1
|
Lobeck I, Donnelly B, Dupree P, Mahe MM, McNeal M, Mohanty SK, Tiao G. Rhesus rotavirus VP6 regulates ERK-dependent calcium influx in cholangiocytes. Virology 2016; 499:185-195. [PMID: 27668997 DOI: 10.1016/j.virol.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022]
Abstract
The Rhesus rotavirus (RRV) induced murine model of biliary atresia (BA) is a useful tool in studying the pathogenesis of this neonatal biliary obstructive disease. In this model, the mitogen associated protein kinase pathway is involved in RRV infection of biliary epithelial cells (cholangiocytes). We hypothesized that extracellular signal-related kinase (ERK) phosphorylation is integral to calcium influx, allowing for viral replication within the cholangiocyte. Utilizing ERK and calcium inhibitors in immortalized cholangiocytes and BALB/c pups, we determined that ERK inhibition resulted in reduced viral yield and subsequent decreased symptomatology in mice. In vitro, the RRV VP6 protein induced ERK phosphorylation, leading to cellular calcium influx. Pre-treatment with an ERK inhibitor or Verapamil resulted in lower viral yields. We conclude that the pathogenesis of RRV-induced murine BA is dependent on the VP6 protein causing ERK phosphorylation and triggering calcium influx allowing replication in cholangiocytes.
Collapse
Affiliation(s)
- Inna Lobeck
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Phylicia Dupree
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maxime M Mahe
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sujit K Mohanty
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Kocic G, Bjelakovic L, Bjelakovic B, Jevtoci-Stoimenov T, Sokolovic D, Cvetkovic T, Kocic H, Stojanovic S, Langerholc T, Jonovic M. Impact of folic acid supplementation on single- and double-stranded RNA degradation in human colostrum and mature milk. J Med Food 2014; 17:804-9. [PMID: 24650098 DOI: 10.1089/jmf.2013.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sufficient intake of folic acid is necessary for normal embryogenesis, fetal, and neonatal development. Folic acid facilitates nucleic acid internalization, and protects cellular DNA from nuclease degradation. Human milk contains enzymes, antimicrobial proteins, and antibodies, along with macrophages, that protect against infections and allergies. However, little to no information is available on the effects of folic acid supplementation on degradation of nucleic acids in human milk. In the present study, we aimed to determine the RNase activity (free and inhibitor-bound) in colostrum and mature milk, following folic acid supplementation. The study design included a total of 59 women, 27 of whom received 400 μg of folic acid daily periconceptionally and after. Folic acid supplementation increased the free RNase and polyadenylase activity following lactation. However, the increased RNase activity was not due to de novo enzyme synthesis, as the inhibitor-bound (latent) RNase activity was significantly lower and disappeared after one month. Folic acid reduced RNase activity by using double-stranded RNA as substrate. Data suggests that folic acid supplementation may improve viral RNAs degradation and mRNA degradation, but not dsRNA degradation, preserving in this way the antiviral defense.
Collapse
Affiliation(s)
- Gordana Kocic
- 1 Department of Biochemistry, Medical Faculty, University Nis , Nis, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Jafri M, Donnelly B, McNeal M, Ward R, Tiao G. MAPK signaling contributes to rotaviral-induced cholangiocyte injury and viral replication. Surgery 2007; 142:192-201. [PMID: 17689685 DOI: 10.1016/j.surg.2007.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/28/2007] [Accepted: 03/02/2007] [Indexed: 01/11/2023]
Abstract
BACKGROUND Biliary atresia is a disease of newborns that results in obliteration of the biliary tree. Infection of mice with rhesus rotavirus (RRV) results in a cholangiopathy mirroring human disease. The Mitogen Associated Protein Kinase (MAPK) signaling pathway can be activated by viral binding to cell-surface receptors. We hypothesized that RRV infection of cholangiocytes results in activation of MAPK signaling. METHODS Extrahepatic bile ducts from BALB/c pups or immortalized cholangiocytes subjected to RRV infection or control were analyzed, using Western blots, for phosphorylated members of the MAPK family: p38, ERK 1/2, JNK 1/2, and downstream transcription factors. Inhibitors of the MAPK were used to downregulate activity. Viral replication and cytolysis in cholangiocytes were evaluated post-MAPK inhibition. RESULTS Phosphorylation of all MAPK increased in RRV-infected mice and cholangiocytes. Several downstream transcription factors had increased activity in vitro. Inhibition of p38 and ERK 1/2 resulted in decreased viral replication. ERK 1/2 inhibition decreased cytolysis without affecting viral entry or binding. CONCLUSIONS RRV infection of cholangiocytes resulted in increased MAPK signaling. Inhibition of p38 and ERK 1/2 influenced the ability of rotavirus to replicate. These novel findings provide insight into the signaling cascade involved in RRV-induced cholangiocyte injury.
