1
|
Holzer P, Holzer-Petsche U. Constipation Caused by Anti-calcitonin Gene-Related Peptide Migraine Therapeutics Explained by Antagonism of Calcitonin Gene-Related Peptide's Motor-Stimulating and Prosecretory Function in the Intestine. Front Physiol 2022; 12:820006. [PMID: 35087426 PMCID: PMC8787053 DOI: 10.3389/fphys.2021.820006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
The development of small-molecule calcitonin gene-related peptide (CGRP) receptor antagonists (gepants) and of monoclonal antibodies targeting the CGRP system has been a major advance in the management of migraine. In the randomized controlled trials before regulatory approval, the safety of these anti-CGRP migraine therapeutics was considered favorable and to stay within the expected profile. Post-approval real-world surveys reveal, however, constipation to be a major adverse event which may affect more than 50% of patients treated with erenumab (an antibody targeting the CGRP receptor), fremanezumab or galcanezumab (antibodies targeting CGRP). In this review article we address the question whether constipation caused by inhibition of CGRP signaling can be mechanistically deduced from the known pharmacological actions and pathophysiological implications of CGRP in the digestive tract. CGRP in the gut is expressed by two distinct neuronal populations: extrinsic primary afferent nerve fibers and distinct neurons of the intrinsic enteric nervous system. In particular, CGRP is a major messenger of enteric sensory neurons which in response to mucosal stimulation activate both ascending excitatory and descending inhibitory neuronal pathways that enable propulsive (peristaltic) motor activity to take place. In addition, CGRP is able to stimulate ion and water secretion into the intestinal lumen. The motor-stimulating and prosecretory actions of CGRP combine in accelerating intestinal transit, an activity profile that has been confirmed by the ability of CGRP to induce diarrhea in mice, dogs and humans. We therefore conclude that the constipation elicited by antibodies targeting CGRP or its receptor results from interference with the physiological function of CGRP in the small and large intestine in which it contributes to the maintenance of peristaltic motor activity, ion and water secretion and intestinal transit.
Collapse
Affiliation(s)
- Peter Holzer
- Division of Pharmacology, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
| | - Ulrike Holzer-Petsche
- Division of Pharmacology, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Effects of Calcitonin Gene-Related Peptide on Colonic Motility and Defecation in Conscious Dogs. J Gastrointest Surg 2018; 22:2097-2103. [PMID: 29980973 DOI: 10.1007/s11605-018-3858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although intra-arterial infusion of calcitonin gene-related peptide (CGRP) reportedly stimulates giant migrating contractions (GMCs) of the small intestine in conscious dogs, the effect of intravenous CGRP administration on colonic motility remains unclear. In the present study, we investigated the effects of intravenous CGRP on colonic motility and defecation and determined the underlying mechanism of action in conscious dogs. METHODS Sixteen Beagle dogs weighing 11-13 kg were included. The effects of intravenous CGRP at doses of 3.33 (with various antagonists), 0.83, and 1.67 μg/kg on colonic motility and defecation were evaluated in neurally intact dogs (n = 6). For comparison, dogs with transection/re-anastomosis (T/R) between the proximal and middle segments of the colon (n = 5) and dogs with extrinsic denervation of the ileocolonic segments (n = 5) also received intravenous CGRP at 3.33 μg/kg. All dogs were equipped with strain gauge force transducers on the ileocolon for measurement of the colonic contractile activity. RESULTS Intravenous CGRP evoked GMCs and defecation in the neurally intact group; these stimulatory effects were inhibited by atropine and hexamethonium. Compared with the neurally intact group, the T/R group exhibited similar proximal colonic motility and decreased distal colonic motility after intravenous CGRP administration, whereas the extrinsic denervation group exhibited increased colonic motility overall. CONCLUSIONS Intravenous CGRP induces colonic motility and defecation through acetylcholine release in conscious dogs. The continuity of the enteric nerves plays an important role in CGRP-induced colonic contractions and defecation, while the extrinsic nerves suppress CGRP-induced colonic motility.
