1
|
Nalla LV, Khairnar A. Empagliflozin drives ferroptosis in anoikis-resistant cells by activating miR-128-3p dependent pathway and inhibiting CD98hc in breast cancer. Free Radic Biol Med 2024; 220:288-300. [PMID: 38734268 DOI: 10.1016/j.freeradbiomed.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
A tumour suppressor miRNA, miR-128-3p, is widely involved in various biological processes and has been found to get downregulated in breast cancer patients. We previously published that ectopically expressed miR-128-3p suppressed migration, invasion, cell cycle arrest, and breast cancer stem cells. In the present study, we explored the role of Empagliflozin (EMPA) as a miR-128-3p functionality-mimicking drug in inducing ferroptosis by inhibiting CD98hc. Given that CD98hc is one of the proteins critical in triggering ferroptosis, we confirmed that miR-128-3p and EMPA inhibited SP1, leading to inhibition of CD98hc expression. Further, transfection with siCD98hc, miR-128-3p mimics, and inhibitors was performed to assess their involvement in the ferroptosis of anoikis-resistant cells. We proved that anoikis-resistant cells possess high ROS and iron levels. Further, miR-128-3p and EMPA treatments induced ferroptosis by inhibiting GSH and enzymatic activity of GPX4 and also induced lipid peroxidation. Moreover, EMPA suppressed bioluminescence of 4T1-Red-FLuc induced thoracic cavity, peritoneal tumour burden and lung nodules in an in-vivo metastatic model of breast cancer. Collectively, we revealed that EMPA sensitized the ECM detached cells to ferroptosis by synergically activating miR-128-3p and lowering the levels of SP1 and CD98hc, making it a potential adjunct drug for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India; Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, 602 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 62500, Czech Republic; International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 6250, Czech Republic.
| |
Collapse
|
2
|
Rivera Rodríguez R, Johnson JJ. Terpenes: Modulating anti-inflammatory signaling in inflammatory bowel disease. Pharmacol Ther 2023; 248:108456. [PMID: 37247693 PMCID: PMC10527092 DOI: 10.1016/j.pharmthera.2023.108456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Inflammatory Bowel Disease (IBD) are autoimmune diseases characterized by chronic intestinal inflammation. Considered a western disease, IBD incidence in newly developed countries is skyrocketing. Accordingly, global prevalence is steadily increasing. There are two major IBD phenotypes, ulcerative colitis (UC) and Crohn's disease (CD). UC manifests as uninterrupted inflammation localized in the colon and rectum. Meanwhile, CD presents as interrupted inflammation that can occur throughout the digestive tract. As a result, therapeutics have focused on anti-inflammatory approaches for its treatment. Unfortunately, only 50% of patients benefit from current Food and Drug Administration approved treatments, and all are associated with serious adverse effects. Thus, there is a need for safer and novel therapeutics to increase the efficacy in this population. One aspect that is critical in understanding IBD is how food and phytochemicals therein may be associated with modifying the pathogenesis of IBD. A variety of retrospective and prospective studies, and clinical trials have shown benefits of plant-rich diets on the prevention and symptomatic improvement of IBD. The Mediterranean diet is rich in vegetables, fruits, legumes, and herbs; and characterized by the abundance of anti-inflammatory phytochemicals. An understudied phytochemical class enriched in this diet is terpenes; isoprene-based molecules are widely available in Mediterranean herbs and citrus fruits. Various terpenes have been evaluated in different IBD models. However, some present contradictory or inconclusive results. Therefore, in this review we evaluated preclinical studies of terpenes modulating basic inflammatory signaling related to IBD.
Collapse
Affiliation(s)
- Rocío Rivera Rodríguez
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, United States of America
| | - Jeremy James Johnson
- University of Illinois Chicago, College of Pharmacy, Department of Pharmacy Practice, United States of America.
| |
Collapse
|
3
|
Ma Y, Gao W, Zhang Y, Yang M, Yan X, Zhang Y, Li G, Liu C, Xu C, Zhang M. Biomimetic MOF Nanoparticles Delivery of C-Dot Nanozyme and CRISPR/Cas9 System for Site-Specific Treatment of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6358-6369. [PMID: 35099925 DOI: 10.1021/acsami.1c21700] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of unknown etiology affecting the colon and rectum. Previous studies have found that reactive oxygen species (ROS) overproduction and transmembrane glycoprotein CD98 (encoded by SLC3A2) upregulation played important roles in the initiation and progression of UC. On the basis of this, a biomimetic pH-responsive metal organic framework (MOF) carrier was constructed to deliver carbon nanodot-SOD nanozyme and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system for site-specific treatment of UC. In this system, carbon nanodots (C-dots) and CD98 CRISPR/Cas9 plasmid were successfully encapsulated into MOF carrier (ZIF-8 nanoparticles) by a one-pot approach (formed as CCZ), and then camouflaged with macrophage membrane (formed as CCZM). It was worth noting that the C-dot nanozyme showed excellent superoxide dismutase (SOD) enzymatic activity, which could scavenge ROS effectively. As expected, this biomimetic system exhibited pH-responsive, immune escape, and inflammation targeting capability simultaneously. In vitro experiments showed that ROS was significantly eliminated, and CD98 was downregulated by CCZM. In the dextran sulfate sodium salt (DSS)-induced UC model, administration of CCZM significantly ameliorated the inflammation symptoms of mice, including the colon length and pathological parameters such as epithelium integrity and inflammation infiltration. In addition, both in vitro and in vivo results demonstrated that biomimetic nanoparticles effectively reduced the expression of pro-inflammatory cytokines. Overall, this study would provide a promising approach for the precise treatment of UC.