Collapse
Affiliation(s)
- Mubeen Jafri
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
4
|
Mok CKP, Lee DCW, Cheung CY, Peiris M, Lau ASY. Differential onset of apoptosis in influenza A virus H5N1- and H1N1-infected human blood macrophages. J Gen Virol 2007; 88:1275-1280. [PMID: 17374772 DOI: 10.1099/vir.0.82423-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Pathogenesis of the highly pathogenic avian influenza virus A/Hong Kong/483/97 (H5N1/97) remains to be investigated. It was demonstrated recently that H5N1 dysregulation of proinflammatory cytokines in human macrophages is a p38-kinase-dependent process. The results indicated that macrophages may play a role in disease severity. To investigate cellular responses to H5N1 infection further, apoptosis and its related pathways were studied in primary blood macrophages. Here, it is shown that the H5N1/97 virus triggered apoptosis, including caspases and PARP activation, in infected macrophages with a delayed onset compared with H1N1 counterparts. Similar results were also found in human macrophages infected by precursors of the H5N1/97 virus. Thus, these results showed that the delay in apoptosis onset in macrophages infected by H5N1/97 and its related precursor subtypes may be a means for the pathogens to have longer survival in the cells; this may contribute to the pathogenesis of H5N1 disease in humans.
Collapse
Affiliation(s)
- Chris K P Mok
- Immunology Research Laboratory, Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Davy C W Lee
- Immunology Research Laboratory, Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Chung-Yan Cheung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Malik Peiris
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Allan S Y Lau
- Immunology Research Laboratory, Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
5
|
Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130:2113-29. [PMID: 16762633 DOI: 10.1053/j.gastro.2006.02.057] [Citation(s) in RCA: 774] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 02/15/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Micro-RNA (miRNA) are endogenous regulatory RNA molecules that modulate gene expression. Alterations in miRNA expression can contribute to tumor growth by modulating the functional expression of critical genes involved in tumor cell proliferation or survival. Our aims were to identify specific miRNA involved in the regulation of cholangiocarcinoma growth and response to chemotherapy. METHODS miRNA expression in malignant and nonmalignant human cholangiocytes was assessed using a microarray. Expression of selected miRNA and their precursors was evaluated by Northern blots and real-time polymerase chain reaction, respectively. The effect of selected miRNA on cell growth and response to chemotherapy was assessed using miRNA-specific antisense oligonucleotides to decrease miRNA expression or with precursor miRNA to increase cellular expression. RESULTS miRNA expression was markedly different in malignant cholangiocytes, with decreased expression of many miRNA compared with nonmalignant cells. A cluster of miRNA, including miR-320, miR-200b, miR-21, miR-23a, miR-141, miR-27a, and miR-34a, were expressed in all cell lines. MiR-21, miR-141, and miR-200b were highly over-expressed in malignant cholangiocytes. Inhibition of miR-21 and miR-200b increased sensitivity to gemcitabine, whereas inhibition of miR-141 decreased cell growth. Treatment of tumor cell xenografts with systemic gemcitabine altered the expression of a significant number of miRNA. miR-21 modulates gemcitabine-induced apoptosis by phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-dependent activation of PI 3-kinase signaling. Potential target genes that were modulated by selected miRNA were identified. CONCLUSIONS Alterations in miRNA expression contribute to tumor growth and response to chemotherapy. Aberrantly expressed miRNA or their targets will provide mechanistic insight and therapeutic targets for cholangiocarcinoma.