Collapse
|
3
|
Winston JH, Li Q, Sarna SK. Paradoxical regulation of ChAT and nNOS expression in animal models of Crohn's colitis and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2013; 305:G295-302. [PMID: 23681475 PMCID: PMC3891212 DOI: 10.1152/ajpgi.00052.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Morphological and functional changes in the enteric nervous system (ENS) have been reported in inflammatory bowel disease. We examined the effects of inflammation on the expression of choline acetyltransferase (ChAT) and nNOS in the muscularis externae of two models of colonic inflammation, trinitrobenzene sulfonic acid (TNBS)-induced colitis, which models Crohn's disease-like inflammation, and DSS-induced colitis, which models ulcerative Colitis-like inflammation. In TNBS colitis, we observed significant decline in ChAT, nNOS, and protein gene product (PGP) 9.5 protein and mRNA levels. In DSS colitis, ChAT and PGP9.5 were significantly upregulated while nNOS levels did not change. The nNOS dimer-to-monomer ratio decreased significantly in DSS- but not in TNBS-induced colitis. No differences were observed in the percentage of either ChAT (31 vs. 33%)- or nNOS (37 vs. 41%)-immunopositive neurons per ganglia or the mean number of neurons per ganglia (55 ± 5 vs. 59 ± 5, P > 0.05). Incubation of the distal colon muscularis externae in vitro with different types of inflammatory mediators showed that cytokines decreased ChAT and nNOS expression, whereas H₂O₂, a component of oxidative stress, increased their expression. NF-κB inhibitor MG-132 did not prevent the IL-1β-induced decline in either ChAT or nNOS expression. These findings showed that TNBS- and DSS-induced inflammation differentially regulates the expression of two critical proteins expressed in the colonic myenteric neurons. These differences are likely due to the exposure of the myenteric plexus neurons to different combinations of Th1-type inflammatory mediators and H₂O₂ in each model.
Collapse
Affiliation(s)
- John H. Winston
- 1Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and
| | - Qingjie Li
- 1Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and
| | - Sushil K. Sarna
- 1Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and ,2Department of Neuroscience and Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
4
|
Cheon GJ, Cui Y, Yeon DS, Kwon SC, Park BG. Mechanisms of motility change on trinitrobenzenesulfonic Acid-induced colonic inflammation in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:437-46. [PMID: 23269907 PMCID: PMC3526749 DOI: 10.4196/kjpp.2012.16.6.437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/17/2012] [Accepted: 10/31/2012] [Indexed: 01/02/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease (IBD) characterized by recurrent episodes of colonic inflammation and tissue degeneration in human or animal models. The contractile force generated by the smooth muscle is significantly attenuated, resulting in altered motility leading to diarrhea or constipation in IBD. The aim of this study is to clarify the altered contractility of circular and longitudinal smooth muscle layers in proximal colon of trinitrobenzen sulfonic acid (TNBS)-induced colitis mouse. Colitis was induced by direct injection of TNBS (120 mg/kg, 50% ethanol) in proximal colon of ICR mouse using a 30 G needle anesthetized with ketamin (50 mg/kg), whereas animals in the control group were injected of 50% ethanol alone. In TNBS-induced colitis, the wall of the proximal colon is diffusely thickened with loss of haustration, and showed mucosal and mucular edema with inflammatory infiltration. The colonic inflammation is significantly induced the reduction of colonic contractile activity including spontaneous contractile activity, depolarization-induced contractility, and muscarinic acetylcholine receptor-mediated contractile response in circular muscle layer compared to the longitudinal muscle layer. The inward rectification of currents, especially, important to Ca(2+) and Na(+) influx-induced depolarization and contraction, was markedly reduced in the TNBS-induced colitis compared to the control. The muscarinic acetylcholine-mediated contractile responses were significantly attenuated in the circular and longitudinal smooth muscle strips induced by the reduction of membrane expression of canonical transient receptor potential (TRPC) channel isoforms from the proximal colon of the TNBS-induced colitis mouse than the control.