Collapse
Affiliation(s)
- Yana Ma
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Wenhui Gao
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Mei Yang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Xiangji Yan
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Guanying Li
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Cui Liu
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
4
|
Shaker ME, Hendawy OM, El-Mesery M, Hazem SH. The JAK inhibitor ruxolitinib abrogates immune hepatitis instigated by concanavalin A in mice. Int Immunopharmacol 2021; 103:108463. [PMID: 34952468 PMCID: PMC9363025 DOI: 10.1016/j.intimp.2021.108463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022]
Abstract
Therapeutics that impair the innate immune responses of the liver during the inflammatory cytokine storm like that occurring in COVID-19 are greatly needed. Much interest is currently directed toward Janus kinase (JAK) inhibitors as potential candidates to mitigate this life-threatening complication. Accordingly, this study investigated the influence of the novel JAK inhibitor ruxolitinib (RXB) on concanavalin A (Con A)-induced hepatitis and systemic hyperinflammation in mice to simulate the context occurring in COVID-19 patients. Mice were orally treated with RXB (75 and 150 mg/kg) 2 h prior to the intravenous administration of Con A (20 mg/kg) for a period of 12 h. The results showed that RXB pretreatments were efficient in abrogating Con A-instigated hepatocellular injury (ALT, AST, LDH), necrosis (histopathology), apoptosis (cleaved caspase-3) and nuclear proliferation due to damage (PCNA). The protective mechanism of RXB were attributed to i) prevention of Con A-enhanced hepatic production and systemic release of the proinflammatory cytokines TNF-α, IFN-γ and IL-17A, which coincided with decreasing infiltration of immune cells (monocytes, neutrophils), ii) reducing Con A-induced hepatic overexpression of IL-1β and CD98 alongside NF-κB activation, and iii) lessening Con A-induced consumption of GSH and GSH peroxidase and generation of oxidative stress products (MDA, 4-HNE, NOx) in the liver. In summary, JAK inhibition by RXB led to eminent protection of the liver against Con A-deleterious manifestations primarily via curbing the inflammatory cytokine storm driven by TNF-α, IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Canup BSB, Song H, Laroui H. Role of CD98 in liver disease. Ann Hepatol 2021; 19:602-607. [PMID: 32057700 DOI: 10.1016/j.aohep.2019.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
CD98 is a multifunctional glycoprotein that is involved in various biological processes such as amino acid transport, cell adhesion, diffusion, adhesion, and proliferation. The role of CD98 in liver disease has not thoroughly been examined and is limited reports in the literature. Among these reports, direct association for CD98 in nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) have been reported. Our lab has reported that targeting CD98 in high fat diet mice reduced steatosis and inflammation in NAFLD. Other reports associate CD98 in HCC due in part to the role of CD98 in activating integrin signaling. Herein, we present CD98 staining on liver biopsies from NAFLD, chronic active hepatitis, cirrhosis, and 3 stages of HCC to demonstrate the upregulation of CD98 expression throughout liver disease progression. In addition, we analyze current literature to elucidate roles and potential roles of CD98 with each stage of liver disease.
Collapse
Affiliation(s)
- Brandon S B Canup
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA, USA
| | - Heliang Song
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA, USA
| | - Hamed Laroui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA, USA; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, 145 Piedmont Ave SE, Atlanta, GA, USA.
| |
Collapse
|
6
|
Ma L, Zhang X, Yu K, Xu X, Chen T, Shi Y, Wang Y, Qiu S, Guo S, Cui J, Miao Y, Tian X, Du L, Yu Y, Xia J, Wang J. Targeting SLC3A2 subunit of system X C- is essential for m 6A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med 2021; 168:25-43. [PMID: 33785413 DOI: 10.1016/j.freeradbiomed.2021.03.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022]
Abstract
The m6A reader YT521-B homology containing 2 (YTHDC2) has been identified to inhibit lung adenocarcinoma (LUAD) tumorigenesis by suppressing solute carrier 7A11 (SLC7A11)-dependent antioxidant function. SLC7A11 is a major functional subunit of system XC-. Inhibition of system XC- can induce ferroptosis. However, whether suppressing SLC7A11 is sufficient for YTHDC2 to be an endogenous ferroptosis inducer in LUAD is unknown. Here, we found that induction of YTHDC2 to a high level can induce ferroptosis in LUAD cells but not in lung and bronchus epithelial cells. In addition to SLC7A11, solute carrier 3A2 (SLC3A2), another subunit of system XC- was equally important for YTHDC2-induced ferroptosis. YTHDC2 m6A-dependently destabilized Homeo box A13 (HOXA13) mRNA because a potential m6A recognition site was identified within its 3' untranslated region (3'UTR). Interestingly, HOXA13 acted as a transcription factor to stimulate SLC3A2 expression. Thereby, YTHDC2 suppressed SLC3A2 via inhibiting HOXA13 in an m6A-indirect manner. Mouse experiments further confirmed the associations among YTHDC2, SLC3A2 and HOXA13, and demonstrated that SLC3A2 and SLC7A11 were both important for YTHDC2-impaired tumor growth and -induced lipid peroxidation in vivo. Moreover, higher expression of SLC7A11, SLC3A2 and HOXA13 indicate poorer clinical outcome in YTHDC2-suppressed LUAD patients. In conclusion, YTHDC2 is believed to be a powerful endogenous ferroptosis inducer and targeting SLC3A2 subunit of system XC- is essential for this process. Increasing YTHDC2 is an alternative ferroptosis-based therapy to treat LUAD.