Collapse
Affiliation(s)
- Fanyin Meng
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas 76508, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Meng F, Yamagiwa Y, Ueno Y, Patel T. Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol 2006; 44:1055-65. [PMID: 16469407 PMCID: PMC1524858 DOI: 10.1016/j.jhep.2005.10.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 10/10/2005] [Indexed: 01/07/2023]
Abstract
BACKGROUND/AIMS Over-expression of IL-6 has been implicated in cholangiocarcinoma growth but the cellular mechanisms involved are unknown. Our aims were to assess the mechanisms by which over-expression of IL-6 promotes transformed cell growth in malignant cholangiocytes. METHODS Stably transfected cell lines over-expressing IL-6 were derived from malignant human cholangiocytes. Transformed cell growth was assessed by anchorage independent growth in vitro and by xenograft growth in nude mice. Expression of the anti-apoptotic protein Mcl-1 was quantitated by immunoblot analysis and by real-time PCR. Gene silencing was performed using siRNA. Dominant negative upstream kinase activators and isoform-specific constructs were used to evaluate the involvement of p38 MAP kinase signaling pathways. RESULTS Over-expression of IL-6 increased xenograft growth, anchorage independent growth and cell survival but did not significantly alter cell proliferation. The basal expression of Mcl-1 was increased in IL-6 over-expressing cells. Selective knockdown of Mcl-1 by siRNA increased gemcitabine-induced cytotoxicity. Moreover, IL-6 increased Mcl-1 mRNA and protein expression via a p38 MAPK dependent mechanism. CONCLUSIONS These data demonstrate a major role of survival signaling pathways in mediating the effects of IL-6 over-expression in cholangiocarcinoma growth. Mcl-1 is identified as a mediator of IL-6-induced tumor cell survival and shown to be transcriptionally regulated by IL-6 via a p38 MAPK dependent pathway. We conclude that modulation of IL-6 mediated survival signaling pathways involving the p38 MAPK or downstream targets such as Mcl-1 may prove useful therapeutic strategies for human cholangiocarcinoma.
Collapse
Affiliation(s)
- Fanyin Meng
- Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine Temple, TX
| | - Yoko Yamagiwa
- Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine Temple, TX
| | | | - Tushar Patel
- Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine Temple, TX
- Address for correspondence: Tushar Patel, MD, Associate Professor of Medicine, Scott and White Clinic, 2401 South 31 Street, Temple, TX 76502, Tel: 254 724 2237 or 254 724 6267, Fax: 254 724 8276 or 254 742 7181, e-mail:
| |
Collapse
|
7
|
Abstract
BACKGROUND/AIMS Over-expression of IL-6 has been implicated in cholangiocarcinoma growth but the cellular mechanisms involved are unknown. Our aims were to assess the mechanisms by which over-expression of IL-6 promotes transformed cell growth in malignant cholangiocytes. METHODS Stably transfected cell lines over-expressing IL-6 were derived from malignant human cholangiocytes. Transformed cell growth was assessed by anchorage independent growth in vitro and by xenograft growth in nude mice. Expression of the anti-apoptotic protein Mcl-1 was quantitated by immunoblot analysis and by real-time PCR. Gene silencing was performed using siRNA. Dominant negative upstream kinase activators and isoform-specific constructs were used to evaluate the involvement of p38 MAP kinase signaling pathways. RESULTS Over-expression of IL-6 increased xenograft growth, anchorage independent growth and cell survival but did not significantly alter cell proliferation. The basal expression of Mcl-1 was increased in IL-6 over-expressing cells. Selective knockdown of Mcl-1 by siRNA increased gemcitabine-induced cytotoxicity. Moreover, IL-6 increased Mcl-1 mRNA and protein expression via a p38 MAPK dependent mechanism. CONCLUSIONS These data demonstrate a major role of survival signaling pathways in mediating the effects of IL-6 over-expression in cholangiocarcinoma growth. Mcl-1 is identified as a mediator of IL-6-induced tumor cell survival and shown to be transcriptionally regulated by IL-6 via a p38 MAPK dependent pathway. We conclude that modulation of IL-6 mediated survival signaling pathways involving the p38 MAPK or downstream targets such as Mcl-1 may prove useful therapeutic strategies for human cholangiocarcinoma.
Collapse
|
8
|
Meng F, Yamagiwa Y, Taffetani S, Han J, Patel T. IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. Am J Physiol Cell Physiol 2005; 289:C971-81. [PMID: 15917303 PMCID: PMC1513290 DOI: 10.1152/ajpcell.00081.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-6 (IL-6) has been implicated as an autocrine factor involved in growth of several human cancers, such as tumors arising from the biliary tract or cholangiocarcinoma. In malignant biliary tract epithelia, IL-6 activates the p38 MAPK pathway, which mediates a dominant survival signaling pathway. Serum and glucocorticoid-stimulated kinase (SGK) has been implicated as a survival kinase, but its role in survival signaling by IL-6 is unknown. After IL-6 stimulation, p38 MAPK activation preceded phosphorylation of SGK at Ser78. Pretreatment with the pharmacological inhibitors of p38 MAPK SB-203580 or SB-202190 blocked IL-6-induced SGK phosphorylation at Ser78 and SGK activation. Overexpression of p38alpha increased constitutive SGK phosphorylation at Ser78, whereas dominant negative p38alpha MAPK blocked IL-6-induced SGK phosphorylation and nuclear translocation. Interestingly, in addition to stimulating SGK phosphorylation, both IL-6 stimulation and p38alpha MAPK overexpression increased SGK mRNA and protein expression. An increase in p38 MAPK and SGK occurred following enforced expression of IL-6 in vivo. Furthermore, inhibition of SGK expression by siRNA increased toxicity due to chemotherapeutic drugs. Taken together, these data identify SGK as both a downstream kinase substrate as well as a transcriptionally regulated gene target of p38 MAPK in response to IL-6 and support a role of SGK during survival signaling by IL-6 in human cancers, such as cholangiocarcinoma.
