition assays that can be performed in 96-well format in a simple, fast, and resource-efficient manner with clear instructions for blank-correction and calculation of results. RESULTS In the three assays analysed here, using only a buffer blank underestimated the enzyme inhibitory potential of the test sample. In the absorbance-based α-glucosidase assay, enzyme inhibition was underestimated when a sample blank was omitted for the coloured plant extracts. Similarly, in the fluorescence-based α-amylase and lipase assays, enzyme inhibition was underestimated when a substrate blank was omitted. For all three assays, method six [Raw Data - (Substrate + Sample Blank)] enabled the correction of interferences due to the buffer, sample, and substrate without double-blanking, and eliminated the need to add substrate to each sample blank. CONCLUSION The choice of blanks and blank-correction methods contribute to the variability of assay results and the likelihood of underestimating the enzyme inhibitory potential of a test sample. This highlights the importance of standardising the use of blanks and the reporting of blank-correction procedures in published studies in order to ensure the accuracy and reproducibility of results, and avoid overlooked opportunities in drug discovery research due to inadvertent underestimation of enzyme inhibitory potential of test samples resulting from unsuitable blank-correction. Based on our assessments, we recommend method six [RD - (Su + SaB)] as a suitable method for blank-correction of raw data in enzyme assays.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Shiqi Luo
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty Ltd, Melbourne, Australia
- School of Life Sciences, La Trobe University, Melbourne, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, 3083, Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, 3083, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083, Australia.
| |
Collapse
|