Collapse
Affiliation(s)
- Lifang Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Keke Yu
- Department of Bio-bank, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tianxiang Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorder, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Susu Guo
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jiangtao Cui
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong province, China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jinjing Xia
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jiayi Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China; Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
7
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Zhang X, Herr F, Vernochet A, Lorenzo HK, Beaudreuil S, Dürrbach A. CASK, the Soluble Glomerular Permeability Factor, Is Secreted by Macrophages in Patients With Recurrent Focal and Segmental Glomerulo-Sclerosis. Front Immunol 2020; 11:875. [PMID: 32477353 PMCID: PMC7235163 DOI: 10.3389/fimmu.2020.00875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction: Focal and segmental glomerulosclerosis (FSGS) is a frequent form of glomerulonephritis that may be caused by a soluble permeability factor and regulated by the immune system. We previously described a soluble form of calcium/calmodulin-dependent serine/threonine kinase (CASK) acting as a permeability factor in patients with recurrent FSGS (rFSGS). Here, we aimed to identify the immune cells associated with CASK secretion in patients with rFSGS. Methods: FACS, western blotting and immunoprecipitation were performed to detect CASK in peripheral blood mononuclear cells, including CD3+, CD20+, and CD14+subsets, from patients with rFSGS, healthy donors, transplant patients and patients with nephrotic syndrome due to diabetes mellitus, and in KHM2 cells. Results: CASK was produced mostly by monocytes in patients with rFSGS but not by T or B lymphocytes. It was not detectein cells from control patients. CASK was also produced and secreted by M2 polarized macrophages and KMH2 cells, but not by M1 polarized macrophages. CASK secretion was not not inhibited by brefeldin A, suggesting an absence of classical secretion pathway involvement. Within cells, CASK was partly colocalized with ALIX, a molecule involved in exosome development, and these two molecules were coprecipitated from M2 macrophages. Moreover, exosomes derived from M2 macrophages induced podocyte cytoskeleton alterations and increased podocyte motility. Conclusion: These results suggest that the soluble permeability factor CASK is secreted by monocytes and M2 macrophages, via exosomes, to alter the glomerular filtration barrier in rFSGS.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- INSERM U1197, Villejuif, France.,Division of Internal Medicine, Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Florence Herr
- INSERM U1197, Villejuif, France.,University of Paris-Saclay, Saint-Aubin, France.,Centre de Reference Maladie Rare du Syndrome Nephrotique Idiopatique, Paris, France
| | - Amelia Vernochet
- INSERM U1197, Villejuif, France.,University of Paris-Saclay, Saint-Aubin, France
| | - Hans K Lorenzo
- INSERM U1197, Villejuif, France.,University of Paris-Saclay, Saint-Aubin, France.,Department of Nephrology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Séverine Beaudreuil
- INSERM U1197, Villejuif, France.,Department of Nephrology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antoine Dürrbach
- INSERM U1197, Villejuif, France.,University of Paris-Saclay, Saint-Aubin, France.,Centre de Reference Maladie Rare du Syndrome Nephrotique Idiopatique, Paris, France.,Department of Nephrology, Henri Mondor Hospital, Creteil, France
| |
Collapse
|
9
|
Chevalier R. siRNA Targeting and Treatment of Gastrointestinal Diseases. Clin Transl Sci 2019; 12:573-585. [PMID: 31309709 PMCID: PMC6853152 DOI: 10.1111/cts.12668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
RNA interference via small interfering RNA (siRNA) offers opportunities to precisely target genes that contribute to gastrointestinal (GI) pathologies, such as inflammatory bowel disease, celiac, and esophageal scarring. Delivering the siRNA to the GI tract proves challenging as the harsh environment of the intestines degrades the siRNA before it can reach its target or blocks its entry into its site of action in the cytoplasm. Additionally, the GI tract is large and disease is often localized to a specific site. This review discusses polymer and lipid‐based delivery systems for protection and targeting of siRNA therapies to the GI tract to treat local disease.
Collapse
Affiliation(s)
- Rachel Chevalier
- Children's Mercy Kansas City, Kansas City, Missouri, USA.,University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
10
|
Beaudreuil S, Zhang X, Herr F, Harper F, Candelier JJ, Fan Y, Yeter H, Dudreuilh C, Lecru L, Vazquez A, Charpentier B, Lorenzo HK, Durrbach A. Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. PLoS One 2019; 14:e0219353. [PMID: 31356645 PMCID: PMC6663006 DOI: 10.1371/journal.pone.0219353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Focal and Segmental GlomeruloSclerosis (FSGS) can cause nephrotic syndrome with a risk of progression to end-stage renal disease. The idiopathic form has a high rate of recurrence after transplantation, suggesting the presence of a systemic circulating factor that causes glomerular permeability and can be removed by plasmapheresis or protein-A immunoadsorption. Results To identify this circulating factor, the eluate proteins bound on therapeutic immunoadsorption with protein-A columns were analyzed by comparative electrophoresis and mass spectrometry. A soluble form of calcium/calmodulin-dependent serine protein kinase (CASK) was identified. CASK was immunoprecipitated only in the sera of patients with recurrent FSGS after transplantation and not in control patients. Recombinant-CASK (rCASK) induced the reorganization of the actin cytoskeleton in immortalized podocytes, a redistribution of synaptopodin, ZO-1,vinculin and ENA. rCASK also induced alterations in the permeability of a monolayer of podocytes and increased the motility of pdodocytes in vitro. The extracellular domain of CD98, a transmembrane receptor expressed on renal epithelial cells, has been found to co-immunoprecipitated with rCASK. The invalidation of CD98 with siRNA avoided the structural changes of rCask treated cells suggesting its involvement in physiopathology of the disease. In mice, recombinant CASK induced proteinuria and foot process effacement in podocytes. Conclusion Our results suggest that CASK can induce the recurrence of FSGS after renal transplantation.