Collapse
Affiliation(s)
- Fanyin Meng
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas; and
| | - Yoko Yamagiwa
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas; and
| | - Silvia Taffetani
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas; and
| | - Jiahuai Han
- Department of Immunology, The Scripps Research Institute, La Jolla, California
| | - Tushar Patel
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas; and
- Address for reprint requests and other correspondence: T. Patel, Scott and White Clinic, Texas A&M Univ. Health Science Center, 2401 South 31st St., Temple, TX 76508 (e-mail: )
| |
Collapse
|
9
|
Browning JL, Patel T, Brandt PC, Young KA, Holcomb LA, Hicks PB. Clozapine and the mitogen-activated protein kinase signal transduction pathway: implications for antipsychotic actions. Biol Psychiatry 2005; 57:617-23. [PMID: 15780848 DOI: 10.1016/j.biopsych.2004.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 11/02/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) signaling pathways respond to dopaminergic and serotonergic agents and mediate short- and long-term effects of intracellular signaling in neurons. Here we show that the antipsychotic agent, clozapine, selectively activates the MEK/ERK MAPK pathway, and inhibition of this pathway reverses clozapine's actions in the conditioned avoidance response (CAR) paradigm, a rodent behavioral assay of antipsychotic activity. METHODS Phosphorylation patterns of MAPK pathway enzymes were determined by quantitative immunoblot analysis and immunohistochemistry of rat prefrontal cortex. Kinase inhibitors were used to assess the role of MAPK signaling pathways in mediating clozapine-induced suppression of CAR. RESULTS Clozapine administration selectively increased phosphorylation of MEK1/2 but had no effect on p38 or JNK phosphorylation. Pretreatment with the 5-HT2A agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride blocked the clozapine-induced increase in MEK1/2 phosphorylation. Immunohistochemistry revealed that clozapine treatment elevated the number of cells in the prefrontal cortex positive for phosphoERK, the downstream substrate of MEK1/2. Prior administration of MEK1/2 inhibitors U0126 or Sl327, or ERK inhibitor 5-iodotubercidin, reversed suppression of CAR induced by clozapine, whereas administration of vehicle, JNK or p38 inhibitors (L-JNK-1 and SB203580, respectively) had no effect. Inhibition of kinases upstream to MEK1/2 (PI-3K, PKC, and CaMKII) by administration of LY294002, bisindolylmaleimide, or KN-62, respectively, also reversed clozapine-induced suppression of CAR. CONCLUSIONS These data support the hypothesis that the MEK/ERK signal transduction cascade participates in clozapine's antipsychotic actions.
Collapse
Affiliation(s)
- Jeff L Browning
- Department of Psychiatry, Scott & White Memorial Hospital, Central Texas Veterans Health Care System, and Texas A & M University System Health Science Center College of Medicine, Temple, Texas, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Marienfeld C, Yamagiwa Y, Ueno Y, Chiasson V, Brooks L, Meng F, Patel T. Translational regulation of XIAP expression and cell survival during hypoxia in human cholangiocarcinoma. Gastroenterology 2004; 127:1787-97. [PMID: 15578516 DOI: 10.1053/j.gastro.2004.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS Tumor progression is promoted by the ability of tumor cells to resist adverse environmental conditions such as hypoxia. We have shown that translational dysregulation contributes to transformed cell growth in malignant cholangiocytes. Translational regulation of gene expression can contribute to an immediate and rapid response to environmental changes such as hypoxia. Thus, our aims were to assess translational mechanisms involved in cell survival during hypoxia and to identify specific translationally regulated proteins involved in the cellular response to hypoxia. METHODS Cell viability and apoptosis in response to hypoxia were assessed in human cholangiocarcinoma cells. Translational processes were deregulated by cycloheximide or rapamycin or by targeted deletion of eukaryotic initiation factor (eIF)-4E, a rate-limiting translational initiation factor using small interfering RNA (siRNA). A protein antibody microarray was used to screen for eIF-4E-dependent proteins expressed during hypoxia. Expression of the X-linked inhibitor of apoptosis (XIAP) was decreased using siRNA. RESULTS Malignant cholangiocytes are resistant to hypoxia-induced apoptosis. Furthermore, cell survival during hypoxia required protein translation. eIF-4E was over expressed in malignant cholangiocytes. Reduction in eIF-4E expression by siRNA decreased tumor cell resistance to hypoxia, increased caspase-3 activation and apoptosis, and decreased cell survival compared with controls. XIAP was identified as a translationally regulated protein expressed during hypoxia. Modulation of XIAP expression by siRNA decreases cell death during hypoxia in vitro and in vivo. CONCLUSIONS Human cholangiocarcinoma cells are highly resistant to hypoxia. Translational regulation of survival proteins such as XIAP is a mechanism mediating cholangiocarcinoma survival during hypoxia.