Collapse
Affiliation(s)
- Gab Jin Cheon
- Department of Gastroenterology, Gangneung Asan Medical Center, Gangneung 210-701, Korea
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Frisby CL, Fraser RJ, Schirmer MB, Yeoh EK, Blackshaw LA. Roles of muscarinic receptor subtypes in small intestinal motor dysfunction in acute radiation enteritis. Am J Physiol Gastrointest Liver Physiol 2007; 293:G121-7. [PMID: 17478613 DOI: 10.1152/ajpgi.00469.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Administration of abdominal radiotherapy results in small intestinal motor dysfunction. We have developed a rat radiation enteritis model that, after exposure in vivo, shows high-amplitude, long-duration (HALD) pressure waves in ex vivo ileal segments. These resemble in vivo dysmotility where giant contractions migrate both antegradely and retrogradely. Mediation of these motor patterns is unclear, although enteric neural components are implicated. After the induction of acute radiation enteritis in vivo, ileal segments were isolated and arterially perfused. TTX, hexamethonium, atropine, or the selective muscarinic antagonists pirenzepine (M(1)), methoctramine (M(2)), and 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP; M(3)) were added to the perfusate. The baseline mean rate per minute per channel of HALD pressure waves was 0.35 +/- 0.047. This was significantly reduced by TTX (83.3%, P < 0.01), hexamethonium (90.3%, P < 0.03), and atropine (98.4%, P < 0.01). The HALD pressure wave mean rate per minute per channel was significantly reduced by pirenzepine (81.1%, P < 0.03), methoctramine (96.8%, P < 0.001), and 4-DAMP (93.1%, P < 0.03) compared with predrug baseline data. As an indicator of normal motility patterns, the frequency of low-amplitude, short-duration pressure waves was also assessed. The mean rate per minute per channel of 5.15 +/- 0.98 was significantly increased by TTX (19%, P < 0.05) but significantly reduced by pirenzepine (35.1%, P < 0.02) and methoctramine (75%, P < 0.0003). However, the rate of small-amplitude pressure waves was not affected by hexamethonium, atropine, or the M(3) antagonist 4-DAMP. The data indicate a role for neuronal mechanisms and the specific involvement of cholinergic receptors in generating dysmotility in acute radiation enteritis. The effect of selective M(3) receptor antagonism suggests that M(3) receptors may provide specific therapeutic targets in acute radiation enteritis.
Collapse
Affiliation(s)
- Claudine L Frisby
- Nerve Gut Research Laboratory, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Hanson Institute, North Terrace, Adelaide, South Australia 5000, Australia
| | | | | | | | | |
Collapse
|
7
|
Sarna SK. Enteric descending and afferent neural signaling stimulated by giant migrating contractions: essential contributing factors to visceral pain. Am J Physiol Gastrointest Liver Physiol 2007; 292:G572-81. [PMID: 16990445 DOI: 10.1152/ajpgi.00332.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated whether strong compression of an intestinal segment by giant migrating contractions (GMCs) initiates pseudoaffective signals from the gut, similar to those initiated by its distension with a balloon. The experiments were performed on conscious dogs by using close intra-arterial infusions of test substances that affect the receptors only in the infused segment. The stimulation of GMCs by close intra-arterial infusion of CGRP or distension of an intestinal segment by balloon increased the heart rate; the increase in heart rate was greater when the balloon distension and GMCs occurred concurrently in separate intestinal segments. The suppression of contractility in the distended segment blocked the increase in heart rate. By contrast, the stimulation of rhythmic phasic contractions (RPCs) or their spontaneous occurrence did not increase the heart rate. The occurrence of GMCs as well as intestinal distension also produced descending inhibition. The descending inhibition was blocked by the inhibition of nitric oxide synthase, but it was unaffected by the inhibition of adenylyl cyclase, purinergic receptors P2X and P2Y, and muscarinic receptors M(1) and M(2). The synaptic transmission for descending inhibition was mediated primarily by nicotinic receptors and activation of nitric oxide synthase. It was unaffected by the inhibition of tachykinin receptors NK(1), NK(2), and NK(3); serotonin receptors 5-HT(1A), 5-HT(2)/5-HT(1C), 5-HT(3), and 5-HT(4); and muscarinic receptors. Our findings show that GMCs, but not RPCs, initiate pseudoaffective signals from the gut. In the presence of visceral hypersensitivity or impaired descending inhibition, the GMCs may become a noxious stimulus.
Collapse
Affiliation(s)
- Sushil K Sarna
- Division of Gastroenterology, Dept of Internal Medicine, The Univ of Texas Medical Branch at Galveston, Galveston, TX 77555-1064, USA.
| |
Collapse
|
8
|
Sarna SK. Molecular, functional, and pharmacological targets for the development of gut promotility drugs. Am J Physiol Gastrointest Liver Physiol 2006; 291:G545-55. [PMID: 16565417 DOI: 10.1152/ajpgi.00122.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The science of gastrointestinal motility has made phenomenal advances during the last fifty years. Yet, there is a paucity of effective promotility drugs to treat functional bowel disorders that affect 10-29% of the U.S. population. A part of the reason for the lack of effective drugs is our limited understanding of the etiology of these diseases. In the absence of this information, mostly an ad hoc approach has been used to develop the currently available drugs, which are modestly effective or effective in only a subset of the patients with functional bowel disorders. This review discusses a grounds-up approach for development of the next generation of promotility drugs. The approach is based on our current understanding of 1) the different types of contractions that produce overall motility function of mixing and orderly net distal propulsion in major gut organs, 2) the regulatory mechanisms of these contractions, 3) which receptors and intracellular signaling molecules could be targeted to stimulate specific types of contractions to accelerate or retard transit, and 4) the strengths and limitations of animal models and experimental approaches that could screen potential promotility drugs for their efficacy in human gut propulsion in functional bowel disorders.