Collapse
Affiliation(s)
- Severine Beaudreuil
- IFRNT, Department of Nephrology, Bicêtre Hospital, University of Paris-Sud, Le Kremlin-Bicêtre, France
- INSERM U1197, Villejuif, France
| | | | | | - Francis Harper
- CNRS, UMR 8122, Institut Gustave Roussy, Villejuif, France
| | | | - Ye Fan
- INSERM U1197, Villejuif, France
| | | | - Caroline Dudreuilh
- IFRNT, Department of Nephrology, Bicêtre Hospital, University of Paris-Sud, Le Kremlin-Bicêtre, France
- INSERM U1197, Villejuif, France
| | | | | | - Bernard Charpentier
- IFRNT, Department of Nephrology, Bicêtre Hospital, University of Paris-Sud, Le Kremlin-Bicêtre, France
- INSERM U1197, Villejuif, France
| | - Hans K. Lorenzo
- IFRNT, Department of Nephrology, Bicêtre Hospital, University of Paris-Sud, Le Kremlin-Bicêtre, France
- INSERM U1197, Villejuif, France
- * E-mail: (AD); (HKL)
| | - Antoine Durrbach
- IFRNT, Department of Nephrology, Bicêtre Hospital, University of Paris-Sud, Le Kremlin-Bicêtre, France
- INSERM U1197, Villejuif, France
- * E-mail: (AD); (HKL)
| |
Collapse
|
11
|
Canup BSB, Song H, Le Ngo V, Meng X, Denning TL, Garg P, Laroui H. CD98 siRNA-loaded nanoparticles decrease hepatic steatosis in mice. Dig Liver Dis 2017; 49:188-196. [PMID: 27939923 PMCID: PMC6475075 DOI: 10.1016/j.dld.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid hepatic accumulation. Here, we investigated whether a reduction of CD98 expression mediated by CD98 siRNA-loaded nanoparticles (NPs) could attenuate liver disease markers in a mouse model of NAFLD. NPs were generated using a double emulsion/solvent evaporation technique. Mice fed a high fat diet for 8 weeks to induce fatty liver were treated with vein tail injections of CD98 siRNA-loaded NPs. In vitro, HepG2 treated with CD98 siRNA-loaded NPs showed significant downregulation of CD98 leading to a significant decrease of major pro-inflammatory cytokines and markers. In vivo, CD98 siRNA-loaded NPs strongly decreased all markers of NAFLD, including the blood levels of ALT and lipids accumulation, fibrosis evidence and pro-inflammatory cytokines. In conclusion, our results indicate that CD98 appears to function as a key actor/inducer in NAFLD, and that our NPs approach may offer a new targeted therapeutic for this disease.
Collapse
Affiliation(s)
- Brandon S B Canup
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Heliang Song
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Vu Le Ngo
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Xiangxiao Meng
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Pallavi Garg
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Hamed Laroui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Frederiksen AL, Larsen MJ, Brusgaard K, Novack DV, Knudsen PJT, Schrøder HD, Qiu W, Eckhardt C, McAlister WH, Kassem M, Mumm S, Frost M, Whyte MP. Neonatal High Bone Mass With First Mutation of the NF-κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65). J Bone Miner Res 2016; 31:163-72. [PMID: 26178921 PMCID: PMC5310715 DOI: 10.1002/jbmr.2590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/13/2022]
Abstract
Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human skeletal homeostasis and represent a new genetic cause of HBM.
Collapse
Affiliation(s)
- Anja L Frederiksen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | | | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | | | - William H McAlister
- Department of Pediatric Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO, USA
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Steven Mumm
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.,Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA
| | - Morten Frost
- Endocrine Research Unit, Odense University Hospital, Odense, Denmark
| | - Michael P Whyte
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA.,Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, USA
| |
Collapse
|
13
|
Schulz JD, Gauthier MA, Leroux JC. Improving oral drug bioavailability with polycations? Eur J Pharm Biopharm 2015; 97:427-37. [DOI: 10.1016/j.ejpb.2015.04.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022]
|
14
|
Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles. Mol Ther 2013; 22:69-80. [PMID: 24025751 DOI: 10.1038/mt.2013.214] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/03/2013] [Indexed: 12/27/2022] Open
Abstract
Intestinal CD98 expression plays a crucial role in controlling homeostatic and innate immune responses in the gut. Modulation of CD98 expression in intestinal cells therefore represents a promising therapeutic strategy for the treatment and prevention of inflammatory intestinal diseases, such as inflammatory bowel disease. Here, the advantages of nanoparticles (NPs) are used, including their ability to easily pass through physiological barriers and evade phagocytosis, high loading concentration, rapid kinetics of mixing and resistance to degradation. Using physical chemistry characterizations techniques, CD98 siRNA/polyethyleneimine (PEI)-loaded NPs was characterized (diameter of ~480 nm and a zeta potential of -5.26 mV). Interestingly, CD98 siRNA can be electrostatically complexed by PEI and thus protected from RNase. In addition, CD98 siRNA/PEI-loaded NPs are nontoxic and biocompatible with intestinal cells. Oral administration of CD98/PEI-loaded NPs encapsulated in a hydrogel reduced CD98 expression in mouse colonic tissues and decreased dextran sodium sulfate-induced colitis in a mouse model. Finally, flow cytometry showed that CD98 was effectively downregulated in the intestinal epithelial cells and intestinal macrophages of treated mice. Finally, the results collectively demonstrated the therapeutic effect of "hierarchical nano-micro particles" with colon-homing capabilities and the ability to directly release "molecularly specific" CD98 siRNA in colonic cells, thereby decreasing colitis.
Collapse
|
15
|
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O'Neill LAJ. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013; 496:238-42. [PMID: 23535595 PMCID: PMC4031686 DOI: 10.1038/nature11986] [Citation(s) in RCA: 2804] [Impact Index Per Article: 233.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 02/05/2013] [Indexed: 01/27/2023]
Abstract
Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the 'GABA (γ-aminobutyric acid) shunt' pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.