Collapse
Affiliation(s)
- Carla Marienfeld
- Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas 76502, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 2004; 114:174-82. [PMID: 15241362 DOI: 10.1016/j.jaci.2004.03.049] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although mast cells (MCs) have been clearly implicated in innate immune responses involving bacteria, their ability to respond to viral infection is less clear. OBJECTIVE Given that MCs increase at sites of inflammation and are located at surfaces where exposure to invading viruses may occur, we explored the ability of MCs to produce cytokines including type I IFNs after exposure to viruses and to polyinosine-polycytidylic acid (polyI:C), a synthetic mimic of viral double-stranded RNA, and characterized the receptors involved, if any. METHODS Human peripheral blood-derived cultured MCs and 2 MC lines, Laboratory of Allergic Disease MC line and human MC line 1, were stimulated with viruses and polyI:C, and cytokine production, degranulation, and signaling pathway activation were examined. Because polyI:C is a ligand for Toll-like receptor (TLR)-3, human MCs were also analyzed for TLR expression. RESULTS Viruses and polyI:C induced IFN-alpha and IFN-beta production. PolyI:C did not induce TNF, IL-1beta, IL-5, or GM-CSF production, in contrast with other TLR ligands (LPS, peptidoglycan, CpG-A, or flagellin). IFN-alpha production involved nuclear factor-kappaB, p38, and C-Jun NH2-terminal kinase and mitogen-activated protein kinase. RT-PCR and Western blot analysis confirmed expression of TLR-3 by all MCs. Human cultured MCs also expressed TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-7 and TLR-9. Antibodies to TLR-3 significantly decreased IFN-alpha production. Bone marrow-derived MCs from TLR-3 knockout mice showed an ablated response to polyI:C. CONCLUSIONS Murine and human MCs produce type I IFNs after exposure to double-stranded RNA and/or virus, the former via specific interactions with TLR-3. These data suggest that MCs contribute to innate immune responses to viral infection via the production of type I IFNs.
Collapse
Affiliation(s)
- Marianna Kulka
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA
| | | | | | | |
Collapse
|
12
|
Yamagiwa Y, Marienfeld C, Meng F, Holcik M, Patel T. Translational regulation of x-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Res 2004; 64:1293-8. [PMID: 14973058 DOI: 10.1158/0008-5472.can-03-2517] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with diverse biological effects. IL-6 has been implicated in autocrine signaling pathways promoting tumor progression and chemoresistance in some human tumors. However, the mechanisms by which IL-6 modulates these responses are unknown. Aberrant apoptosis has been implicated as a fundamental mechanism of chemotherapeutic resistance. Thus, we investigated whether IL-6 alters the expression of apoptosis regulatory proteins as a mechanism of drug resistance. We provide evidence that IL-6 rapidly phosphorylates the translation initiation factor eukaryotic initiation factor-4E and triggers antiapoptotic responses in cholangiocarcinoma cells. Reduction of cellular eukaryotic initiation factor-4E by RNA interference decreases IL-6-induced effects on cytotoxic drug-induced caspase activation and apoptosis. Furthermore, IL-6 increases expression of the endogenous X-linked inhibitor of apoptosis protein expression by translation at an internal ribosome entry site. Our findings that IL-6 translationally regulates X-linked inhibitor of apoptosis protein expression reveal a novel mechanism by which IL-6 mediates tumor cell survival that may be targeted therapeutically to decrease tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Yoko Yamagiwa
- Scott and White Clinic, College of Medicine, Texas A&M University System Health Science Center, 2401 South 31st Street, Temple, TX 76502, USA
| | | | | | | | | |
Collapse
|