Collapse
Affiliation(s)
- Sushil K Sarna
- Division of Gastroenterology, Dept. of Internal Medicine, University of Texas Medical Branch at Galveston, 9.138 Medical Research Bldg., Galveston, TX 77555-1064, USA.
| |
Collapse
|
9
|
Kubomura K, Molyneux J, Omori M, Uchida M, Mogami O, Oda M. Effect of Hot Water-Extracted Boysenberry Leaf on Spontaneous Contraction of Rat Uterus. J JPN SOC FOOD SCI 2006. [DOI: 10.3136/nskkk.53.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - Masayuki Uchida
- Food Science Institute, Division of Research and Development, Meiji Dairies Corporation
| | - Orie Mogami
- Food Science Institute, Division of Research and Development, Meiji Dairies Corporation
| | - Munehiro Oda
- Food Science Institute, Division of Research and Development, Meiji Dairies Corporation
| |
Collapse
|
10
|
Affiliation(s)
- John F Di Mari
- Department of Internal Medicine, University of Texas Medical Branch, Galveston 77555-1064, USA.
| | | | | |
Collapse
|
11
|
Abstract
Inflammation of the bowel causes structural and functional changes to the enteric nervous system (ENS). While morphological alterations to the ENS are evident in some inflammatory conditions, it appears that relatively subtle modifications to the neurophysiology of enteric microcircuits may play a role in gastrointestinal (GI) dysfunction. These include changes to the excitability and synaptic properties of enteric neurones. The response of the ENS to inflammation varies according to the site and type of inflammation, with the functional consequences depending on the nature of the inflammatory stimulus. It has become clear that inflammation at one site can produce changes that occur at remotes sites in the GI tract. Immunohistochemical data from patients with inflammatory bowel disease (IBD) and animal models indicate that inflammation alters the neurochemical content of some functional classes of enteric neurones. A growing body of evidence supports an active role for enteric glia in neuronal and neuroimmune communication in the GI tract, particularly during inflammation. In conclusion, plasticity of the ENS is a feature of intestinal inflammation. Elucidation of the mechanisms whereby inflammation alters enteric neural control of GI functions may lead to novel treatments for IBD.
Collapse
Affiliation(s)
- A E Lomax
- Department of Physiology and Biophysics, Gastrointestinal, Neuroscience and Mucosal Inflammation Research Groups, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
12
|
Shi XZ, Sarna SK. G protein-mediated dysfunction of excitation-contraction coupling in ileal inflammation. Am J Physiol Gastrointest Liver Physiol 2004; 286:G899-905. [PMID: 15132948 DOI: 10.1152/ajpgi.00408.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammation impairs the circular muscle contractile response to muscarinic (M) receptor activation. The aim of this study was to investigate whether the expression of muscarinic receptors, their binding affinity, and the expression and activation of receptor-coupled G proteins contribute to the suppression of contractility in inflammation. The studies were performed on freshly dissociated single smooth muscle cells from normal and inflamed canine ileum. Northern blotting indicated the presence of only M(2) and M(3) receptors on canine ileal circular muscle cells. Inflammation did not alter the mRNA or protein expression of M(2) and M(3) receptors. The maximal binding and K(d) values also did not differ between normal and inflamed cells. However, the contractile response to ACh in M(3) receptor-protected cells was suppressed, whereas that in M(2) receptor-protected cells was enhanced. Further experiments indicated that the expression and binding activity of G alpha(q/11) protein, which couples to M(3) receptors, were downregulated, whereas those of G alpha(i3), which couples to M(2) receptors, were upregulated in inflamed cells. We concluded that inflammation depresses M(3) receptor function, but it enhances M(2) receptor function in ileum. These effects are mediated by the differentially altered expression and binding activity of their respective coupled G alpha(q/11) and G alpha(i3) proteins.
Collapse
Affiliation(s)
- Xuan-Zheng Shi
- Department of Internal Medicine, Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, The University of Texas Medical Branch at Galveston, 77555-0632, USA
| | | |
Collapse
|