Collapse
Affiliation(s)
- G M Tannahill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Intestinal epithelial CD98 directly modulates the innate host response to enteric bacterial pathogens. Infect Immun 2013; 81:923-34. [PMID: 23297381 DOI: 10.1128/iai.01388-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CD98 is a type II transmembrane glycoprotein whose expression increases in intestinal epithelial cells (IECs) during intestinal inflammation. Enteropathogenic Escherichia coli (EPEC) is a food-borne human pathogen that attaches to IECs and injects effector proteins directly into the host cells, thus provoking an inflammatory response. In the present study, we investigated CD98 and EPEC interactions in vitro and ex vivo and examined FVB wild-type (WT) and villin-CD98 transgenic mice overexpressing human CD98 in IECs (hCD98 Tg mice) and infected with Citrobacter rodentium as an in vivo model. In vivo studies indicated that CD98 overexpression, localized to the apical domain of colonic cells, increased the attachment of C. rodentium in mouse colons and resulted in increased expression of proinflammatory markers and decreased expression of anti-inflammatory markers. The proliferative markers Ki-67 and cyclin D1 were significantly increased in the colonic tissue of C. rodentium-infected hCD98 Tg mice compared to that of WT mice. Ex vivo studies correlate with the in vivo data. Small interfering RNA (siRNA) studies with Caco2-BBE cells showed a decrease in adherence of EPEC to Caco2 cells in which CD98 expression was knocked down. In vitro surface plasmon resonance (SPR) experiments showed direct binding between recombinant hCD98 and EPEC/C. rodentium proteins. We also demonstrated that the partial extracellular loop of hCD98 was sufficient for direct binding to EPEC/C. rodentium. These findings demonstrate the importance of the extracellular loop of CD98 in the innate host defense response to intestinal infection by attaching and effacing (A/E) pathogens.
Collapse
|
17
|
Jiwaji M, Daly R, Gibriel A, Barkess G, McLean P, Yang J, Pansare K, Cumming S, McLauchlan A, Kamola PJ, Bhutta MS, West AG, West KL, Kolch W, Girolami MA, Pitt AR. Unique reporter-based sensor platforms to monitor signalling in cells. PLoS One 2012; 7:e50521. [PMID: 23209767 PMCID: PMC3510088 DOI: 10.1371/journal.pone.0050521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/23/2012] [Indexed: 11/30/2022] Open
Abstract
Introduction In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. Methods Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. Findings We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. Conclusions We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters.
Collapse
Affiliation(s)
- Meesbah Jiwaji
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- School of Life and Health Science, Aston University, Birmingham, United Kingdom
| | - Rónán Daly
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - Abdullah Gibriel
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gráinne Barkess
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pauline McLean
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jingli Yang
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kshama Pansare
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- School of Life and Health Science, Aston University, Birmingham, United Kingdom
| | - Sarah Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alisha McLauchlan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Piotr J. Kamola
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Musab S. Bhutta
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adam G. West
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Katherine L. West
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Walter Kolch
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Systems Biology Ireland and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Mark A. Girolami
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
- Department of Statistical Science, University College London, London, United Kingdom
| | - Andrew R. Pitt
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- School of Life and Health Science, Aston University, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Xiao B, Merlin D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv 2012; 9:1393-407. [PMID: 23036075 DOI: 10.1517/17425247.2012.730517] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a chronic relapsing idiopathic disease. In clinical terms, most patients require lifelong medication associated with possible unpleasant adverse effects. Oral colon-specific drug delivery systems are designed to deliver therapeutic drugs to the inflamed colon to target pathophysiological manifestations of IBD. The aim is to maintain the drug with proper concentration in the inflamed colon, to enhance drug residence time and to minimize drug absorption by healthy tissues. AREAS COVERED This review addresses the main barriers for colon-specific drug delivery from organism, tissue and cell levels, respectively. It also summarizes novel colon-specific therapeutic strategies using microparticles and nanoparticles. EXPERT OPINION Oral colon-specific drug delivery represents a possible approach toward efficient treatment of IBD. As the environment of the gastrointestinal tract is harsh and intricate, this approach requires that drug carriers can respond to specific environmental factors of the inflamed colon, permitting stimulus-responsive release of loaded drugs to specific cells or even into specific organelles within cells.
Collapse
Affiliation(s)
- Bo Xiao
- Center for Diagnostics and Therapeutics, Department of Biology, Georgia State University, Atlanta, 30302, USA.
| | | |
Collapse
|
19
|
Charania MA, Ayyadurai S, Ingersoll SA, Xiao B, Viennois E, Yan Y, Laroui H, Sitaraman SV, Merlin D. Intestinal epithelial CD98 synthesis specifically modulates expression of colonic microRNAs during colitis. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1282-91. [PMID: 22499850 PMCID: PMC3378169 DOI: 10.1152/ajpgi.00401.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transmembrane glycoprotein CD98 is known to be involved in intestinal inflammation. In the present study, we found that CD98 overexpression in intestinal epithelial cells does not normally affect the expression of colonic (epithelial and immune cell) microRNAs (miRNAs), small noncoding RNAs that posttranscriptionally regulate a wide variety of biological processes. However, upon dextran sulfate sodium (DSS) treatment, the expression of several colonic miRNAs, but not miRNAs from other tissues such as liver and spleen, were differentially regulated in mice overexpressing CD98 in epithelial cells compared with wild-type (WT) animals. For example, the level of colonic miRNA 132 was not affected by DSS treatment in WT animals but was upregulated in mice overexpressing CD98 in intestinal epithelial cells. Other colonic miRNAs, including colonic miRNA 23a and 23b, were downregulated in WT animals after DSS treatment but not in colonic epithelial cell CD98-overexpressing mice. Interestingly, the expression of potential miRNA target genes affected intestinal epithelial cells that overexpress CD98 and cell types that did not overexpress CD98 but were in close proximity to CD98-overexpressing intestinal epithelial cells. Taken together, these observations show that the combination of an inflammatory context and intestinal epithelial cell expression of CD98 affects the regulation of miRNA expression in colonic epithelial and immune cells. This is new evidence that protein expression modulates miRNA expression and suggests the existence of regulatory crosstalk between proteins and miRNAs in diseases such as colitis.
Collapse
Affiliation(s)
- Moiz A. Charania
- 1Department of Biology, Center Diagnostics and Therapeutics, Georgia State University, Atlanta;
| | - Saravanan Ayyadurai
- 1Department of Biology, Center Diagnostics and Therapeutics, Georgia State University, Atlanta;
| | - Sarah A. Ingersoll
- 1Department of Biology, Center Diagnostics and Therapeutics, Georgia State University, Atlanta; ,2Veterans Affairs Medical Center, Decatur; and
| | - Bo Xiao
- 1Department of Biology, Center Diagnostics and Therapeutics, Georgia State University, Atlanta;
| | - Emilie Viennois
- 1Department of Biology, Center Diagnostics and Therapeutics, Georgia State University, Atlanta;
| | - Yutao Yan
- 1Department of Biology, Center Diagnostics and Therapeutics, Georgia State University, Atlanta; ,2Veterans Affairs Medical Center, Decatur; and
| | - Hamed Laroui
- 1Department of Biology, Center Diagnostics and Therapeutics, Georgia State University, Atlanta;
| | - Shanthi V. Sitaraman
- 3Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia
| | - Didier Merlin
- 1Department of Biology, Center Diagnostics and Therapeutics, Georgia State University, Atlanta; ,2Veterans Affairs Medical Center, Decatur; and
| |
Collapse
|
20
|
Homeostatic and innate immune responses: role of the transmembrane glycoprotein CD98. Cell Mol Life Sci 2012; 69:3015-26. [PMID: 22460579 DOI: 10.1007/s00018-012-0963-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 02/14/2012] [Accepted: 03/12/2012] [Indexed: 12/11/2022]
Abstract
The transmembrane glycoprotein CD98 is a potential regulator of multiple functions, including integrin signaling and amino acid transport. Abnormal expression or function of CD98 and disruption of the interactions between CD98 and its binding partners result in defects in cell homeostasis and immune responses. Indeed, expression of CD98 has been correlated with diseases such as inflammation and tumor metastasis. Modulation of CD98 expression and/or function therefore represents a promising therapeutic strategy for the treatment and prevention of such pathologies. Herein, we review the role of CD98 with focus on its functional importance in homeostasis and immune responses, which could help to better understand the pathogenesis of CD98-associated diseases.
Collapse
|
21
|
Yan Y, Laroui H, Ingersoll SA, Ayyadurai S, Charania M, Yang S, Dalmasso G, Obertone TS, Nguyen H, Sitaraman SV, Merlin D. Overexpression of Ste20-related proline/alanine-rich kinase exacerbates experimental colitis in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1496-505. [PMID: 21705622 PMCID: PMC3140558 DOI: 10.4049/jimmunol.1002910] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease, mainly Crohn's disease and ulcerative colitis, are characterized by epithelial barrier disruption and altered immune regulation. Colonic Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but its underlying mechanisms need to be defined. Both SPAK-transfected Caco2-BBE cells and villin-SPAK transgenic (TG) FVB/6 mice exhibited loss of intestinal barrier function. Further studies demonstrated that SPAK significantly increased paracellular intestinal permeability to FITC-dextran. In vivo studies using the mouse models of colitis induced by dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid showed that TG FVB/6 mice were more susceptible to DSS and trinitrobenzene sulfonic acid treatment than wild-type FVB/6 mice, as demonstrated by clinical and histological characteristics and enzymatic activities. Consistent with this notion, we found that SPAK increased intestinal epithelial permeability, which likely facilitated the production of inflammatory cytokines in vitro and in vivo, aggravated bacterial translocation in TG mice under DSS treatment, and consequently established a context favorable for the triggering of intestinal inflammation cascades. In conclusion, overexpression of SPAK inhibits maintenance of intestinal mucosal innate immune homeostasis, which makes regulation of SPAK important to attenuate pathological responses in inflammatory bowel disease.
Collapse
Affiliation(s)
- Yutao Yan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nguyen HTT, Dalmasso G, Torkvist L, Halfvarson J, Yan Y, Laroui H, Shmerling D, Tallone T, D'Amato M, Sitaraman SV, Merlin D. CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. J Clin Invest 2011; 121:1733-47. [PMID: 21490400 DOI: 10.1172/jci44631] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/26/2011] [Indexed: 12/12/2022] Open
Abstract
Expression of the transmembrane glycoprotein CD98 (encoded by SLC3A2) is increased in intestinal inflammatory conditions, such as inflammatory bowel disease (IBD), and in various carcinomas, yet its pathogenetic role remains unknown. By generating gain- and loss-of-function mouse models with genetically manipulated CD98 expression specifically in intestinal epithelial cells (IECs), we explored the role of CD98 in intestinal homeostasis, inflammation, and colitis-associated tumorigenesis. IEC-specific CD98 overexpression induced gut homeostatic defects and increased inflammatory responses to DSS-induced colitis, promoting colitis-associated tumorigenesis in mice. Further analysis indicated that the ability of IEC-specific CD98 overexpression to induce tumorigenesis was linked to its capacity to induce barrier dysfunction and to stimulate cell proliferation and production of proinflammatory mediators. To validate these results, we constructed mice carrying conditional floxed Slc3a2 alleles and crossed them with Villin-Cre mice such that CD98 was downregulated only in IECs. These mice exhibited attenuated inflammatory responses and resistance to both DSS-induced colitis and colitis-associated tumorigenesis. Together, our data show that intestinal CD98 expression has a crucial role in controlling homeostatic and innate immune responses in the gut. Modulation of CD98 expression in IECs therefore represents a promising therapeutic strategy for the treatment and prevention of inflammatory intestinal diseases, such as IBD and colitis-associated cancer.
Collapse
|
23
|
Nguyen HTT, Dalmasso G, Yan Y, Laroui H, Dahan S, Mayer L, Sitaraman SV, Merlin D. MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation. J Biol Chem 2009; 285:1479-89. [PMID: 19892711 DOI: 10.1074/jbc.m109.057141] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transmembrane glycoprotein CD98 regulates multiple cellular functions, including extracellular signaling, epithelial cell adhesion/polarity, amino acid transport, and cell-cell interactions. MicroRNAs post-transcriptionally regulate gene expression, thereby functioning as modulators of numerous cellular processes, such as cell differentiation, proliferation, and apoptosis. Here, we investigated if microRNAs regulate CD98 expression during intestinal epithelial cell differentiation and inflammation. We found that microRNA-7 repressed CD98 expression in Caco2-BBE cells by directly targeting the 3'-untranslated region of human CD98 mRNA. Expression of CD98 was decreased, whereas that of microRNA-7 was increased in well-differentiated Caco2-BBE cells compared with undifferentiated cells. Undifferentiated crypt cells isolated from mouse jejunum showed higher CD98 levels and lower levels of mmu-microRNA-706, a murine original microRNA candidate for CD98, than well-differentiated villus cells. Importantly, microRNA-7 decreased Caco2-BBE cell attachment on laminin-1, and CD98 overexpression recovered this inhibition, suggesting that microRNA-7 modulates epithelial cell adhesion to extracellular matrix, which in turn could affect proliferation and differentiation during the migration of enterocytes across the crypt-villus axis, by regulating CD98 expression. In a pathological context, the pro-inflammatory cytokine interleukin 1-beta increased CD98 expression in Caco2-BBE cells by decreasing microRNA-7 levels. Consistent with the in vitro findings, microRNA-7 levels were decreased in actively inflamed Crohn disease colonic tissues, where CD98 expression was up-regulated, compared with normal tissues. Together, these results reveal a novel mechanism underlying regulation of CD98 expression during patho-physiological states. This study raises microRNAs as a promising target for therapeutic modulations of CD98 expression in intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Britanova LV, Kuprash DV. New putative control elements in the promoter of the gene for the CXCL13 chemokine, a target of the alternative NF-κB pathway. Mol Biol 2009. [DOI: 10.1134/s0026893309040128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Zen K, Liu DQ, Li LM, Chen CXJ, Guo YL, Ha B, Chen X, Zhang CY, Liu Y. The heparan sulfate proteoglycan form of epithelial CD44v3 serves as a CD11b/CD18 counter-receptor during polymorphonuclear leukocyte transepithelial migration. J Biol Chem 2009; 284:3768-76. [PMID: 19073595 PMCID: PMC2635047 DOI: 10.1074/jbc.m807805200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/09/2008] [Indexed: 11/06/2022] Open
Abstract
Leukocyte beta2-integrin CD11b/CD18 mediates the firm adhesion and subsequent transepithelial migration of polymorphonuclear leukocytes, but the identity of its counter-receptor(s) on epithelia remains elusive. Here we identified a monoclonal antibody, clone C3H7, which strongly bound to the basolateral membranes of epithelial cells and inhibited both the adhesion of epithelial cells to immobilized CD11b/CD8 and the transepithelial migration of PMNs in a physiologically relevant basolateral-to-apical direction. C3H7 antigen expression in epithelial monolayers was significantly increased by treatment with proinflammatory cytokine interferon-gamma or a combination of interferon-gamma and tumor necrosis factor-alpha. Up-regulation of C3H7 antigen was also observed in the epithelium of inflamed human colon tissues. Microsequencing and Western blotting of the purified antigen showed it to be CD44 variant 3 (CD44v3), a approximately 160-kDa membrane glycoprotein. Further studies demonstrated that this epithelial CD44v3 specifically binds to CD11b/CD18 through its heparan sulfate moieties. In summary, our study demonstrates for the first time that the heparan sulfate proteoglycan form of epithelial CD44v3 plays a critical role in facilitating PMN recruitment during inflammatory episodes via directly binding to CD11b/CD18.
Collapse
Affiliation(s)
- Ke Zen
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Böhm I, Schild HH. Induction of upregulation and downregulation of the T-cell activation marker CD98 in patients undergoing contrast-enhanced CT with iodinated non-ionic dimeric contrast medium. Korean J Radiol 2009; 10:58-62. [PMID: 19182504 PMCID: PMC2647172 DOI: 10.3348/kjr.2009.10.1.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective This study was designed to determine prospectively the expression of the multifunctional CD98 protein in peripheral white blood cells in patients receiving iodinated contrast media (CM) for a computed tomography (CT) examination. Materials and Methods In 12 adult patients that received non-ionic dimeric CM (iosimenol or iodixanol), the expression of CD98 was analyzed from samples of peripheral white blood cells obtained prior to, one hour, and 24 hours after CM injection by the use of flow cytometry analysis and the use of the direct immunofluorescence technique. Results Overall, expression of CD98 was significantly downregulated 24 hours after CM injection (51.9%±10.8% vs. 38.8%±16.9%; p < 0.04). Patients that received iosimenol exhibited a more pronounced but not significant decrease of CD98 expression both one hour and 24 hours after CM injection. In an analysis of specific patient responses, CD98 downregulation occurred in eight patients. In two patients, CD98 was upregulated, and in the remaining two patients, expression remained unchanged. No patient acquired an adverse CM reaction. Conclusion This is the first demonstration that CM may be a regulator of CD98 expression. To determine if upregulation is associated with an increased risk for the acquisition of an adverse CM-induced hypersensitivity reaction and if downregulation is associated without a risk for the acquisition of an adverse CM-induced hypersensitivity reaction, further studies with a larger population of patients are required.
Collapse
Affiliation(s)
- Ingrid Böhm
- Department of Radiology, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
27
|
Saha A, Hammond CE, Gooz M, Smolka AJ. The role of Sp1 in IL-1beta and H. pylori-mediated regulation of H,K-ATPase gene transcription. Am J Physiol Gastrointest Liver Physiol 2008; 295:G977-86. [PMID: 18772363 PMCID: PMC2584829 DOI: 10.1152/ajpgi.90338.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori infection of the gastric body induces transient hypochlorhydria and contributes to mucosal progression toward gastric carcinoma. Acid secretion is mediated by parietal cell H,K-ATPase, in which the catalytic alpha-subunit (HKalpha) promoter activity in transfected gastric epithelial [gastric adenocarcinoma (AGS)] cells is repressed by H. pylori through NF-kappaB p50 homodimer binding to the promoter. IL-1beta, an acid secretory inhibitor whose mucosal level is increased by H. pylori, upregulates HKalpha promoter activity in AGS cells. Because IL-1beta also activates NF-kappaB signaling, we investigated disparate HKalpha regulation by H. pylori and IL-1beta, testing the hypothesis that IL-1beta-induced HKalpha promoter activation is mediated by the transcription factor Sp1. DNase I footprinting revealed Sp1 binding to the HKalpha promoter at -56 to -39 bp. IL-1beta stimulated the activity of three HKalpha promoter constructs containing NF-kappaB and Sp1 sites transfected into AGS cells and also stimulated a construct containing only an Sp1 site. This stimulation was abrogated by mutating the HKalpha promoter Sp1 binding site. Gelshift assays showed that IL-1beta increased Sp1 but not p50 binding to cognate HKalpha probes and that Sp1 also interacts with an HKalpha NF-kappaB site when bound to its cognate HKalpha cis-response element. H. pylori did not augment Sp1 binding to an HKalpha Sp1 probe, and small interfering RNA-mediated knockdown of Sp1 expression abrogated IL-1beta-induced HKalpha promoter stimulation. We conclude that IL-1beta upregulates HKalpha gene transcription by inducing Sp1 binding to HKalpha Sp1 and NF-kappaB sites and that the H. pylori perturbation of HKalpha gene expression is independent of Sp1-mediated basal HKalpha transcription.
Collapse
Affiliation(s)
- Arindam Saha
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Charles E. Hammond
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monika Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Adam J. Smolka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
28
|
Yan Y, Vasudevan S, Nguyen HTT, Merlin D. Intestinal epithelial CD98: an oligomeric and multifunctional protein. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:1087-92. [PMID: 18625289 PMCID: PMC2602860 DOI: 10.1016/j.bbagen.2008.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/12/2008] [Accepted: 06/17/2008] [Indexed: 01/01/2023]
Abstract
The intestinal epithelial cell-surface molecule, CD98 is a type II membrane glycoprotein. Molecular orientation studies have demonstrated that the C-terminal tail of human CD98 (hCD98), which contains a PDZ-binding domain, is extracellular. In intestinal epithelial cells, CD98 is covalently linked to an amino-acid transporter with which it forms a heterodimer. This heterodimer associates with beta(1)-integrin and intercellular adhesion molecular 1 (ICAM-1) to form a macromolecular complex in the basolateral membranes of polarized intestinal epithelial cells. This review focuses on the multifunctional roles of CD98, including involvement in extracellular signaling, adhesion/polarity, and amino-acid transporter expression in intestinal epithelia. A role for CD98 in intestinal inflammation, such as Intestinal Bowel Disease (IBD), is also proposed.
Collapse
Affiliation(s)
- Yutao Yan
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
29
|
Moeenrezakhanlou A, Nandan D, Reiner NE. Identification of a calcitriol-regulated Sp-1 site in the promoter of human CD14 using a combined western blotting electrophoresis mobility shift assay (WEMSA). Biol Proced Online 2008; 10:29-35. [PMID: 18385805 PMCID: PMC2275043 DOI: 10.1251/bpo140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/23/2022] Open
Abstract
Calcitriol (1α, 25-dihydroxyvitamin D3) induces the expression of CD14 in mononuclear phagocytes. The mechanisms accounting for this have been unclear since the promoter of CD14 does not contain a canonical vitamin D response element (VDRE). Calcitriol has been shown to regulate the activity of the transcription factor Sp-1 and our analysis of the proximal promoter of CD14 indicated the presence of four Sp-1-like binding sequences. To identify which of these sites might be involved in the response to calcitriol, we used a system incorporating an electrophoretic mobility shift assay (EMSA) coupled to Western blot analysis (WEMSA). Using WEMSA, we found that only one of the Sp-1-like binding sequences, located at position -91 to -79 (relative to the transcription start site), bound the transcription factor Sp1. Sp-1 binding to this site was demonstrable using nuclear extracts from control cells. Notably, binding activity was attenuated in nuclear extracts prepared from cells that had been incubated with calcitriol, thus suggesting Sp-1 involvement in calcitriol induction of CD14 expression. Notably, these results show that like EMSA, WEMSA can be broadly applied to aid in the identification of transcription factors involved in regulating gene expression. WEMSA, however, offers a number of distinct advantages when compared with conventional EMSA. Antibodies used for WEMSA often provide less ambiguous signals than those used in EMSA, and these do not have to recognize epitopes under native conditions. In addition, WEMSA does not require the use of labeled oligos, thus eliminating a significant expense associated with EMSA.
Collapse
Affiliation(s)
- Alireza Moeenrezakhanlou
- Department of Microbiology and Immunology, University of British Columbia, Faculties of Medicine and Science, and Vancouver Coastal Health Research Institute (VCHRI), Vancouver, British Columbia, Canada
| | | | | |
Collapse
|